
TS-Benchmark: a benchmark
for time series databases

Yueguo CHEN
DBIIR Lab, Information School

Renmin University of China
Dec., 2018

TS-Benchmark: a benchmark for time series databases

• Agenda
• Background
• Ideas of a new benchmark
• Application scenarios
• Data model and data generation
• Workload model and performance metrics
• Testing results of some representative time series database systems
• Q&A

TS-Benchmark: a benchmark for time series databases

• Background
• Big volume of time series is generated from IOT applications of various

business domains, including
• Manufacturing
• Agriculture
• Military
• Smart city
• Logistics
• Sensors in scientific instruments
• Energy (turbine)
• …

High Speed

Million	data	points/sec
24hours*7

Data
big	volume	of	time	series

Applications

Monitoring,	querying,	and	root	
cause	analysis…

TS-Benchmark: a benchmark for time series databases

• Ideas of a new benchmark

Existing benchmarks

ØTPC-C
Øtest RDBMSs’ transaction processing
capability

ØYCSB
ØTest data serving capability of NoSQL
databases

ØInfluxDB-comparisons
ØModel after server farm monitoring
scenarios
ØData is small, workload is simple

ØStream Bench, RIoTBench, Linear Road
ØDesigned many years ago, not
considering data processing requirements
of time series of big data applications
ØSome benchmarks test stream systems,
which process data in a streaming manner

Design and implement a new benchmark

ØDesigned Specifically for time series
databases in IOT application scenarios
ØModel the sensor data processing scenario
of wind farms
ØTesting of data appending, querying and
combination of the two, i.e. when data is
continuously injected into the target database,
users can query the data in the same time
ØTesting of data correction, including
updating of error data, and inserting of
missing data
ØLong enough testing time to see how target
databases’ house keeping (data compaction
etc.) affects its data appending and query
performance

TS-Benchmark: a benchmark for time series databases

• Application scenarios
• A wind plant needs to monitor

wind farms
• There are hundreds of

turbines(devices) in a wind farm
• And there are many sensors

attached to a device
• Every several seconds(7s), a

snapshot of sensor data is sent to
back end(cloud) for monitoring
and persistency

TS-Benchmark: a benchmark for time series databases

• The Data model and data generation
• Schema：Each data point has attributes as follows

• Wind farm id, device id, sensor id, time stamp and the reading of the sensor
• There are two types of sensors

• Sensors sensing the environment：temperature, humidity, wind speed, wind direction
etc.

• Sensors sensing the turbines : pitch angle俯仰角, upwind angle迎风角, angular velocity
角速度, electric voltage电压, electric current电流, installed power安装功率, nominal
power额定功率, temperature inside, humidity inside, vibration frequency etc.

• Firstly, we train an ARIMA time series model with one year long wind power data
provided by GoldWind company.

• Secondly, we use the trained ARIMA model to continuously generate wind data
for each turbine. Based on wind data, and the mechanism to transform wind
data to wind power we generate core sensor data for each turbine.

• Beside that, we also use ARIMA models to learn and generate other sensor
readings, such as temperature and humidity etc.

TS-Benchmark: a benchmark for time series databases

• Workload model and performance metrics
• Load： generate a dataset of a windfarm for 7 days, and test loading

performance (points/sec)
• Append：increase number of devices (through number of client threads), test

appending performance(points/sec)
• Query(simple Read and Analysis)：run a query workload which includes simple

window range query and aggregation query, against the target database
(requests/sec, average response time(us))
• Simple query is for monitoring purpose
• Aggregation query is for root cause analysis
• The mix ratio is 90:10, think time between query is 50ms

• Stress Test：includes two modes
• Mode 1: Stress test of data injecting capability when there is a query workload

(points/sec)
• Mode 2: Stress test of query handling capability when there is a data injecting stream

(requests/sec, average response time(us))

In future version of benchmark, we will add two tests, including updating of error data, and inserting of missing data

• Testing procedure
• The whole testing include 5 stages as follows

Data
generation

Loading
testing

Append
Testing

Querying
testing

Stress Testing

TS-Benchmark: a benchmark for time series databases

TS-Benchmark: a benchmark for time series databases

• Target database systems to be tested
• InfluxDB

• InfluxDB is a scalable time series database for recording metrics, events, and performing
analytics. It use the TSM (Time-Structured Merge Tree) data structure for data storage
and enjoy a very high data appending speed.

• IotDB
• Developed by Tsinghua University of China. Built upon TsFile, which is a columnar file

format supporting highly data compression, fast data fetch, and data updating.
• TimescaleDB

• A time series database built upon PostgreSQL, which is a mature relational database
system. TimescaleDB has a complete SQL support.

