Data Motifs: A Benchmark Proposal for Big Data and AI

Wanling Gao ICT, CAS &UCAS

Bench18, Seattle, WA, USA

Hardware and Software Co-design

A New Golden Age for Computer Architecture—Domain-specific co-design >>John Hennessy and David Patterson

Why Big Data and AI Benchmarking?

Measuring systems and architectures quantitatively

Data Motif

Benchmark Construction

Top-down:

- representative program selection
- can yield accurate representations of the program space of interest
- usually impossible to make any form of hard statements about the representativeness

Bottom-up:

- diverse range of characteristics
- program characteristics are quantities that can be measured and compared
- not all portions of the characteristics space are equally important

-- C. Bienia. Benchmarking modern multiprocessors. PhD thesis, Princeton University, 2011.

Data Motif

Current Benchmark Methodology

Popularity

- CloudSuite
- Parsec
- BigDataBench 3.0

Based on one application domain TPC-C、TPC-DS

Benchmarking Cost

---Jim Gray

- Complexity and diversity of • big data and AI workloads
- Impact of data on workload 0 behaviors

Data Motif

Benchmark Requirements for Big Data and AI

- Large-scale system and architecture evaluation
 - Portability for earlier stage
 - Comprehensiveness and reality for later stage
- Consistency across different communities
 - System: performance, cluster scalability
 - Architecture: micro-architecture behaviors
 - Machine learning: execution time, model prediction precision
- Reproducibility and interpretability

Data Motif

Data Motif-based Co-design & Benchmarking

Data Motif Definition

- Captures the common requirements of each class of unit of computation
 - Being reasonably divorced from individual implementations
- A minimum set to represent maximum patterns

We need to understand What's the abstractions of frequently-appearing units of computation among big data and AI workloads (big data and AI motif)?

Data Motif

Overview

- Looking back at history
- What is Data Motif
- BigDataBench 4.0
 - Unified Big Data and AI Benchmark Suite
 - Proxy Benchmarks for Simulation

Conclusion

Successful abstractions in other domains...

Data Motif

Abstraction - Relational Algebra

Relational Algebra

- Five primitive and fundamental operators
 - Theoretical foundation of database
 - Strong expression power
 - Compose complex queries

From E. F. Codd, A relational Model of Data for Large shared data banks. Communication of ACM, vol 13. no.6, 1970

Data Motif

Abstraction - Numerical Method

Seven motifs would be important for the next decade

7 "Motifs"

- Phillip Colella proposed Simulation in the physical sciences is done out using various combinations of the following core algorithms
 - distinctive combination of computation and data access

From P. Colella, "Defining software requirements for scientific computing," 2004.

Data Motif

Abstraction – Parallel Computing

Landscape of Parallel Computing Research

From K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, et al, "The landscape of parallel computing research: A view from berkeley," tech. rep., Technical Report UCB/EECS-2006-183, EECS Department, University of California, Berkeley, 2006.

Data Motif

Successful benchmarks based on abstractions ...

Data Motif

TPC Functional Workload Model

- Application domain → encapsulate user cases
- Functions of abstraction
 - abstraction of the implementations of use cases in different application domains.
- Systems View and Physical View
 - Different systems and hardware

-- Yanpei Chen, Francois Raab, Randy Katz: From TPC-C to Big Data Benchmarks: A Functional Workload Model, WBDB, 2012

Data Motif

TPC-C Methodology

- Functions of Abstraction
 - a mid-weight read-write transaction (i.e., New-Order)
 - a light-weight read-write transaction (i.e., Payment)
 - a mid-weight read-only transaction (i.e., Order-Status)
 - a batch of mid-weight read-write transactions (i.e., Delivery)
 - a heavy-weight read-only transaction (i.e., Stock-Level)
- Functional Workload Model
 - captures in an implementation-independent manner the load that the system needs to service

HPCC: Components

1. HPL (High Performance LINPACK)

Ax=b

SUPERCOMPUTER

HPCC Methodology

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.482.1783&rep=rep1&type=pdf

中国科学院计算技术研

Data Motif

Overview

Looking back at history

What is Data Motif

BigDataBench 4.0

- Unified Big Data and AI Benchmark Suite
- Proxy Benchmarks for Simulation

Conclusion

AI Workload --- AlexNet

Data Motif

Feature Extraction --- SIFT

Data Motif

What is Data motif?

