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1 Introduction
1.1 Context

Today’s Internet Services are undergoing fundamental changes and shifting to an
intelligent computing era where Al is widely employed to augment services. In this
context, many innovative Al algorithms, systems, and architectures are proposed, and
thus the importance of benchmarking and evaluating them rises. However, modern
Internet services adopt a micro-service based architecture and consist of various
modules. The diversity of these modules and complexity of execution paths, the
massive scale and complex hierarchy of datacenter infrastructure, the confidential
issues of data sets and workloads pose great challenges to benchmarking.

First, the real-world data sets and workloads from Internet services are treated as
first-class confidential issues by their providers, and they are isolated between
academia and industry, or even among different providers. However, there are only a
few publicly available performance model or observed insights about industry-scale
Internet services that can be leveraged for further research. As there is no publicly
available industry-scale Internet service benchmark, the state-of-the-art and state-of-
the-practice are advanced only by the research staffs inside Internet service providers,
which is not sustainable and poses a huge obstacle for our communities towards
developing an open and mature research field.

Second, Al has infiltrated into almost all aspects of Internet services, ranging from
offline analytics to online service. Thus, to cover the critical paths and characterize
prominent characteristics of a realistic Al scenario, end-to-end application
benchmarks should be provided [8, 9]. Meanwhile, there are many classes of Internet
services. Modern Internet services workloads expand and change very fast, and it is
not scalable or even impossible to create a new benchmark or proxy for every
possible workload. Moreover, data sets have great impacts on system and
microarchitectural characteristics, so diverse data inputs should be considered. So we
need identify representative data sets, abstract the prominent Al problem domains
(component benchmarks), and further understand what are the most intensive units of
computation (micro benchmarks), on the basis of which, we can build a concise and
comprehensive Al benchmark framework.

Finally but not least, from an architectural perspective, porting a full-scale Al
applications to a new architecture at an earlier stage is difficult and even impossible,
while using micro or component benchmarks alone are insufficient to discover the
time breakdown of different modules and locate the bottleneck within a realistic Al
application scenario at a later stage. Hence, a realistic Al benchmark suite should
have the ability to run not only collectively as a whole end-to-end application to
discover the time breakdown of different modules but also individually as a micro or
component benchmark for fine tuning hot spot functions or kernels. So an industry
standard Internet service Al benchmark suite consisting of a full spectrum of micro
or component benchmarks and an end-to-end application benchmark is of great
significance to bridge this huge gap.



We specify the common requirements of Big Data and AI workloads only
algorithmically in a paper-and-pencil approach, reasonably divorced from individual
implementations. We capture the differences and collaborations among IoT, edge,
datacenter and HPC in handling Big Data and Al workloads. We consider each big
data and AI workload as a pipeline of one or more classes of units of computation
performed on initial or intermediate data inputs, each of which we call a data motif.
For the first time, among a wide variety of big data and Al workloads, we
identify eight data motifs (PACT’18 paper)— including Matrix, Sampling, Logic,
Transform, Set, Graph, Sort and Statistic computation, each of which captures the
common requirements of each class of unit of computation. Other than creating a
new benchmark or proxy for every possible workload, we propose using data motif-
based benchmarks—the combination of one or more data motifs—to represent
diversity of big data and AI workloads.

AlBench is the first industry scale Al benchmark suite, joint with seventeen
industry partners. First, we present a highly extensible, configurable, and flexible
benchmark framework, containing multiple loosely coupled modules like data input,
prominent Al problem domains, online inference, offline training and automatic
deployment tool modules. We analyze typical Al application scenarios from three
most important Internet services domains, including search engine, social network,
and e-commerce, and then we abstract and identify sixteen prominent Al problem
domains, including classification, image generation, text-to-text translation, image-
to-text, image-to- image, speech-to-text, face embedding, 3D face recognition, object
detection, video prediction, image compression, recommendation, 3D object
reconstruction, text summarization, spatial transformer, and learning to rank. We
implement sixteen component benchmarks for those Al problem domains, and
further profile and implement twelve fundamental units of computation across
different component benchmarks as the micro benchmarks. On the basis of the
AlBench framework, we design and implement the first end-to-end Internet service
Al benchmark with an underlying e-commerce searching business model. As a whole,
it covers the major modules and critical paths of an industry scale e-commerce
provider. The application benchmark reuses ten component benchmarks from the
AlBench framework, receives the query requests and performs personalized
searching, recommendation and advertising, integrated with Al inference and training.
The data maintains the real-world data characteristics through anonymization. Data
generators are also provided to generate specified data scale, using several
configurable parameters.

1.2 Environment

This document presents user manual information on AlBench — including a brief
introduction and the setting up guidelines of Al software stacks, and operating guide
of all workloads in AIBench. The information and specifications contained are for
researchers who are interested in Al benchmarking.



Note that the user manual information in the following passage are tested in the
environment as follows.

Recommended browner: IE or Chrome.

Recommended OS : Centos 6.0 or later.

Libraries:

JDK 1.6 or later (Recommend version: jdk1.8.0 65)

C compiler, such as gcc, and C++ compiler, such as g++.

1.3  Format Specification

The following typographic conventions are used in this user manual:

Convention [Description

Bold Bold for emphasis.

Italic [talic for fold and file names.

Scommand [Scommand for command lines.

Contents Contents for contents in configuration files.
Courier font |Courier font for screen output.

Some exception explanations are put in
Footnote footnote.




2 Overview of Software Packages and Workloads

Benchmark Benchmark Type | Algorithm Dataset Software stacks
Convolution Convolution Cifar, ImageNet | TensorFlow,
Pthread, PyTorch
Fully Connected Fully Connected Cifar, ImageNet | TensorFlow,
Pthread, PyTorch
Relu Relu Cifar, ImageNet | TensorFlow,
Pthread, PyTorch
Sigmoid Sigmoid Cifar, ImageNet | TensorFlow,
Pthread, PyTorch
Tanh Tanh Cifar, ImageNet | TensorFlow,
Pthread, PyTorch
MaxPooling MaxPooling Cifar, ImageNet | TensorFlow,
. Pthread, PyTorch
AvgPooling Micro AvgPooling Cifar, ImageNet | TensorFlow,
Benchmark Pthread, PyTorch
CosineNorm CosineNorm Cifar, ImageNet | TensorFlow,
Pthread, PyTorch
BatchNorm BatchNorm Cifar, ImageNet | TensorFlow,
Pthread, PyTorch
Dropout Dropout Cifar, ImageNet | TensorFlow,
Pthread, PyTorch
Element-wise OP Element-wise OP Cifar, ImageNet | TensorFlow,
Pthread, PyTorch
Softmax Softmax Cifar, ImageNet | TensorFlow,
Pthread, PyTorch
Image ResNet50 ImageNet TensorFlow,
Classification PyTorch
Image Generation WGAN LSUN TensorFlow,
PyTorch
Text-to-Text RNN WMT English- TensorFlow,
Translation German PyTorch
Image-to-Text Neural image caption MS COCO TensorFlow,
model dataset PyTorch
Image-to-Image CycleGAN Cityscapes TensorFlow,
PyTorch
Speech-to-Text DeepSpeech2 Librispeech TensorFlow,
PyTorch
Face embedding Facenet Labeled faces in | TensorFlow,
Component the wild PyTorch
Benchmark
3D Face 3D face models 77,715 samples TensorFlow,
Recognition from 253 face IDs PyTorch
Object detection Faster R-CNN Microsoft COCO | TensorFlow,
PyTorch
Recommendation Collaborative filtering MovieLens TensorFlow,
PyTorch
Video Prediction Motion-focused Robot pushing TensorFlow,
predictive models dataset PyTorch
Image Compression RNN ImageNet TensorFlow,
PyTorch
3D Object Convolutional encoder- ShapeNet dataset | TensorFlow,
Reconstruction decoder network PyTorch