• Druid
• an open-source column-oriented data store, designed for online analytical processing

(OLAP) queries on event data.
• OpenTSDB

• A time series database built upon HBase, which is a scalable distributed NoSQL database
running on Hadoop

TS-Benchmark: a benchmark for time series databases

• Testing hardware and software environment
• We are benchmarking single server version of InfluxDB, IotDB,

TimescaleDB, Druid, and OpenTSDB
lHardware

la server with Intel(R) Xeon(R) CPU E5-2620 @ 2.00GHz(12cores, 2 thread
each core, 24threads in total), 32GB of memory, 2TB of 7200rpm SATA Hard
disk

lDatabase server is bound to 4 cores(8 threads)
lThe client program runs on the same server to avoid network latency

lSoftware
lCentOS 7.4.1708
l JDK 1.8

TS-Benchmark: a benchmark for time series databases

• Loading Test
• We generate data set of wind farm sensor data for 7 days,

and store the data in a file.

• 100 devices, 150 sensors/device, a snapshot of sensor
data for every device per 7 seconds.

• The data file in loaded into memory first, and loaded into
target databases to avoid I/O cost to see how fast the
databases handle the data injection.

• 10 threads are loading the data into databases, the
database under test is running on 4 cores(8threads).

• IotDB achieves a highest throughput of 772,406 points/s,
and InfluxDB achieves a comparable throughput of 631,227
points/s.

• TimescaleDB, Druid, and OpenTSDB are much inferior on
loading, they achieve throughputs of 52,794p/s, 138,907p/s,
and 44,027p/s respectively.

InfluxDB IotDB TimescaleDB Druid OpenTSDB
631,227772,406 52,794 138,907 44,027

TS-Benchmark: a benchmark for time series databases

• Appending Test – throughput

• Each client thread is responsible for appending data
of 50 devices. Each device has 150 sensors, and every
7 seconds a snapshot of sensor readings is sent.

• We gradually increase the number of clients to
increase pressures and measure the throughputs and
response times of target database.

• With the number of clients increasing, IotDB and
InfluxDB achieve comparable throughputs when the
concurrency is low (client number <= 300).

• When the number of clients further
increase(concurrency is high), InfluxDB achieve much
higher throughput than IotDB.

• TimescaleDB, Druid, and OpenTSDB are much inferior
on appending than IotDB and InfluxDB.

InfluxDB IotDB
TimescaleD
B Druid OpenTSDB

1 1,070 1,071 2751 1,070 1,070
3 3,214 3,214 8257 3,180 3,180
5 5,357 5,357 13284 5,288 5,288

10 10,683 10,709 27647 10,510 10,510
30 32,047 32,138 23254 30,810 30,810
50 53,146 53,466 32761 40,510 40,510

100 105,687 107,003 29250 41,710 41,710
300 293,063 298,808 29,631 42,566 42,566
500 502,900 329,172 33,268 42,841 42,841

TS-Benchmark: a benchmark for time series databases

• Appending Test – response times

• We have measured max, min, average response
times of each data points handled by target
databases.

• When concurrency is low, OpenTSDB(client
number <=300) and IotDB achieve better
response times than InfluxDB.

• However when concurrency is high(client number
>300), InfluxDB achieves better response time
than OpenTSDB, and equal response time to
IotDB.

• Although when the concurrency is low, Druid is
better than TimescaleDB in terms response time.

• Both Druid and TimescaleDB get the worst
response times.

InfluxDB IotDB
TimescaleD
B Druid OpenTSDB

1 14,096 7,666 363347 49,935 7,000
3 14,054 6,412 380465 49,429 7,130
5 13,720 6,129 428345 48,281 7,422

10 14,156 6,282 332666 49,568 8,369
30 14,297 6,274 2131416 68,728 8,601
50 15,461 5,856 7015567 194,478 9,934

100 20,575 5,666 3765096 752,511 11,412
300 59,317 59,317 3,103,219 3,083,258 298,656
500 84,571 84,571 2,600,111 5,419,355 993,259

TS-Benchmark: a benchmark for time series databases

• Query Test – throughput

• We increase client numbers to increase query pressure
on target databases, and measure query throughput
and max, min, average response time of each query

• Each client sent 20 request /sec, the think time is
set to 50ms

• The query workload include window query for
monitoring purpose, and aggregation query for
problem diagnosis purpose, the mix ratio is 9:1

• With increasing of the client number, InfluxDB and
IotDB achieve much higher throughput than other
database, IotDB achieves the highest throughput.

• TimescaleDB, Druid achieve less throughput.

• And OpenTSDB performs the worst.

InfluxDB IotDB
Timescale
DB Druid OpenTSDB

1 16 18 22 15 0.0489
3 49 56 43 44 0.0455
5 83 95 44 69 0.0388
10 167 191 55 111 0.0164
30 505 577 80 104 0.0127
50 770 948 93 108 0.0112
100 1,106 1,911 131 108 0.0084
150 1,138 2,878 193 106 0.0072

TS-Benchmark: a benchmark for time series databases

• Query Test – response time

• IotDB achieves better response time than
other databases.

• InfluxDB is second to IotDB, followed by Druid.

• TimescaleDB and OpenTSDB are the most bad
performing ones in terms of response time.

• And OpenTSDB is the slowest database to
handle the query load.

