Introduction of BigDataBench 4.0

Wanling Gao http://prof.ict.ac.cn

ICT, Chinese Academy of Sciences

ASPLOS 2018, Williamsburg, VA, USA

BigDataBench Tutorial Program

- 8:30-9:30 Wanling Gao
 - Introduction of BigDataBench 4.0
- 9:30-10:00 Chen Zheng
 - How to use BigDataBench 4.0
- 10:00-10:30 Coffee break
- 10:30-11:15 Chen Zheng
 - Big data and AI proxy benchmarks for simulation

First part

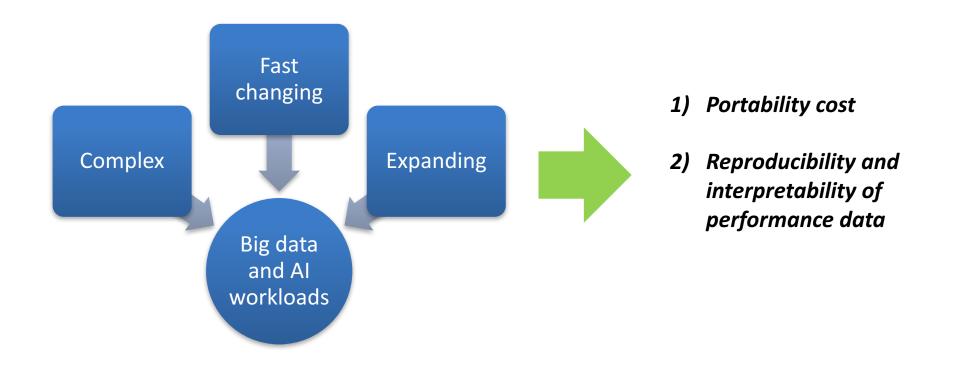
Introduction of BigDataBench 4.0

BigDataBench Benchmarking Methodology

Simulation Benchmarks

Characterization

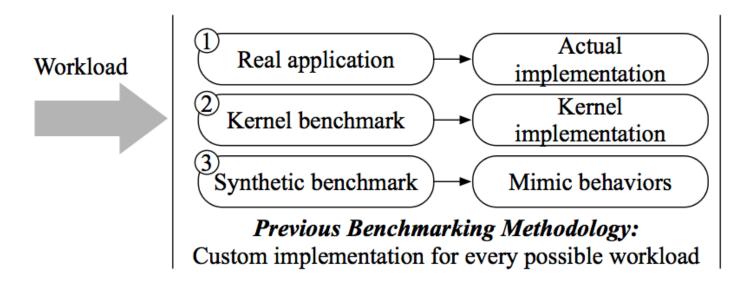
Why Big Data and AI Benchmarking?



Measuring big data and AI systems, architectures quantitatively

BigDataBench

Challenge #1 Complexity



BigDataBench

Traditional Benchmarking Methodology

- Creating a new benchmark or proxy for every possible workload
 - Case-by-case solution

经计算格

BigDataBench

What's the Units of Computation?

So how to define a representative big data and AI benchmark suite ?

Big data and AI dwarf: frequently-appearing units of computation in big data and AI workloads

-- a minimum set to represent maximum patterns

Challenge #2 Fairness

- No one-size-fits-all solution
 - Impact of data set
 - Impact of workloads
 - Impact of software stacks
- Many classes of big data and AI applications without comprehensive characterization

Challenge #3 Consistency

- Requirement difference between community
 - System: performance evaluation on large-scale system deployments
 - Architecture: heavily relies upon simulator-based research, needing shorter (simulation) runtime
 - AI researcher: runtime and model's prediction precision

The benchmarks should be consistent across different communities for the co-design of software and hardware

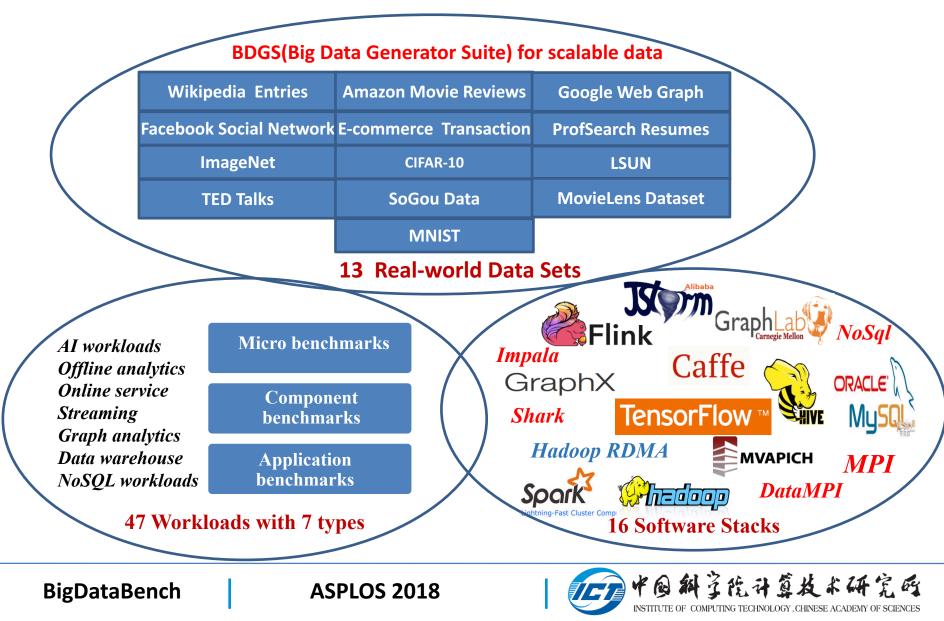
Simulation for Big Data and Al

Challenges

- Simulators have limited supports on complex software stacks
 - For example: Hadoop modes
 - Standalone mode
 - Pseudo-distributed mode
 - Fully-distributed mode
- Different modes have large behavior differences
- Long running time is unbearable
 - 1000+ times execution time than physical machine

What is *BigDataBench*?