Text summarization Sequence-to-squence Gigaword TensorFlow,
model dataset PyTorch

Spatial transformer Spatial transformer MNIST TensorFlow,
network PyTorch

Learning to rank Ranking distillation Gowalla TensorFlow,

PyTorch
DCMix Application Datacenter Mixed Mixed
Benchmark
E-commerce Search Internet Service Alibaba Alibaba framework

3 Installation and Configuration of Software

3.1  Setting up TensorFlow

1) Prerequisites
python, pip, numpy, scipy
2) Download and install TensorFlow
We recommend TensorFlow 1.1.0 version.
$ pip install --upgrade
https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.1.0-cp27-
none-linux_ x86 64.whl
3) Test TensorFlow
$ python
>>>import tensorflow
>>>
If command“import tensorflow” doesn’t return errors, then TensorFlow is
successfully installed.

3.2  Setting up PyTorch
We recommend PyTorch 1.0.1

1) Prerequisites
python, pip, numpy, scipy
2) Download and install PyTorch
pip install with Python 2.x version:
pip3 install torch torchvision
pip install with Python 3.x version:
pip install torch torchvision
conda install:
conda install pytorch torchvision -c pytorch
conda install with specific cuda version:
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
install from source:
Follow instructions at this URL: https://github.com/pytorch/pytorch#from-source
3) Test PyTorch

$ python
>>>import torch




>>>
If command“import torch” doesn’t return errors, then PyTorch is successfully
installed.

4 Framework and Workloads

4.1 AIBench Framework
4.1.1 Framework Overview

AlBench framework can help you deploy AIBench to multiple nodes quickly and scalable.
It supports Ansible(https://www.ansible.com/
) now and will support docker-compose and Kubernetes soon.

Ansible will install the required software and configure parameters in nodes

automatically.

4.1.2 Framework Deployment

4.1.2.1 Deploy Ansible

1) Prerequisites
We tested it at Centos 7, but Centos 6, RedHat 6/7, Ubuntu 14.04/16.04 should also be
supported.

2) Install Ansible
Please refer to
https://docs.ansible.com/ansible/latest/installation guide/intro installation.html to install
Ansible, and ensure that the controlled machines have installed python 2.

3) Ensure SSH login without password
You can refer to https://www.thegeekstuff.com/2008/11/3-steps-to-perform-ssh-login-
without-password-using-ssh-keygen-ssh-copy-id to configure SSH login without
password from the control machine to other controlled machines.

4.1.3 How to Use

1) Replace the variables with correct hostname or IP according your needs in
DeploymentToolModule/Ansible/group vars/all file. The variables to be replaced have
been surrounded by curly braces and begin with $.

In DeploymentToolModule/Ansible directory, run

$ ansible-playbook -i hosts site.yml

Wait for the command to complete, and the AIBench online module should have started

running.

4.2 Application Benchmarks



4.2.1 E-commerce Search

4.2.1.1 Introduction
E-commerce Search is the first end-to-end Al application benchmark, modelling the
complete use-cases of a realistic E-commerce search intelligence.

4.2.1.2 The Design and Implementation of E-commerce Search

E-commerce Search Implementation
N N

~l
I
]
I
]
I
]
I
]
]
1
]
I
]
I
]
I
]
I
]
I
]
I
S
]
=
>
G
=
=)
»
(<)
=
o
1
£
o
=

Recommender

« —
- =L

i I
| T s | | e ___., o ______
| l Category classification & prediction | : . T T
roduct|In

| s e,

I
I
I
|
I

| Personalized recommendation |

"
Q!
-3
S
5§
EN
g
=
S|

I

le
Qi
< |
S
B
3!
g
l
I

B @y ([0
>
=
=

E.

5

[}

=

=

S

gl e e O o () e | I L R I

g | /a L1 ,  Learning to rank ! Spatial transformer !

| CRAliie D T opaal T ot

@ Search Planer : ‘m m | Image classification |  Image generation !
bo——m 9 ________ @o _______ oo \r Recommendation ! Speech recongition |

t’ (Query item, Category, (Product ID, Weight) (Product ID, Score) mom e — = = —

§ ,,,,,,,, A DU L @ Object detection |  Image-to-Image !
CTTT e oam T e e et — - (2] || p-2Xecidelection | Image-fo-mage

A i Searcher : : Ranker : | Image-to-Text | Face embedding !
: 1 - [ L2R (Ranking Score) | 1 a (| T TTmmmmmTmmTmmmTTT

_1g h popularity | | 5 5 ! S
| o Stgmoxd | \_'d
) | | fremey || o | mee
! 5 7 | | !
| medium popularity i - Product ] E Indexer
| = z | : ReLU Attribute | | meccocoag meccocoag SesoaenaS
| uster I | ! I 1" Product Attribute !
| 1_lowpopularity | 11| Weight : L Productindex y) _ Useriden Pl ndex___
Online Server Data Storage ) | Offline Analyzer )
L Al-as-a-Service L Al for training

| _Specch recongition | _ Tmage generation__ | Spatial uansformer |~ Classification_ _ | Text-to-Text translation | _Learning to rank__
{ Text summarization_ !_3D object reconstruction | Recommendation ! 3D face recognition |_ _ _Face cmbedding _ _ | Image compression
| Object detection 7‘ Video prediction | Al Primitives | _ _Image-to-Image | Image-to-Text !
\ AIBench Framework J

The E-commerce Search benchmark consists of four modules: online server, offline
analyzer, query generator, and data storage. Among them, online server receives the query
requests and performs personalized searching and recommendation, integrated with Al
inference.

Offline analyzer chooses the appropriate Al algorithm implementations and performs a
training stage to generate a learning model. Also, the offline analyzer is responsible to build
data indexes to accelerate data access.

Query generator is to simulate concurrent users and send query requests to online server
based on a specific configuration. The configuration designates parameters like concurrency,
query arriving rate, distribution, and user thinking time, to simulate different query
characteristics and satisfy multiple generation strategies. We implement our query generator
based on JMeter.

Data storage module stores all kinds of data, including the user database that saves all the
attributes of user information, the product database that holds all the attributes of product
information, logs that record the complete query histories, text data that contains the product
description text or the user comments, image and video data that depict the appearance and
usage of product vividly, and audio data that stores the voice search data and voice chat data.
Overall, the data storage covers various data types including structured, unstructured, and
semi-structured data, and diverse data sources, including table, text, image, audio and video.