InfluxDB IotDB TimescaleDB Druid OpenTSDB
1 11,542 1,107 677126 19,806 20,440,966
3 10,345 1,205 1065172 22,341 21,975,824
5 9,348 822 1749476 28,546 25,747,924
10 9,953 776 2922655 57,336 60,951,978
30 11,402 595 7139071 279,311 78,965,533
50 20,080 1,051 10819995 448,233 89,587,663
100 54,772 373 15747781 882,152 118,731,148
150 115,777 306 19,877,354 1,332,498 139,723,308

TS-Benchmark: a benchmark for time series databases

• Stress Test 1 append (query)– throughput

• We test how target databases handle appending when
there is a background query stream.

• The background steady query stream includes 50
clients, each client sends 2 queries per second, so
there are 100 queries posed on target database per
second.

• In the mean time We gradually increase the number
of append clients to increase appending pressures.
Each client thread is responsible for appending data
of 50 devices.

• With the number of clients increasing, IotDB and
InfluxDB achieve comparable throughput, followed by
TimescaleDB.

• Although TimescaleDB perform better than IotDB and
InfluxDB when the concurrency is low.

• Druid, and OpenTSDB are much inferior on appending
than IotDB and InfluxDB.

InfluxDB IotDB TimescaleDB Druid OpenTSDB
1 1,071 1,071 1878 1,069 1,071
3 3,214 3,214 6352 3,179 3,214
5 5,305 5,357 14354 5,282 5,353
10 10,567 10,709 25878 10,522 10,682
30 32,065 32,100 24045 30,572 32,028
50 52,998 53,494 32825 37,735 52,588
100 105,620 106,973 60893 39,255 104,054
300 313,603 313,603 163,254 39,894 173,728
500 504,728 504,728 298,832 39,452 59,285

TS-Benchmark: a benchmark for time series databases

• Stress Test 1 append (query)– response times

• When concurrency is low, OpenTSDB(client
number <=300) and IotDB achieve better
response times than InfluxDB.

• However when concurrency is high(client number
>300), InfluxDB achieves better response time
than OpenTSDB, and equal response time to
IotDB.

• Although when the concurrency is low, Druid is
better than TimescaleDB.

• Both Druid and TimescaleDB get the worst
response times.

InfluxDB IotDB TimescaleDB Druid OpenTSDB
1 59,348 9,789 888251 53,944 7,380
3 51,535 7,307 509346 53,154 7,506
5 53,999 7,496 329546 52,448 7,744

10 45,015 6,904 733725 52,078 9,502
30 18,298 7,015 1130014 86,610 10,153
50 16,527 6,784 13581278 211,984 20,034

100 25,472 7,052 19452755 831,797 54,402
300 313,603 313,603 54,873,464 3,317,888 1,564,813
500 504,728 504,728 67,354,656 5,871,429 3,372,715

TS-Benchmark: a benchmark for time series databases

• Stress Test 2 query(append)– throughput

• We test how target databases handle queries when there
is a background appending stream.

• The background steady appending stream
includes 10 clients, each client is responsible for
10 devices, with 100 devices in total. Each client
send a snapshot of sensor data per 7 seconds.

• In the mean time We gradually increase the
number of clients to increase querying pressures.
Each client thread send 20 query requests per
second with a think time of 50ms.

• With increasing of the client number, InfluxDB and IotDB
achieve much higher throughput than other database, IotDB
achieves the highest throughput.

• TimescaleDB, Druid achieve less throughput.

• And OpenTSDB performs the worst.

InfluxDB IotDB
TimescaleD
B Druid OpenTSDB

1 16 57 1 14 0.0263
3 49 19 2 43 0.0260
5 83 57 2 70 0.0223
10 167 96 3 105 0.0203
30 504 387 3 107 0.0094
50 760 775 3 110 0.0064
100 1,097 1,747 5 105 0.0045
150 1123 2603 5 108 0.0043

TS-Benchmark: a benchmark for time series databases

• Stress Test 2 query(append)– response times

• IotDB achieves better response time than
other databases.

• InfluxDB is second to IotDB, followed by Druid.

• TimescaleDB and OpenTSDB are the most bad
performing ones in terms of response time.

• And OpenTSDB is the slowest database to
handle the query load.

InfluxDB IotDB
TimescaleD
B Druid OpenTSDB

1 11,454 1,018 677126 24,178 38,019,957
3 10,375 924 1065172 25,924 38,434,704
5 9,441 765 1749476 29,395 44,796,683
10 9,854 715 2922655 64,618 49,191,116
30 11,790 560 7139071 275,062 106,852,689
50 21,577 464 10819995 437,607 156,009,483
100 55,122 355 15747781 908,555 222,922,643
150 119,461 1119 19871354 1,312,020 231,635,392

TS-Benchmark: a benchmark for time series databases

• Preliminary conclusions

• Specifically designed storage engine for time series benefit data injection and
appending greatly

• The result of stress test 1 append (query) is consistent with the result of
append, when the background query workload is light, it is interesting to see
how databases digest data when query workload is heavy.

• The result of Stress Test 2 query (append) is consistent with the result of
query, when the background append pressure is light, it is interesting to see
how databases handles query when the append pressure is heavy.

• Why OpenTSDB is so slow (query) need more analysis. (frequent compaction?)

Thanks for your attention!
chenyueguo@ruc.edu.cn

Q&A