An open source big data benchmarking project


http://prof.ict.ac.cn

Search Google using "BigDataBench"

BigDataBench 4.0 Overview

What's New in BigDataBench 4.0

Dwarf-based benchmarking methodology

• Micro, Component and Application Benchmarks

Seven workload types

• AI, Online service, Offline analytics, Graph analytics, Streaming, Data warehouse, NoSQL

Dwarf-based simulation benchmarks

• 100X runtime speedup, 90+% average accuracy

BigDataBench

BigDataBench Evolution

INSTITUTE OF COMPUTING TECHNOLOGY CHINESE ACADEMY OF SCIENCES

BigDataBench

BigDataBench Users

- <u>http://prof.ict.ac.cn/BigDataBench/users/</u>
- Industry users
 - Accenture, BROADCOM, SAMSUMG, Huawei, IBM
- About 100 academia groups published papers using or citing BigDataBench
 - VLDB/SIGMOD, SC, FAST, ASPLOS, ISCA/Micro/ HPCA, ICPP and etc.

Why BigDataBench?

	Benchmarking Target	Methodology	Application domains	Workload	Workloads	Scalable data sets abs- tracting from real data	Software Stacks
BigDataBench 4.0	Big data and AI sys- tems and architecture	Dwarf-based	five	types seven ¹	forty- seven	13 real data sets; 6 scalable data sets	sixteen
BigDataBench 2.0 [10]	Big data systems and architecture	Popularity	three	three	nineteen	6 real data sets; 6 scalable data sets	ten
BigBench 2.0 [11]	Big data systems	Application model	one	five	Proposal	Proposal	Proposal
BigBench 1.0 [8]	Big data analytics	Application model	one	one	ten	3 data generators	three
CloudSuite 3.0 [4]	Cloud services	Popularity	N/A	four	eight	3 data generators	three
HiBench 6.0 [12]	Big data systems	Popularity	N/A	six	nineteen	Random generate or with specific distribution	five
CALDA [13]	MapReduce system and parallel DBMSs	Popularity	N/A	one	five	N/A	three
YCSB [14]	Cloud serving sys- tems	Performance model	N/A	one	six	N/A	four
LinkBench [15]	Database systems	Application model	N/A	one	ten	one data generator	two
AMP	Data analytic sys-	Popularity	N/A	one	four	N/A	five
Benchmarks [16]	tems						
Fathom [17]	AI systems	Popularity	N/A	one	eight	N/A	one
The seven workload	types are online service	, offline analytics, grap	h analytics, art	ificial intelli	gence (AI), d	lata warehouse, NoSQL, and	d streaming.

BigDataBench Publications

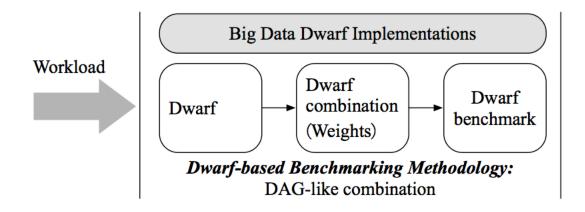
- BigDataBench: a Dwarf-based Big Data and AI Benchmark Suite. Technical Report. <u>https://arxiv.org/pdf/1802.08254.pdf</u>
- BOPS, Not FLOPS! A New Metric, Measuring Tool, and Roofline Performance Model For Datacenter Computing. Technical Report. <u>https://arxiv.org/pdf/1801.09212.pdf</u>
- Big Data Dwarfs: Towards Fully Understanding Big Data Analytics Workloads. Technical Report. <u>https://arxiv.org/pdf/1802.00699.pdf</u>
- BigDataBench: a Big Data Benchmark Suite from Internet Services. 20th IEEE International Symposium On High Performance Computer Architecture (HPCA-2014).
- Understanding Big Data Analytics Workloads on Modern Processors. TPDS 2017. <u>https://arxiv.org/pdf/1504.04974.pdf</u>
- Characterizing data analysis workloads in data centers. 2013 IEEE
 International Symposium on Workload Characterization (IISWC 2013) (Best paper award)

BigDataBench

First part

Introduction of BigDataBench 4.0

BigDataBench Benchmarking Methodology


Simulation Benchmarks

Characterization

Dwarf-based Benchmarking Methodology

- A scalable dwarf-based benchmarking methodology
 - Combinations of dwarfs with different weights