To support scalable deployment on the clusters with different scales, each module is able
to deploy on multiple nodes. Also, a series of data generators are provided to generate the e-
commerce data with different scales, through setting several parameters, e.g., the number of
products and product attribute fields, the number of users and user attribute fields.




4.2.1.3 How to Use

Online server provides personalized searching and recommendations combining traditional
machine learning and deep learning technologies. Online server consists of four submodules
including search planer, recommender, searcher, and ranker.

Search Planer is the entrance of online server. Recommender is to analyze the query item
and pro- vides personalized recommendation, according to the user information obtained
from the user database. Ranker uses the weight returned by Recommender as initial weight,
and ranks the scores of products through a personalized L2R neural network. Search Planer
returns the searched product information.

We use the Neo4j to store user data, and ElasticSearch to store the index of searcher and
ranker, and product data. The workload-generator directory contains the Jmeter binary which
is used as our workload generator. And the recommender contains two parts, one is a web
service application built-in Flask framework, and the other one is a Tensorflow model serving
which is for Al inference.

To get the e-commerce benchmark, you can download it from
http://www.benchcouncil.org/AlBench/files/AIBench Application Benchmark.tar.gz.

1. Setup the user info database.

a) Uncompress the neo4j-community-3.5.8-unix.tar.gz in the user-info directory.

b) Start the neo4j using "neo4j-community-3.5.8/bin/neo4j console".

2. Setup the searcher, ranker, and product info database. There are three databases for storing
the index of the searcher to mimic different popular distributions of products in the real world.
However, for simplicity, we all use ElasticSearch to store the above data, and we can only set
up an ElasticSearch instance to store all those data. To scale to multi nodes, you can set up
one ElasticSearch cluster for each module.

a) Uncompress the elasticsearch-o0ss-6.5.2.tar.gz in any directory of product-info,
ranker, searcher.

b) Start the ElasticSearch using "elasticsearch-6.5.2/bin/elasticsearch".

c) Setup the index using the init_database.sh in all directory of product-info, ranker,
searcher.

3. Setup the recommender-serving.

a) You can use the native TensorFlow model serving and load the model named
ranking weights_model in the recommender-serving directory.

b) Or you can use our provided Dockerfile to build a new docker image, and
suppose the image name is tf-serving, you can start the recommender-serving
module using "docker run -t --rm -p 8501:8501 -e
MODEL NAME-=ranking weights model".

4. Setup the recommender-web.

a) For simplicity, we use pipenv to manage the python virtual environment. You can
initialize the python environment using "pipenv install" and then activate the
environment using "pipenv shell".

b) To start the recommender-web, just using "python recommender.py".

¢) Notice: the user info database must be initialized before the recommender-web,
otherwise the recommender-web module won't start.

5. Setup the search-planer.

a) We use the Spring framework to build the module and gradle to manage the
module. You must set the correct host in the config file: application.properties
and factorybean-spring-ctx.xml in the search-planer/src/main/resources/ directory.

b) Simply run "./gradlew bootRun" in the search-planer directory to start the search-
planer module.




¢) Or you can also package the source code to a bootable jar using "./gradlew
bootJar", and the bootable jar will be output in the build/libs directory. Then you
can start the module using java -jar theBootableJarName.jar to start the module.
6. Populate the database.
a) Using the benchmark-cli tool to populate the database. The tool can populate
user-info, searcher, ranker, and product-info database.
7. Run the workload generator.
b) We use JMeter as our workload generator to send the workload to the online
AlBench.

4.2.2 DCMix

4.2.2.1 Introduction

Modern datacenter computer systems are widely deployed with mixed workloads to
improve system utilization and save cost. However, the throughput of latency-critical
workloads is dominated by their worst-case performance-tail latency. To model this
important application scenario, we propose an end-to-end application benchmark---DCMix to
generate mixed workloads whose latencies range from microseconds to minutes with four
mixed execution modes.

4.2.2.2 DCMix Framework

<Lser Interfatfj>

-0 Submitting queries
<E |xed Workloads \) 7
Generator
—A/Collectlng results

I \ Performance
Requests of Requests of Job1 JobN I Monitor
I Servicel ServiceN
- —  _ )

There are four main modules: Workloads, User interface, mixed workloads generator, and
Performance monitor. DCMIX contains two types of workloads: online service and data
analytic workloads and they are all deployed on the target system. User interface is the portal
for user; users can specify their workload mix requirements, including workloads and mixture
patterns. Mixed workloads generator can generate the mixed workloads through submitting
queries (service requests queries and data analytics job submitting queries). Performance
monitor can monitor the performance data of the target system, and the system entropy is
calculated by these original monitor data.

1) Workload Overview
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DCMIX contains two types of workloads: online service and data analytic workloads.
These workloads have different application fields and different user experience (latency).
DCMIX’s application fields are big data, artificial intelligence, high-performance computing,
transaction processing databases, et al. The latencies of DCMIX workloads range from
microseconds to minutes.

2) Mixed Workload Generator

Mixed workloads generator can generate the mixed workloads through submitting queries
(service requests queries and data analytics job submitting queries). Mixed workloads
generator supports the mixture execution of serial execution and parallel execution. Serial
execution means that the workload must start up after the previous workload complete.
Parallel execution means that multiple workloads start up at the same time. Moreover, in the
workload generator configuration file, users can set request configurations for each workload.
For online-services, we provided request intensity, number of requests, number of warm-up
requests, etc.; for offline-analytics, we provide path of the data set, threads number of jobs,
etc.

4.2.2.3 How to use
Step 1. Required software
Python, gcc, gce-c++, make, automake, autoconf, epel-release, libtool, libuuid,e2fsprogs,

opencv, bison, swig, boost-devel, realine-devel,libdb-cxx-devel,numactl-devel,libaio-devel
Step 2. Download DCMix

You can download DCMIX via http://prof.ict.ac.cn/bdb_uploads/bdb_5/packages/
DCMIX .tar.gz
Step 3. Install DCMix

1. To install tailbench workloads (i.e, online services):
$ cd tailbench-v0.9

$ bash ./build.sh

2. To install dwarf workloads (i.e, offline applications):
$ cd dwarf-set

$ bash ./build.sh
Step 4. Prepare the input data

1. To get tailbench dataset:
$ mkdir -p tailbench-data



$ wget -c http://tailbench.csail.mit.edu/tailbench.inputs.tgz
2. To generate dwarf dataset:
$ g++ -std=c++11 gen-data.cpp -o gen-data
$ ./gen-data
Step 5. Run DCMix Workload
1. To run tailbench workloads, let’s take xapian as an example:
$ cd tailbenchv-0.9/xapian
$ ./run_xapian_server.sh
$ ./run_xapian_client.sh
You can set the request parameters in the above 2 script files.

2. To run dwarf workloads:
$ ./run_all.sh

4.3 Component Benchmarks

Considering the benchmarking scalability, we use the motif combinations to
compose original complex workloads with a DAG-like structure considering the data
pipeline. The DAG-like structure is to use a node representing original or
intermediate data set being processed, and an edge representing a data motif.

4.3.1 Image Classification
1) TensorFlow based
Step 1. Required Software Stacks
1. tensorflow-gpu 1.12 or tensorflow 1.12
$pip install tensorflow-gpu==1.12 or pip install tensorflow==1.12

if you want to build tensorflow from source, see
https://www.tensorflow.org/install/source
2. Cuda 9.0
Downloads cuda9.0: https://developer.nvidia.com/cuda-90-download-archive
Installation guide for linux: https://docs.nvidia.com/cuda/cuda-installation-guide-
linux/index.html
3. Cudnn 7.4.2
Downloads cudnn 7.4.2: https://developer.nvidia.com/cudnn
Installation guide for linux: https://docs.nvidia.com/deeplearning/sdk/cudnn-
install/index.html
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AIBench Component
$ cd TensorFlow/Image classification
Step 3. Prepare the input
1. Download ImageNet ILSVRC2012 Dataset from http://www.image-net.org/
2. Convet these raw images to TFRecords by using build imagenet data.py script.
Step 4. Run the workloads
$python imagenet main.py —data_dir=/path/to/imagenet




Both the training dataset and the validation dataset are in the same directory. The
model will begin training and will automatically evaluate itself on the validation data
roughly once per epoch.

Some running options:

--model dir: to choose where to store the model

--resnet_size: to choose the model size (options include ResNet-18 through
ResNet-200)

--num-gpus: to choose computing device

0: Use OneDeviceStrategy and train on CPU

1: Use OneDeviceStrategy and train on GPU

2+: Use Mirroredstrategy (data parallelism) to distribute a batch between
devices

Full list of options, see resnet_run_loop.py

Step 5. Collect the running results

When the workload run is complete, it will display the output.

2) PyTorch based
Step 1. Required Software Stacks
1. Python 2.7
2. Anaconda 5.3.0
curl —O https://repo.anaconda.com/archive/Anaconda2-5.3.0-Linux-x86 64.sh
sh Anaconda2-5.3.0-Linux-x86_64.sh
3. Pytorch 1.0
conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
( https://pytorch.org/get-started/locally/ )
Step 2. Get workloads from AIBench
Download the Benchmark from this link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AlIBench Component
$ cd PyTorch/Image_classification
Step 3. Prepare the input
1. Download the ImageNet dataset
2. Move validation images to labeled subfolders, you can use the following
script:
https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/v
alprep.sh
Step 4. Run the workload
bash run_image classify ${batchSize} ${dataDir}
Step 5. Collect the running results
When the workload run is complete, it will display the output.

4.3.2 Image Generation
1) TensorFlow based
Step 1. Required Software Stacks
python 2.7



tensorflow >= 1.2 (verified on 1.2 and 1.3)
tqdm
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AIBench Component
$ cd TensorFlow/Image generation
Step 3. Prepare the input
$ ./prepareData.sh
Step 4. Run the workloads;
$ python main.py --dataset mnist --gan_type WGAN --epoch 5 --batch_size 64
Step 5. Collect the running results
When the workload run is complete, it will display the output.

2) PyTorch based
Step 1. Required Software Stacks
PyTorch
PyTorchvision
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AIBench Component
$ cd PyTorch/Image generation
Step 3. Prepare the input
The dataset we use is LSUN-bedroom. http://www.yf.io/p/lsun .
You can download the dataset by:
$ python3 Isun/download.py -0 <data dir> -c bedroom
Or you can also download the Isun dataset from http://prof.ict.ac.cn/bdb_uploads/
bdb 5/packages/BigDataBench V5.0 DataSet
Step 4. Run the workload
$ cd WGAN
$ python main.py --mlp G --ngf 512 --dataset Isun --dataroot <Isun-train-folder>
--cuda
Step 5. Collect the running results
When the workload run is complete, it will display the output.

4.3.3 Text-to-Text Translation
1) TensorFlow based

Step 1. Required Software Stacks

tensorflow-gpu

tensorflow

Step 2. Get workloads from AIBench

Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component




$ ¢cd DC_AIBench Component
$ cd TensorFlow/Text to Text
Step 3. Prepare the input
Download tensor2tensor from https://github.com/tensorflow/tensor2tensor. And
make sure you can access to the Internet. For compatibility you need to change the io
file of python.
vim /usr/local/lib/python3.6/dist-packages/tensorflow/python/lib/io/file _io.py
Change:
def rename(oldname, newname, overwrite=False):
def rename v2(src, dst, overwrite=False):
To:
def rename(oldname, newname, overwrite=True):
def rename v2(src, dst, overwrite=True):
Step 4. Run the workloads;
$./run.sh
Step 5. Collect the running results
When the workload run is complete, it will display the output.

2) PyTorch based
Step 1. Required Software Stacks
PyTorch 1.0.1
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AlIBench Component
$ cd PyTorch/Text to Text
Step 3. Prepare the input
$ sh download.sh
Or you can also find the dataset from:
http://prof.ict.ac.cn/bdb_uploads/bdb 5/packages/BigDataBench V5.0 DataSet
Step 4. Run the workload
$ sh run.sh
Step 5. Collect the running results
When the workload run is complete, it will display the output.
[Info] Finished.

4.3.4 Image to Text
1) TensorFlow based
Step 1. Required Software Stacks
Bazel
Natural Language Toolkit (NLTK)
Unzip
Numpy
Tensorflow 1.0 or greater
Step 2. Get workloads from AIBench
Download the Benchmark from the link:



http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AIBench Component
$ cd TensorFlow/Image to Text
Step 3. Prepare the input
The dataset we use is COCO 2014. http://cocodataset.org/#download .
You can download the dataset via COCO webpage, or http://prof.ict.ac.cn/
bdb_uploads/bdb_5/packages/BigDataBench V5.0 DataSet.
After downloading the dataset, please execute the following command.
$ IM2TXT HOME=/path/to/your/coco2014-dataset
$ # Directory containing preprocessed MSCOCO data.
$ MSCOCO_DIR="${IM2TXT HOME }/im2txt/data/mscoco"
$ # Inception v3 checkpoint file.
$ INCEPTION CHECKPOINT="${IM2TXT HOME}/im2txt/data/inception_v
3.ckpt"
$ # Directory to save the model.
$ MODEL DIR="${IM2TXT HOME}/im2txt/model"
$ # Build the model.
$ cd research/im2txt
$ bazel build -c opt /im2txt/..
Step 4. Run the workloads;
$ bazel-bin/im2txt/train \

--inception_checkpoint_file="${INCEPTION CHECKPOINT}" \
--train_dir="${MODEL_DIR}/train" \
--train_inception=false \
--number_of steps=1000000
Step 5. Collect the running results
When the workload run is complete, it will display the output.