经计算书

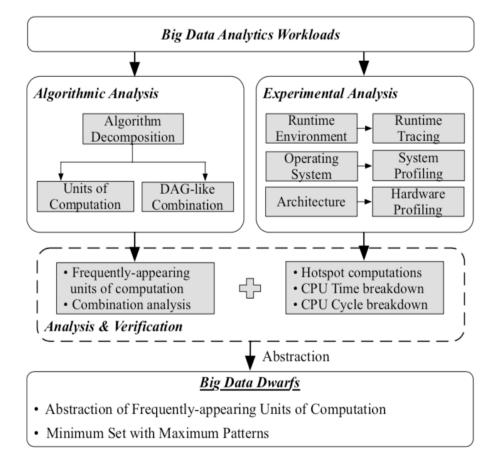
BigDataBench

Inspiration

Successful Compute Abstractions Successful Benchmarks

- Relational algebra
 - 5 primitive operations
 - Select, Project, Product, Union, Difference
- Parallel computing
 - Computational & communication patterns
 - 13 dwarfs

- TPC-C
 - OLTP domain
 - Functions of abstraction


- HPCC
 - High performance computing
 - Seven basically tests

Dwarf Abstraction

Big Data &AI DwarfUnits of computation

- Dwarf Abstraction
 - Algorithmic analysis
 - Experimental analysis

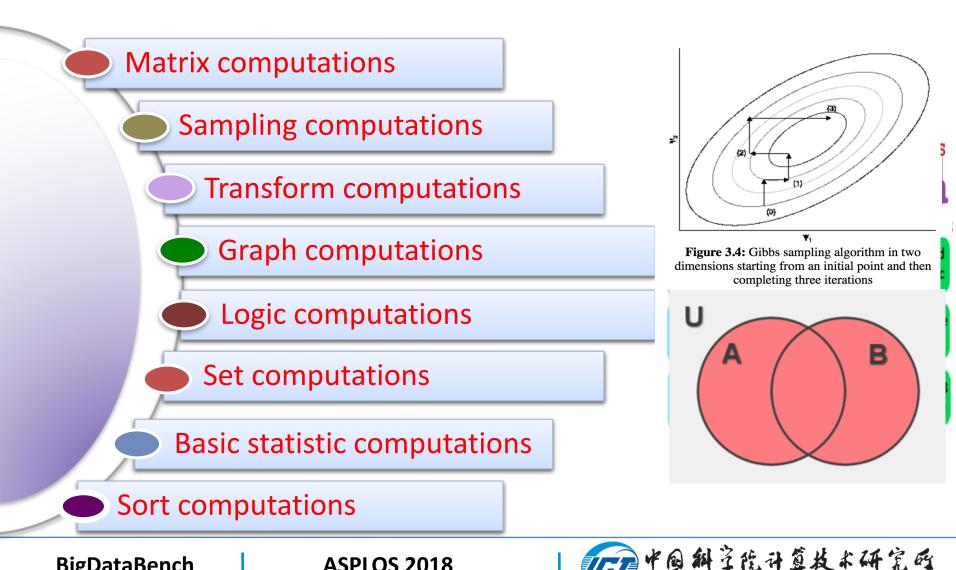
Units of Computation

Importance of eight classes units of computation

Catergory	Application Domain	Workload	Unit of Computation	
Graph Mining	Search Engine	PageRank	Matrix, Graph, Sort	
Graph Mining	Community Detection	BFS, Connected component(CC)	Graph	
Deminsion Reduction	Image Processing	Principal components analysis(PCA)	Matrix	
Deminsion Reduction	Text Processing	Latent dirichlet allocation(LDA)	Basic Statistic, Sampling	
Deen Leomine	Image Recognition	Convolutional neural network(CNN)	Matrix, Sampling, Transform	
Deep Learning	Speech Recognition	Deep belief network(DBN)	Matrix, Sampling	
Recommendation	Association Dulas Mining	Aporiori	Basic Statistic, Set	
	Association Rules Mining Electronic Commerce	FP-Growth	Graph, Set, Basic Statistic	
		Collaborative filtering(CF)	Graph, Matrix	
Classification	Image Decognition	Support vector machine(SVM)	Matrix	
	Image Recognition	K-nearest neighbors(KNN)	Matrix, Sort, Basic Staticstic	
	Speech Recognition	Naive bayes	Basic Statistic	
	Text Recognition	Random forest	Graph, Basic Statistic	
		Decision tree(C4.5/CART/ID3)	Graph, Basic Statistic	
Clustering	Data Mining	K-means	Matrix, Sort	

BigDataBench

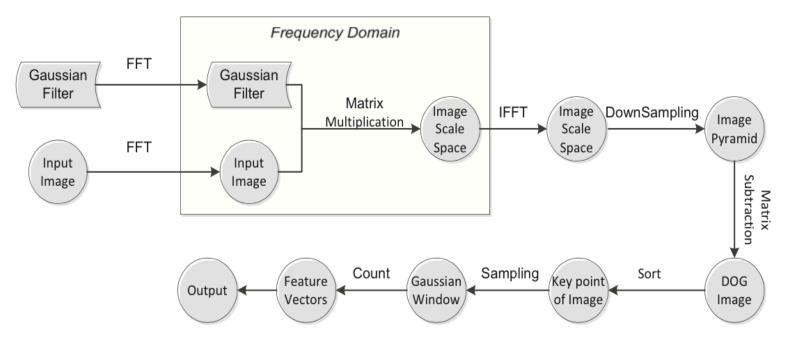
Units of Computation (cont')


Importance of eight classes units of computation

Feature Preprocess	Image Processing	Image segmentation(GrabCut)	Matrix, Graph	
	Signal Processing	Scale-invariant feature transform(SIFT)	Matrix, Transform, Sampling, Sort, Basic Statistic	
	Text Processing	Image Transform	Matrix, Transform	
		Term Frequency-inverse document fre- quency (TF-IDF)	Basic Statistic	
Como Too in a	Bioinformatics	Hidden Markov Model(HMM)	Matrix	
Sequence Tagging	Language Processing	Conditional random fields(CRF)	Matrix, Sampling	
Indexing	Search Engine	Inverted index, Forward index	Basic Statistic, Logic, Set, Sort	
Encoding/Decoding	Multimedia Processing	MPEG-2	Matrix, Transform	
	Security	Encryption	Matrix, Logic	
	Cryptography	SimHash, MinHash	Set, Logic	
	Digital Signature	Locality-sensitive hashing(LSH)	Set, Logic	
Data Warehouse	Business intelligence	Project, Filter, OrderBy, Union	Set, Sort	

的计算技术

BigDataBench


Big Data and AI Dwarfs

BigDataBench

One Combination Example

Feature extraction – SIFT Workload

Several dwarfs: *transform* computations(FFT, IFFT), *sampling* computations(downsampling), *matrix* computations(matrix multiplication/subtraction), *sort* computations(sort), *basic statistic* computations(count)

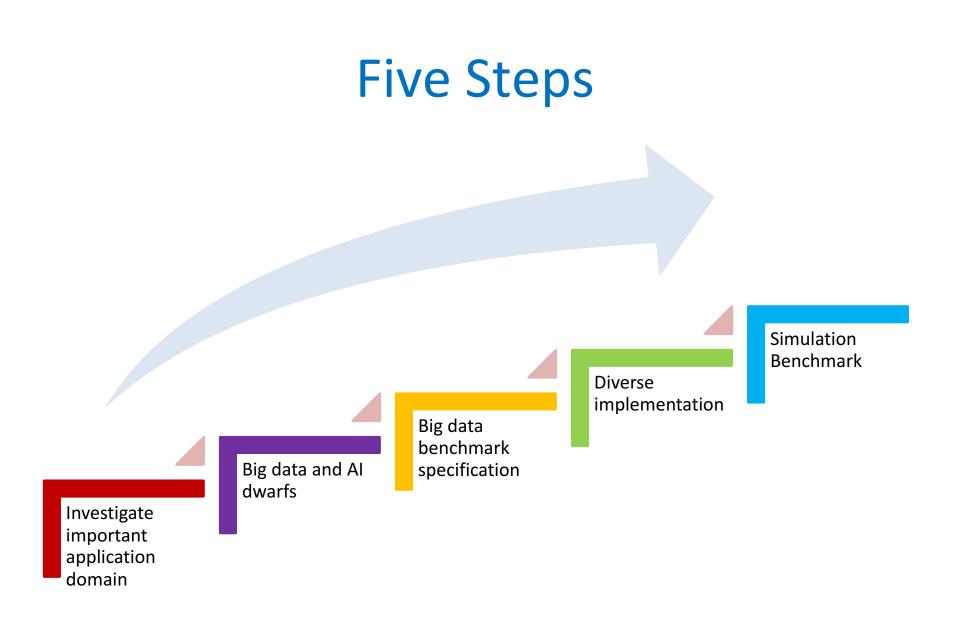
BigDataBench

Methodology Principle

Separating specification from implementation.

Model relevant domains

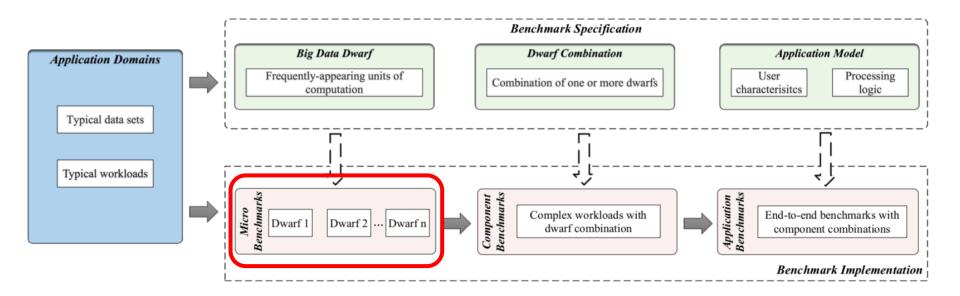
State-of-the-art algorithms and technologies