2) PyTorch based
Step 1. Required Software Stacks
torch
torchvision
matplotlib
nltk
numpy
Pillow
argparse
Cython
Scipy
$ pip install softwareName
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AlIBench Component
$ cd PyTorch/Image to Text




Step 3. Prepare the input
This can be done by running $ ./prepareData.sh or following the steps bellow:
Download the dataset from BigDataBench or website
1. Download from BigDataBench at the folder of ‘DataSet/coco2014’. Rename
‘coc02014’ as ‘data’ and then put ‘data’ in the folder of ‘Image to Text’.
2. Download from the website by running:
$ ./download.sh
Preprocessing
$ python build_vocab.py
$ python resize.py
Step 4. Run the workload
This can be done by running $ ./run_imageTotext.sh or following the steps
bellow:
Train the model
$ python train.py
Test the model
$ python sample.py --image='png/example.png'
Step 5. Collect the running results
When training the model, it will display the output:
Epoch [0/1], Step [0/3236], Loss: 9.2094, Perplexity: 9990.5262
Epoch [0/1], Step [10/3236], Loss: 5.8074, Perplexity: 332.7434

At each ‘--save step’, it will save the training model in the folder ‘./models’ with
the name of ‘encoder-{epoch}-{step}.ckpt’ and ‘decoder-{epoch}-{step}.ckpt’. The
default ‘--num_epochs’ is 5, ‘--save _step’ is 1000.

Test the model, the output is something like the following sentence.

<start> a man is sitting on a tennis court . <end>

The default training model used is ‘encoder-2-1000.ckpt’ and ‘decoder-2-

1000.ckpt’, which can be changed by ‘--encoder path’ and ‘--encoder path’.

4.3.5 Image to Image
1) TensorFlow based

Step 1. Required Software Stacks
Pyton3
Tensorflow1.2
click (pip install click)
unzip
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AlIBench Component
$ cd TensorFlow/Image to Image/CycleGAN
Step 3. Prepare the input
$ ./download_datasets.sh cityscapes




Step 4. Run the workloads;

Add export LC_ALL=C.UTF-8 export LANG=C.UTF-8 to /etc/profile
$./run.sh

Step 5. Collect the running results

When the workload run is complete, it will display the output.

2) PyTorch based
Step 1. Required Software Stacks
PyTorch
PyTorchvision
PyDominate
PyVisdom
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AlIBench Component
$ cd PyTorch/Image to Image
Step 3. Prepare the input
The dataset we use is cityscapes.
You can download the dataset by:
$ bash ./datasets/download cyclegan dataset.sh cityscapes
Or you can also download the cityscapes dataset from http://prof.ict.ac.cn/
bdb_uploads/bdb_5/packages/BigDataBench V5.0 DataSet
Step 4. Run the workload
$ python train.py --dataroot ./datasets/ cityscapes --name cityscapes_cyclegan --
model cycle gan
Step 5. Collect the running results
When the workload run is complete, it will display the output.

4.3.6 Speech to Text

1) TensorFlow based

Step 1. Required Software Stacks

Python 2/3

Tensorflow>=1.1

$ pip/pip3 install -r requirements.txt

Step 2. Get workloads from AIBench

Download the Benchmark from the link:

http://159.226.41.254:8090/A1Bench/DC AlBench Component

$ ¢cd DC_AIBench Component

$ cd TensorFlow/Speech _to Text

Step 3. Prepare the input

$ python data/download.py

Arguments:

--data_dir: Directory where to download and save the preprocessed data. By
default, it is /tmp/librispeech_data.




Use the --help or -h flag to get a full list of possible arguments.

Step 4. Run the workloads;

$python deep speech.py

Arguments:

--model _dir: Directory to save model training checkpoints. By default, it
is /tmp/deep_speech _model/.

--train_data_dir: Directory of the training dataset.

--eval data dir: Directory of the evaluation dataset.

--num_gpus: Number of GPUs to use (specify -1 if you want to use all available
GPUs).

There are other arguments about DeepSpeech2 model and training/evaluation
process. Use the --help or -h flag to get a full list of possible arguments with detailed
descriptions.

Step 5. Collect the running results

A shell script run_deep_speech.sh is provided to run the whole pipeline with default
parameters. Issue the following command to run the benchmark:
sh run_deep speech.sh

Note by default, the training dataset in the benchmark include train-clean-100, train-clean-
360 and train-other-500, and the evaluation dataset include dev-clean and dev-other.
When the workload run is complete, it will display the output.

2) PyTorch based

Step 1. Required Software Stacks

PyTorch 1.0.1, Torchaudio, apex, warp-ctc bindings, flac, sox, tqdm, librosa,
levenshtein.

Cuda 10.0+

Since the torchaudio has high compatibility requirements, we suggest using conda to create
a new environment and install the speech to text workload. Otherwise, “import torchaudio”
would report segmentation fault (core dumped). The installation processes are as follows:

1) create a new environment named imageText, note that you can change the name.

$ conda create —n imageText python

i1) activate the new environment
$ source activate imageText
ii1) install PyTorch in the new environment
$ conda install pytorch torchvision -c pytorch
iv) install torchaudio
$ git clone https://github.com/pytorch/audio.git
$ cd audio && python setup.py install
v) install apex
$ git clone --recursive https://github.com/NVIDIA/apex.git
$ cd apex && pip install .
vi) install warp-ctc binding
$ git clone https://github.com/SeanNaren/warp-ctc.git
$ cd warp-ctc
$ mkdir build
$ cd build



$ cmake ..
$ make
Note that the conda environment may install the gcc 6+ version, while warp-ctc
doesn’t support gcc 6+, so you need to edit the CMakeLists.txt file to use old gcc
version. Insert the following two lines in CMakeLists.txt (you need to change the
path of old gcc version according to your environment) and then repeat the upper
commands.
SET(CMAKE C COMPILER "/usr/bin/gcc4.8")
SET(CMAKE CXX COMPILER "/usr/bin/g++4.8")
vii) install pytorch_binding
$ cd warp-cte/pytorch_binding
$ python setup.py install
viii) install flac
$ wget https://ftp.osuosl.org/pub/xiph/releases/flac/flac-1.2.1.tar.gz
$ tar —xf flac-1.2.1.tar.gz
$ cd flac-1.2.1
$ ./configure && make && make install
Note that if you encounter the error “main.cpp:75:27: error: 'memcmp' was not
declared in this scope”, you need to insert “#include <string.h> ” in the file
“examples/cpp/encode/file/main.cpp”.
ix) install sox
Download sox-14.4.2.tar.gz from
https://sourceforge.net/projects/sox/files/sox/14.4.2/sox-14.4.2.tar.gz/download
$ ./configure --with-lame --with-flac --with-libvorbis
$ make -s
$ make install
x) install tqdm, librosa, and levenshtein
$ pip install tqdm
$ pip install librosa
$ pip install python-levenshtein
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AIBench Component
$ cd PyTorch/Speech to Text
Step 3. Prepare the input
The workload use LibriSpeech dataset. Preprocess the dataset:
$ cd deepspeech.pytorch/data
$ mkdir LibriSpeech_dataset
$ mkdir LibriSpeech_dataset/test clean
$ mkdir LibriSpeech_dataset/test other
$ mkdir LibriSpeech dataset/train
$ mkdir LibriSpeech_dataset/val
$ python librispeech.py
you can use the parameter --files-to-use to specify the dataset.
The command will generate four files under the data directory:




libri_test clean manifest.csv,
libri_test other manifest.csv,
libri_train_manifest.csv,
libri_val manifest.csv
Step 4. Run the workload
Training use CPU:
$ python train.py --train-manifest data/libri_train_manifest.csv --val-manifest
data/libri_val manifest.csv
Training use GPU:
$ python train.py --train-manifest data/libri_train_manifest.csv --val-manifest
data/libri_val manifest.csv —cuda
Testing use CPU:
$ python test.py --model-path models/deepspeech final.pth --test-manifest
data/libri_test clean manifest.csv
Testing use GPU:
$ python test.py --model-path models/deepspeech final.pth --test-manifest
data/libri_test clean manifest.csv --cuda
Step 5. Collect the running results
When the workload run is complete, it will display the output.