Implementation keep in pace with the improvement

Data impact

Representative data sets considering typical types and sources

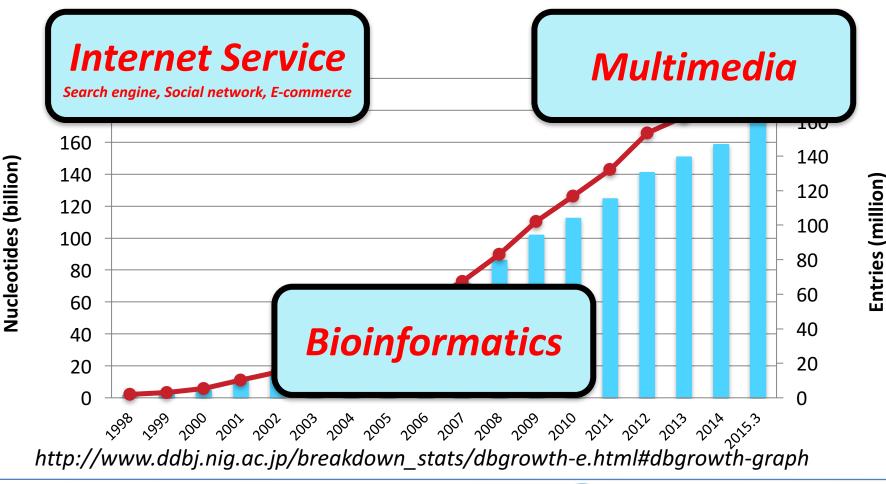
BigDataBench


BigDataBench

Benchmarking Methodology

Specification

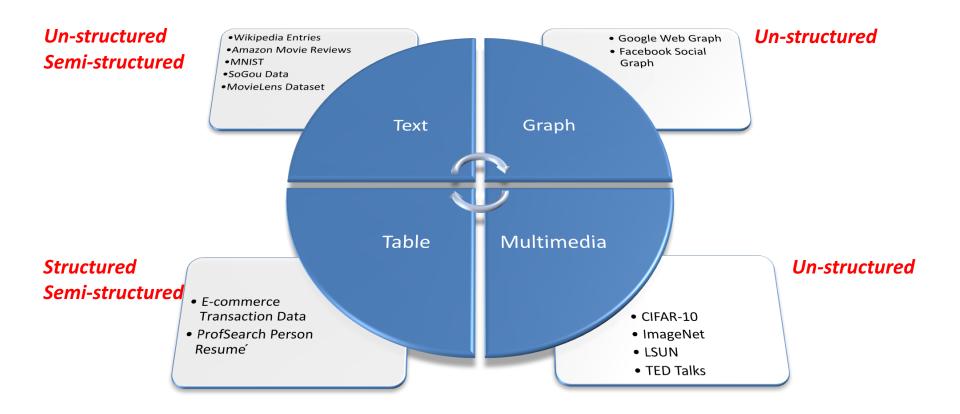
Micro, component and application benchmark


中国科学院计算技术研

INSTITUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SCIENCES

BigDataBench

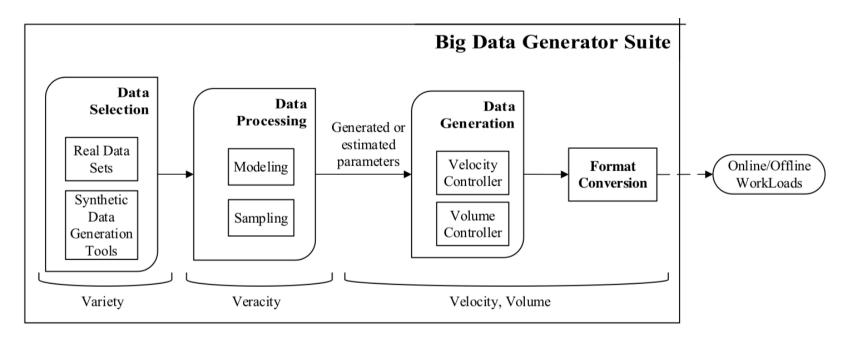
Five Application Domains


DDBJ/EMBL/GenBank database Growth

中国科学院计算技术研究码

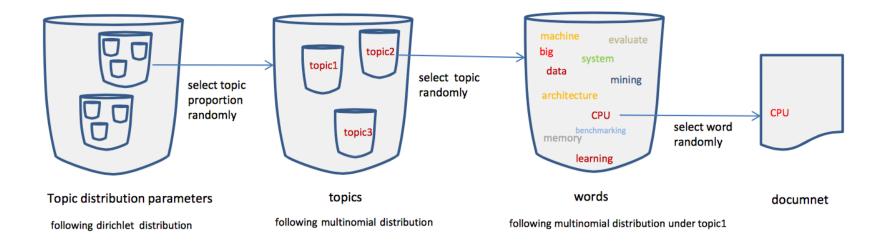
BigDataBench

BigDataBench 4.0 - Dataset



BigDataBench

Big Data Generator Suite


BDGS Architecture

BigDataBench

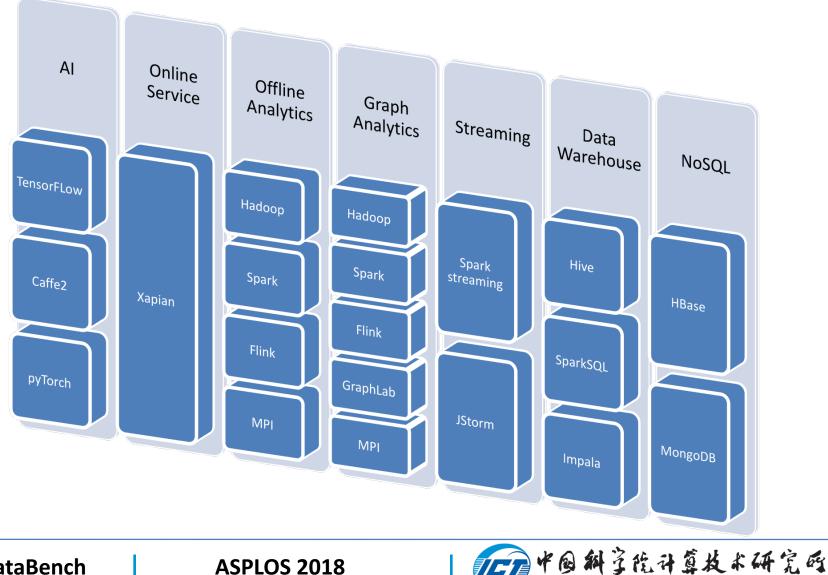
BDGS: Text Data Generator

- Modeling on topic and word level
- Words are drew from distribution under particular topic
- Topics are selected from different distribution with parameters following a dirichlet distribution

Micro Benchmarks

_	Micro Benchmark	Involved Dwarf	Application Domain	Workload Type	Data Set	Software Stack
Offline analytics	Sort	Sort		Offline analytics	Wikipedia entries	Hadoop, Spark, Flink, MPI
e mine analytics	Grep	Set		Offline analytics	Wikipedia entries	Hadoop, Spark, Flink, MPI
		Set	SE, SN, EC, MP, BI	Streaming	Random Generate	Spark streaming
	WordCount	Basic statistics		Offline analytics	Wikipedia entries	Hadoop, Spark, Flink, MPI
Graph analytics	MD5	Logic		Offline analytics	Wikipedia entries	Hadoop, Spark, MPI
	Connected Component	Graph	SN	Graph analytics	Facebook social network	Hadoop, Spark, Flink, GraphLab, MPI
	RandSample	Sampling	SE, MP, BI	Offline analytics	Wikipedia entries	Hadoop, Spark, MPI
Strooming	FFT	Transform	MP	Offline analytics	Two-dimensional matrix	Hadoop, Spark, MPI
Streaming	Matrix Multiply	Matrix	SE, SN, EC, MP, BI	Offline analytics	Two-dimensional matrix	Hadoop, Spark, MPI
Г	Read	Set	SE, SN, EC	NoSQL	ProfSearch resumes	HBase, MongoDB
	Write	Set	SE, SN, EC	NoSQL	ProfSearch resumes	HBase, MongoDB
	Scan	Set	SE, SN, EC	NoSQL	ProfSearch resumes	HBase, MongoDB
Nacol	Convolution	Transform	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, pyTorch
NoSQL	Fully Connected	Matrix	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, pyTorch
	Relu	Logic	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, pyTorch
	Sigmoid	Matrix	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, pyTorch
	Tanh	Matrix	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, pyTorch
Δ1	MaxPooling	Sampling	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, pyTorch
AI	AvgPooling	Sampling	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, pyTorch
	CosineNorm [36]	Basic Statistics	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, pyTorch
	BatchNorm [37]	Basic Statistics	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, pyTorch
	Dropout [38]	Sampling	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, pyTorch
L						

BigDataBench


Component Benchmarks

	Component Bench- mark	Involved Dwarf	Application Domain	Workload Type	Data Set	Software Stack		
	Xapian Server	Get, Put, Post	SE	Online service	Wikipedia entries	Xapian		
Online service	PageRank	Matrix, Sort, Basic statis- tics, Graph	SE	Graph analytics	Google web graph	Hadoop, Spark, Flink, GraphLab, MPI		
	Index	Logic, Sort, Basic statis- tics, Set	SE	Offline analytics	Wikipedia entries	Hadoop, Spark		
Streaming	Rolling top words	Sort, Basic statistics	SN	Streaming	Random generate	Spark streaming, JStorm		
Streaming	Kmeans	Matrix, Sort, Basic statistics	SE, SN, EC, MP, BI	Offline analytics	Facebook social network	Hadoop, Spark, Flink, MPI		
				Streaming	Random generate	Spark streaming		
	Collaborative	Graph, Matrix	EC	Offline analytics	Amazon movie review	Hadoop, Spark		
Offline analytics	Filtering	Gruph, Marix	EC	Streaming	MovieLens dataset	JStorm		
Omme analytics	Naive Bayes	Basic statistics, Sort	SE, SN, EC	Offline analytics	Amazon movie review	Hadoop, Spark, Flink, MPI		
	SIFT	Matrix, Sampling, Trans- form, Sort	MP	Offline analytics	ImageNet	Hadoop, Spark, MPI		
Graph analytics	LDA	Matrix, Graph, Sampling	SE	Offline analytics	Wikipedia entries	Hadoop, Spark, MPI		
Graph analytics	OrderBy	Set, Sort	EC	Data warehouse	E-commerce transaction	Hive, Spark-SQL, Impala		
	Aggregation	Set, Basic statistics	EC	Data warehouse	E-commerce transaction	Hive, Spark-SQL, Impala		
	Project, Filter	Set	EC	Data warahowaa	E-commerce transaction	Hive, Spark-SQL, Impala		
	Select, Union	Set	EC	Data warehouse	E-commerce transaction	Hive, Spark-SQL, Impala		
Data	Alexnet		SN, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, pyTorch		
warehouse	Googlenet	Matrix, Transform, Sampling, Logic, Basic statistics	SN, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, pyTorch		
	Resnet		SN, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, pyTorch		
	Inception Resnet V2		SN, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, pyTorch		
	VGG16		SN, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, pyTorch		
AI	DCGAN		SN, MP, BI	AI	LSUN	TensorFlow, Caffe, pyTorch		
	WGAN		SN, MP, BI	AI	LSUN	TensorFlow, Caffe, pyTorch		
	GAN	Matrix, Sampling, Logic, Basic statistics	SN, MP, BI	AI	LSUN	TensorFlow, Caffe, pyTorch		
	Seq2Seq		SE, EC, BI	AI	TED Talks	TensorFlow, Caffe, pyTorch		
	Word2vec	Matrix, Basic statistics, Logie	SE, SN, EC	AI	Wikipedia entries, Sogou	TensorFlow, Caffe, pyToreh		