4.3.7 Face Embedding
1) TensorFlow based
Step 1. Required Software Stacks
Tensorflow
Scipy
Scikit-learn
Opencv-python
H5py
Matplotlib
Pillow
Requests
Psutil
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AIBench Component
$ cd TensorFlow/Face embedding
Step 3. Prepare the input
The dataset we use is VGGFace2. http://zeus.robots.ox.ac.uk/vgg face2/login/ .
You can download dataset from VGGFace2 webpage, or you can also download

the cityscapes dataset from:
http://prof.ict.ac.cn/bdb_uploads/bdb_5/packages/BigDataBench V5.0 DataSet .
After downloading the dataset, you also need to perform the image alignment,
which might take several hours.
$ ../scripts/face-align-VGGface2.sh
Step 4. Run the workloads;




$ ../scripts/cls_training_triplet webface.sh
Step 5. Collect the running results
When the workload run is complete, it will display the output.

2) PyTorch based
Step 1. Required Software Stacks
Pytorch 1.0.1
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AIBench Component
$ cd PyTorch/Face embedding/facenet
Step 3. Prepare the input
Rewrite "datasets/write _csv_for making dataset.py’ , you need to change

‘which dataset” and “root_dir" ,
Step 4. Run the workload
$ python train.py
Step 5. Collect the running results
When the workload run is complete, it will display the output.

4.3.8 3D Face Recognition
1) TensorFlow based
Step 1. Required Software Stacks
Python 3.3+;
TensorFlow>1.6;
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AlIBench Component
$ cd TensorFlow/3D_face recognition
Step 3. Prepare the input
To prepare the data:
Jalign.sh
python preprocess/get dataset csv.py
Step 4. Run the workloads;
1) To train on a single machine:
Jtrain.sh

Step 5. Collect the running results
When the workload run is complete, it will display the output.

2) PyTorch based
Step 1. Required Software Stacks
PyTorch



imageio
pandas
pillow
Scikit-image
scipy
tqdm
TensorboardX
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AIBench Component
$ c¢d PyTorch/3D_face recognition
Step 3. Prepare the input
Jalign.sh
python preprocess/get dataset csv.py
Step 4. Run the workload
$ ./scripts/train.sh
Step 5. Collect the running results
When the workload run is complete, it will display the output.

4.3.9 Object Detection
1) TensorFlow based

Step 1. Required Software Stacks

Python 3.3+;

OpenCV;

TensorFlow>1.6;

Step 2. Get workloads from AIBench

Download the Benchmark from the link:

http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AIBench Component
$ cd TensorFlow/Object detection

Step 3. Prepare the input

To prepare the data:

./prepareData.sh

Step 4. Run the workloads;

1) To train on a single machine:

Jrun_objectDetect.sh

i1) To run distributed training:

Set TRAINER=horovod in the config.py file

Jrun_objectDetect.sh

Step 5. Collect the running results

When the workload run is complete, it will display the output.

2) PyTorch based
Step 1. Required Software Stacks



PyTorch
CyThon
Cffi
Opencv-python
Scipy
Msgpack
Easydict
Matplotlib
Pyyarml
TensorboardX
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AIBench Component
$ cd PyTorch/Object_detection
Step 3. Prepare the input
The dataset we use is COCO 2014. http://cocodataset.org/#download .
You can download the dataset via COCO webpage, or http://prof.ict.ac.cn/

bdb_uploads/bdb_5/packages/BigDataBench V5.0 DataSet.
After downloading the dataset, please execute the following command.
$ # set your own coco dataset path
$ COCO_PATH=/your/path/to/coco2014
$ mkdir -p data data/pretrained model
$ set -x
$if [[ ! -d data/coco ]]; then
$ cd data
$ git clone https://github.com/pdollar/coco.git && cd coco/PythonAPI
$ make -j32 && cd ../../
$cd./
$ fi
$if [[ ! -f data/coco/annotations || ! -h data/coco/annotations ]]; then
$ In-sv $COCO_PATH/annotations data/coco/annotations
$ fi
$if [[ ! -f data/coco/images || ! -h data/coco/images ]]; then
$ In-sv $COCO PATH data/coco/images
$ fi
Step 4. Run the workload
$ ./scripts/train.sh
Step 5. Collect the running results
When the workload run is complete, it will display the output.

4.3.10 Recommendation
1) TensorFlow based

Step 1. Required Software Stacks
TensorFlow1.12.0
Step 2. Get workloads from AIBench



Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AlIBench Component
$ cd TensorFlow/Recommendation
Step 3. Prepare the input
$ cd official/recommendation/
$ ./run_pre data.sh
Step 4. Run the workloads;
$ ./run.sh
Step 5. Collect the running results
When the workload run complete, it will display the running information and
generate output file: /tmp/nct/

2) Pytorch based
Step 1. Required Software Stacks
PyTorch
Unzip
Curl
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AIBench Component
$ cd PyTorch/Recommendation
Step 3. Prepare the input
$ cd ./training/recommendation/
$ ./download dataset.sh
$ unzip ml-20m.zip
$ cd ../data_generation/fractal graph expansions/
$ pip install -r requirements.txt
$ ./data_gen.sh
Step 4. Run the workload
$ cd ../../recommendation/pytorch/
$ pip install -r requirements.txt
$ python convert.py ../ml-20mx1x1 --seed 0
$ ./run.sh
Step 5. Collect the running results
When the workload run is complete, it will display the running information.

4.3.11 Video Prediction
1) TensorFlow based
Step 1. Required Software
TensorFlow1.12.0
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component




$ ¢cd DC_AIBench Component
$ cd TensorFlow/Video prediction
Step 3. Prepare the input & Step 4. Run the workload
$ ./download data.sh
$ ./train.sh
Step 5. Collect the running results
When the workload run is complete, it will display the running information.

2) Pytorch based
Step 1. Required Software Stacks
PyTorch
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AIBench Component
$ cd PyTorch/Video prediction
Step 3. Prepare the input & Step 4. Run the workload
$ ./run.sh
Step 5. Collect the running results
When the workload run is complete, it will display the running information.

4.3.12 Image compression

1) TensorFlow based

Step 1. Required Software

TensorFlow1.12.0

Step 2. Get workloads from AIBench

Download the Benchmark from the link:

http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AIBench Component
$ cd TensorFlow/Image compression

Step 3. Prepare the input & Step 4. Run the workload
$ ./run.sh

Step 5. Collect the running results

When the workload run is complete, it will display the running information.

2) Pytorch based

Step 1. Required Software Stacks

PyTorch

Step 2. Get workloads from AIBench

Download the Benchmark from the link:

http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AIBench Component
$ cd PyTorch/Image compression

Step 3. Prepare the input & Step 4. Run the workload
$ ./run.sh

Step 5. Collect the running results




When the workload run is complete, it will display the running information.

4.3.13 3D Object Reconstruction

1) TensorFlow based

Step 1. Required Software

TensorFlow1.12.0

Step 2. Get workloads from AIBench

Download the Benchmark from the link:

http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AlIBench Component
$ cd TensorFlow/3D_object reconstruction

Step 3. Prepare the input & Step 4. Run the workload
$ ./train.sh

Step 5. Collect the running results

When the workload run is complete, it will display the running information.

2) Pytorch based
Step 1. Required Software Stacks
PyTorch
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AlIBench Component
$ c¢d PyTorch/3D _object reconstruction
Step 3. Prepare the input & Step 4. Run the workload
$ ./train.sh
Step 5. Collect the running results
When the workload run is complete, it will display the running information.

4.3.14 Text Summarization
1) TensorFlow based
Step 1. Required Software
TensorFlow1.12.0
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AlIBench Component
$ cd TensorFlow/Text summarization
Step 3. Prepare the input & Step 4. Run the workload
$ ./train.sh
$ ./test.sh
Step 5. Collect the running results
When the workload run is complete, it will display the running information.

2) Pytorch based
Step 1. Required Software Stacks



PyTorch
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AlIBench Component
$ cd PyTorch/Text_summarization
Step 3. Prepare the input & Step 4. Run the workload
$ ./run.sh
Step 5. Collect the running results
When the workload run is complete, it will display the running information.

4.3.15 Spatial Transformer

1) TensorFlow based

Step 1. Required Software

TensorFlow1.12.0

Step 2. Get workloads from AIBench

Download the Benchmark from the link:

http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AIBench Component
$ cd TensorFlow/Spatial Transformer

Step 3. Prepare the input & Step 4. Run the workload
$ ./run.sh

Step 5. Collect the running results

When the workload run is complete, it will display the running information.

2) Pytorch based
Step 1. Required Software Stacks
PyTorch
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AIBench Component
$ cd PyTorch/Spatial Transformer
Step 3. Prepare the input & Step 4. Run the workload
$ ./run.sh
Step 5. Collect the running results
When the workload run is complete, it will display the running information.

4.3.16 Learning to Rank
1) TensorFlow based
Step 1. Required Software Stacks
TensorFlow1.12
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component




$ ¢cd DC_AIBench Component
$ cd TensorFlow/LearningRank
Step 3. Prepare the input & Step 4. Run the workload
$ ./run.sh
Step 5. Collect the running results
When the workload run is complete, it will display the running information.

2) Pytorch based
Step 1. Required Software Stacks
PyTorch
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC AlBench Component
$ ¢cd DC_AlIBench Component
$ c¢d PyTorch/LearningRank
Step 3. Prepare the input & Step 4. Run the workload
$ ./run.sh
Step 5. Collect the running results
When the workload run is complete, it will display the running information.

4.4 Micro Benchmarks

Data motifs are fundamental concepts and units of computation among a majority
of big data and Al workloads. We design a suite of micro benchmarks, each of which
is a single data motif implementation.

4.4.1 Convolution
1) TensorFlow based
Step 1. Required Software Stacks
Python 2 or 3
Scipy and Numpy
TensorFlow 1.0+
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC_AlBench Micro
Step 3. Prepare the input
The TensorFlow micro benchmarks use random generate data, you need to specify
the batch size, image size, channel, and filter size.
Step 4. Run the workloads;
$ cd DC_AlIBench_Micro/TensorFlow
$ python conv2d.py <batch_size> <img_size> <channel> <filter size>
Running conv2d with scripts:
$ ./run-tensorflow.sh conv <datasize>
Parameter “datasize” can be large/medium/small.



large: 224*224*64 (means length, width and channel respectively)

medium: 112*112*128

small: 56*56*256

Step 5. Collect the running results

When the workload run complete, it will display the running time information.

2) Pthreads based
Step 1. Required Software Stacks
g++ compiler
OpenCV, recommend 3.2 version
Dependences: libopencv_core.so0.3.2 and libopencv_imgproc.so.3.2
Step 2. Get workloads from AIBench
Download the Benchmark from this link:
http://159.226.41.254:8090/A1Bench/DC_AlBench Micro
Step 3. Prepare the input
$ cd DC_AIBench Micro/Pthread
The Pthread micro benchmarks use ImageNet as data input, /mageData directory
contains the image data with three sizes: Image 1000, Image 10000 and
Image 100000.
Step 4. Compile the workload
$ make
This command will produce an executable file named conv2d.
Step 5. Run the workload
$ ./conv2d ../ImageData/image $imgsize/img$imgsize/ NCHW 12 227 227 100
Here $imgsize can be 1000, 10000, or 100000.
Step 6. Collect the running results
When the workload run is complete, it will display the output.

4.4.2 Fully Connected
1) TensorFlow based
Step 1. Required Software Stacks
Python 2 or 3
Scipy and Numpy
TensorFlow 1.0+
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC_AIBench Micro
Step 3. Prepare the input
The TensorFlow micro benchmarks use random generate data, you need to specify
the batch size, image size, and channel.
Step 4. Run the workloads;
$ cd DC_AlIBench_Micro/TensorFlow
$ python matmul.py <batch_size> <img_size> <channel>
Running fully connected with scripts:
$ ./run-tensorflow.sh matmul <datasize>



Parameter “datasize” can be large/medium/small.

large: 224*224*64 (means length, width and channel respectively)

medium: 112*112*128

small: 56*56*256

Step 5. Collect the running results

When the workload run complete, it will display the running time information.

2) Pthreads based
Step 1. Required Software Stacks
g++ compiler
OpenCV, recommend 3.2 version
Dependences: libopencv_core.so0.3.2 and libopencv_imgproc.so.3.2
Step 2. Get workloads from AIBench
Download the Benchmark from this link:
http://159.226.41.254:8090/A1Bench/DC_AlIBench Micro
Step 3. Prepare the input
$ cd DC_AIBench Micro/Pthread
The Pthread micro benchmarks use ImageNet as data input, ImageData directory
contains the image data with three sizes: Image 1000, Image 10000 and
Image 100000.
Step 4. Compile the workload
$ make
This command will produce an executable file named matmul.
Step 5. Run the workload
$ ./matmul ../ImageData/image $imgsize/img$imgsize/ 12 227 227 100
Here $imgsize can be 1000, 10000, or 100000.
Step 6. Collect the running results
When the workload run is complete, it will display the output.

4.4.3 Relu, Sigmoid, Tanh

We use the Relu as an example, the running processes of Sigmoid and Tanh are the
same, you can just change the relu in the command to sigmoid or tanh.

1) TensorFlow based

Step 1. Required Software Stacks

Python 2 or 3

Scipy and Numpy

TensorFlow 1.0+

Step 2. Get workloads from AIBench

Download the Benchmark from the link:

http://159.226.41.254:8090/A1Bench/DC_AIBench Micro

Step 3. Prepare the input

The TensorFlow micro benchmarks use random generate data, you need to specify
the batch size, image size, and channel.