BigDataBench

Software Stacks

INSTITUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SCIENCES

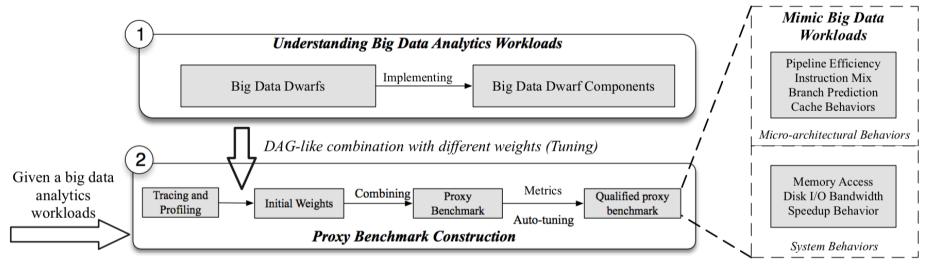
BigDataBench

First part

Introduction of BigDataBench 4.0

BigDataBench Benchmarking Methodology

Simulation Benchmarks


Characterization

Dwarf-based Simulation Methodology

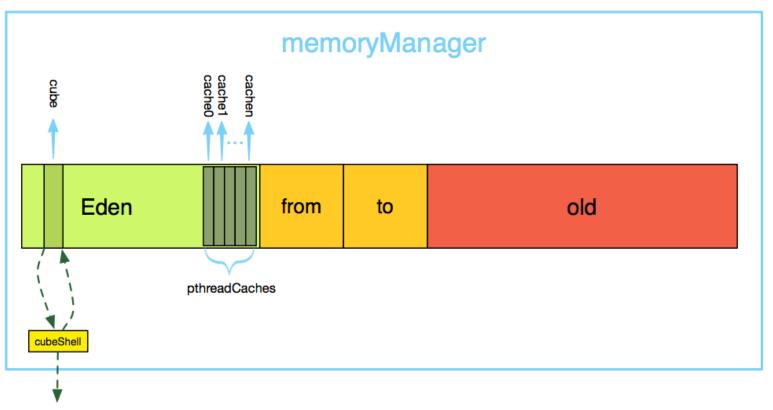
DAG-like combinations of dwarfs

- Different weights
- Computation logic

中国科学院计算技术研究砺

INSTITUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SCIENCES

BigDataBench

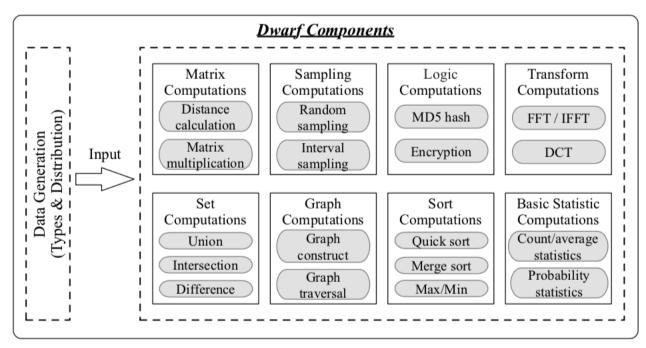

Simulation Benchmark for Big Data

Simulation benchmarks for Hadoop workloads

- 100X runtime speedup
- 90+% data accuracy
- OpenMP & Pthread Implementations
 - Provide a unified memory management module
 - Mimic JVM garbage collection (GC) process

Memory Management Module

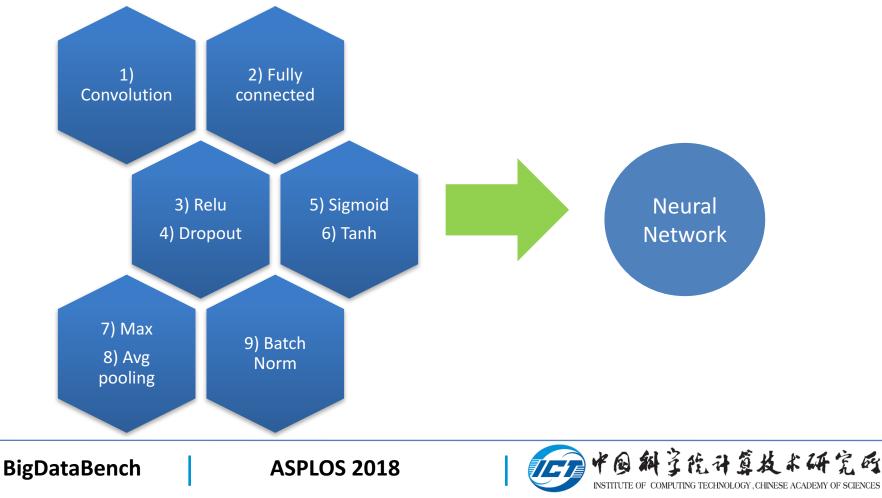
user pthread


BigDataBench

Dwarf Components for Big Data

Data generation tools

Dwarf implementations (OpenMP & Pthreads)