Step 4. Run the workloads;

$ cd DC_AlIBench_Micro/TensorFlow



$ python relu.py <batch_size> <img_size> <channel>
Running relu/sigmoid/tanh with scripts:
$ ./run-tensorflow.sh <workload> <datasize>
Parameter “workload” can be relu/sigmoid/tanh.
Parameter “datasize” can be large/medium/small.
large: 224*224*64 (means length, width and channel respectively)
medium: 112*112*128
small: 56*56*256
Step 5. Collect the running results
When the workload run complete, it will display the running time information.

2) Pthreads based
Step 1. Required Software Stacks
g++ compiler
OpenCV, recommend 3.2 version
Dependences: libopencv_core.so0.3.2 and libopencv_imgproc.so.3.2
Step 2. Get workloads from AIBench
Download the Benchmark from this link:
http://159.226.41.254:8090/A1Bench/DC_AlIBench Micro
Step 3. Prepare the input
$ cd DC_AIBench Micro/Pthread
The Pthread micro benchmarks use ImageNet as data input, /mageData directory
contains the image data with three sizes: Image 1000, Image 10000 and
Image 100000.
Step 4. Compile the workload
$ make
This command will produce an executable file named relu, sigmoid or tanh.
Step 5. Run the workload
$ ./relu ../ImageData/image $imgsize/img$imgsize/ 12 227 227 100
Here $imgsize can be 1000, 10000, or 100000.
Step 6. Collect the running results
When the workload run is complete, it will display the output.

4.4.4 MaxPooling, AvgPooling
We use the MaxPooling as an example, the running process of AvgPooling is the
same, you can just change the max_pool in the command to avg pool.
1) TensorFlow based
Step 1. Required Software Stacks
Python 2 or 3
Scipy and Numpy
TensorFlow 1.0+
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC_AIBench Micro
Step 3. Prepare the input



The TensorFlow micro benchmarks use random generate data, you need to specify
the batch size, image size, and channel.
Step 4. Run the workloads;
$ cd DC_AlIBench_Micro/TensorFlow
$ python max_pool.py <batch_size> <img_size> <channel>
Running MaxPooling and AvgPooling with scripts:
$ ./run-tensorflow.sh <workload> <datasize>
Parameter “workload” can be maxpool or avgpool.
Parameter “datasize” can be large/medium/small.
large: 224*224*64 (means length, width and channel respectively)
medium: 112*112*128
small: 56*56*256
Step 5. Collect the running results
When the workload run complete, it will display the running time information.

2) Pthreads based
Step 1. Required Software Stacks
g++ compiler
OpenCV, recommend 3.2 version
Dependences: libopencv_core.so0.3.2 and libopencv_imgproc.so.3.2
Step 2. Get workloads from AIBench
Download the Benchmark from this link:
http://159.226.41.254:8090/A1Bench/DC_AlBench Micro
Step 3. Prepare the input
$ cd DC_AIBench Micro/Pthread
The Pthread micro benchmarks use ImageNet as data input, ImageData directory
contains the image data with three sizes: Image 1000, Image 10000 and
Image 100000.
Step 4. Compile the workload
$ make
This command will produce an executable file named max_pool or avg_ pool.
Step 5. Run the workload
$ ./max_pool ../ImageData/image $imgsize/img$imgsize/ 12 227 227 100
Here $imgsize can be 1000, 10000, or 100000.
Step 6. Collect the running results
When the workload run is complete, it will display the output.

4.4.5 CosineNorm, BatchNorm
We use the BatchNorm as an example, the running process of CosineNorm is the

same, you can just change the batch_norm in the command to cosine norm.
1) TensorFlow based
Step 1. Required Software Stacks
Python 2 or 3
Scipy and Numpy
TensorFlow 1.0+



Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC_AlIBench Micro
Step 3. Prepare the input
The TensorFlow micro benchmarks use random generate data, you need to specify
the batch size, image size, and channel.
Step 4. Run the workloads;
$ cd DC_AlIBench_Micro/TensorFlow
$ python batch_normalization.py <batch size> <img_size> <channel>
Running batchNorm with scripts:
$ ./run-tensorflow.sh batchNorm <datasize>
Parameter “datasize” can be large/medium/small.
large: 224*224*64 (means length, width and channel respectively)
medium: 112*112*128
small: 56*56*256
Step 5. Collect the running results
When the workload run complete, it will display the running time information.

2) Pthreads based
Step 1. Required Software Stacks
g++ compiler
OpenCV, recommend 3.2 version
Dependences: libopencv_core.so.3.2 and libopencv_imgproc.so.3.2
Step 2. Get workloads from AIBench
Download the Benchmark from this link:
http://159.226.41.254:8090/A1Bench/DC_AlIBench Micro
Step 3. Prepare the input
$ cd DC_AIBench Micro/Pthread
The Pthread micro benchmarks use ImageNet as data input, ImageData directory
contains the image data with three sizes: Image 1000, Image 10000 and
Image 100000.
Step 4. Compile the workload
$ make
This command will produce an executable file named batch norm.
Step 5. Run the workload
$ ./batch_norm ../ImageData/image $imgsize/img$imgsize/ 12 227 227 100
Here $imgsize can be 1000, 10000, or 100000.
Step 6. Collect the running results
When the workload run is complete, it will display the output.

4.4.6 Dropout, Softmax
1) TensorFlow based
Step 1. Required Software Stacks
Python 2 or 3
Scipy and Numpy



TensorFlow 1.0+
Step 2. Get workloads from AIBench
Download the Benchmark from the link:
http://159.226.41.254:8090/A1Bench/DC_AlIBench Micro
Step 3. Prepare the input
The TensorFlow micro benchmarks use random generate data, you need to specify
the batch size, image size, and channel.
Step 4. Run the workloads;
$ cd DC_AlIBench_Micro/TensorFlow
$ python dropout.py <batch size> <img_size> <channel>
Running fully connected with scripts:
$ ./run-tensorflow.sh dropout <datasize>
Parameter “datasize” can be large/medium/small.
large: 224*224*64 (means length, width and channel respectively)
medium: 112*112*128
small: 56*56*256
Step 5. Collect the running results
When the workload run complete, it will display the running time information.

2) Pthreads based
Step 1. Required Software Stacks
g++ compiler
OpenCV, recommend 3.2 version
Dependences: libopencv_core.so0.3.2 and libopencv_imgproc.so.3.2
Step 2. Get workloads from AIBench
Download the Benchmark from this link:
http://159.226.41.254:8090/A1Bench/DC_AlBench Micro
Step 3. Prepare the input
$ cd DC_AIBench Micro/Pthread
The Pthread micro benchmarks use ImageNet as data input, ImageData directory
contains the image data with three sizes: Image 1000, Image 10000 and
Image 100000.
Step 4. Compile the workload
$ make
This command will produce an executable file named dropout.
Step 5. Run the workload
$ ./dropout ../ImageData/image $imgsize/imgSimgsize/ 12 227 227 100
Here $imgsize can be 1000, 10000, or 100000.
Step 6. Collect the running results
When the workload run is complete, it will display the output.