BigDataBench

Simulation Benchmarks for AI

Dwarf implementations (OpenMP & Pthreads)

First part

Introduction of BigDataBench 4.0

BigDataBench Benchmarking Methodology

Simulation Benchmarks

Characterization

Workload Characterization

Hardware

- 3-node Hadoop cluster
 - Network: 1 Gb Ethernet network
 - Processor: Intel Xeon E5-2620 v3 (Haswell)

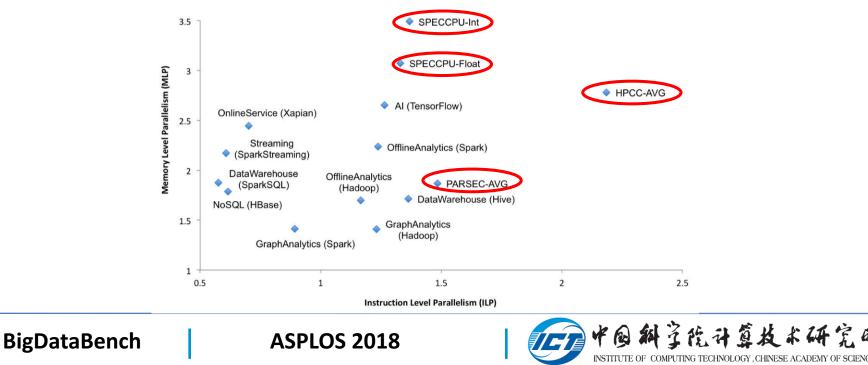
Hardware Conf	igurations		
СРИ Туре		Intel CPU Core	
Intel ®Xeon E5-2620 V3		12 cores@2.40G	
L1 DCache	L1 ICache	L2 Cache	L3 Cache
$12 \times 32 \text{ KB}$	$12 \times 32 \text{ KB}$	$12 \times 256 \text{ KB}$	15MB
Memory		64GB,DDR4	
Disk		SATA@7200RPM	
Ethernet		1Gb	
Hyper-Threading		Disabled	
Software Config	gurations		
Operating System		CentOS 7.2	
Linux Kernel		4.1.13	
JDK Version		1.8.0_65	
Hadoop Version		2.7.1	
Hive Version		0.9.0	
HBase Version		1.0.1	
Spark Version		1.5.2	
Tensorflow Version		1.0	

Software

- Software version
 - CentOS 7.2, Kernel 4.1.13
 - JDK version: 1.8.0_65
 - Hadoop version: 2.7.1
- Compared benchmarks
 - SPEC CPU2006
 - HPCC 1.4.0
 - PARSEC 2.0

Benchmark

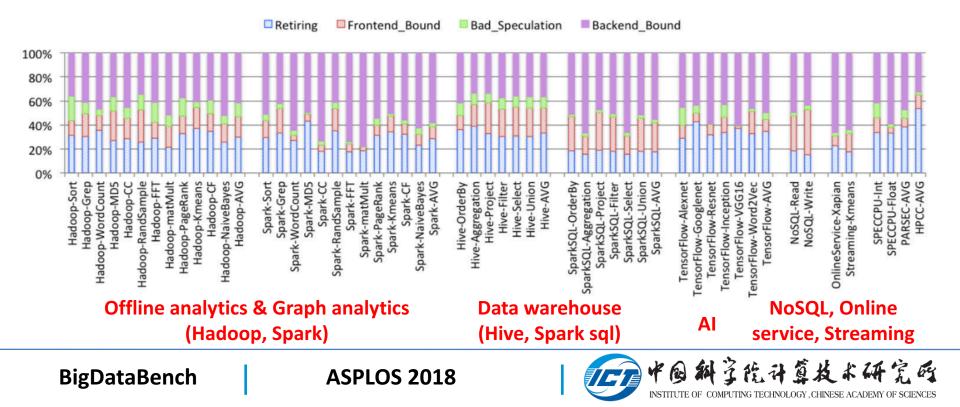
Seven workload types



BigDataBench

Execution Performance

ILP and MLP


- AI: ILP slightly lower than SPECCPU, MLP similar with HPCC
- Big data has lower ILP and MLP than AI for almost all types, except Hive based data warehouse type

Pipeline Efficiency (Level 1)

AI reflect similar pipeline behaviors with the traditional benchmarks

- retiring (35% v.s. 39.8%), bad speculation (6.3% v.s. 6.1%), frontend bound (both about 9%), and backend bound (49.7% v.s. 45.1%)
- Big data and AI have a small fraction of bad speculation

About Detailed Characterization

BPOE workshop tomorrow will give detailed characterization results

Look forward to your participation !

Download

<u>http://prof.ict.ac.cn/download</u>

Packing & Testing now ! Release soon (April 1st, 2018)

Conclusion

- BigDataBench 4.0
 - An open source dwarf-based big data and Al benchmark suite
- Website: <u>http://prof.ict.ac.cn</u>
- Technical Reports:
 - https://arxiv.org/pdf/1802.08254.pdf
 - https://arxiv.org/pdf/1801.09212.pdf

中國科学院计算技术研究时

BigDataBench