- Data Motif---unified computation abstraction
 - abstractions of time-consuming units of computation

Wanling Gao, Jianfeng Zhan, Lei Wang, et al. Data Motif: A Lens towards Fully Understanding Big Data and AI Workloads. **PACT 2018.**

Data Motif

Algorithms

40+ algorithms with a broad spectrum

- Data mining/Machine learning
- Natural language processing
- Computer vision
- Bioinformatics

				catergory	Application Domain	Workload	Chitor Computation
					Image Recognition	Convolutional neural network(CNN)	Matrix, Sampling, Transform
Data Mining & Machine Learning		Natural Language Processing		Deep Learning	Speech Recognition	Deep belief network(DBN)	Matrix, Sampling
				Graph Mining	Search Engine	PageRank	Matrix, Graph, Sort
					Community Detection	BFS, Connected component(CC)	Graph
			Dimension Deduction	Image Processing	Principal components analysis(PCA)	Matrix	
C4.5/CART/ID3, Logistic regression, SVM, KNN, HMM, Maximum-entropy markov model, Conditional random field, PageRank, HITS, Aporiori, FP-growth, Principal component analysis, Back Propagation, Adaboost, MCMC, Connected component, Random forest, CF, CNN, DBN		Latent semantic indexing, pLSI, Latent dirichlet allocation, Index, Porter Stemming, Sphinx speech recognition	Dimension Reduction	Text Processing	Latent dirichlet allocation(LDA)	Statistics, Sampling	
			Recommendation	Association Rules Mining Electronic Commerce	Aporiori	Statistics, Set	
					FP-Growth	Graph, Set, Statistics	
					Collaborative filtering(CF)	Graph, Matrix	
			Classification	Image Recognition Speech Recognition Text Recognition	Support vector machine(SVM)	Matrix	
					K-nearest neighbors(KNN)	Matrix, Sort, Statistics	
					Naive bayes	Statistic	
					Random forest	Graph, Statistics	
						Decision tree(C4.5/CART/ID3)	Graph, Statistics
Investigate		Algorithms		Clustering	Data Mining	K-means	Matrix, Sort
					Image Processing	Image segmentation(GrabCut)	Matrix, Graph
Computer Vision MPEG-2, Scale-invariant feature transform, Image segmentation, Ray Tracing		Bioinformatics	Feature Preprocess	Signal Processing Text Processing	Scale-invariant feature transform(SIFT)	Matrix, Transform, Sampling, Sort, Statistics	
					Image Transform	Matrix, Transform	
		Needleman-Wunsch, Smith-Waterman, Basic local alignment search tool (BLAST)			Term Frequency-inverse document frequency (TF-IDF)	Statistics	
				Sequence Tegging	Bioinformatics	Hidden Markov Model(HMM)	Matrix
				Sequence Tagging	Language Processing	Conditional random fields(CRF)	Matrix, Sampling
				Indexing	Search Engine	Inverted index, Forward index	Statistics, Logic, Set, Sort
				Encoding/Decoding	Multimedia Processing	MPEG-2	Matrix, Transform
					Security	Encryption	Matrix, Logic
					Cryptography	SimHash, MinHash	Set, Logic
					Digital Signature	Locality-sensitive hashing(LSH)	Set, Logic
				Data Warehouse	Business intelligence	Project, Filter, OrderBy, Union	Set, Sort

Annliestion Domain

A.Z. 3.3

Data Motif

Eight Data Motifs

Difference with Kernels

Data motifs

- behaviors are affected by the sizes, patterns, types, and sources of different data inputs
- reflect not only computation patterns, memory access patterns, but also disk and network I/O patterns

Data Motif

Domain-specific Hardware and Software Co-design

Tailoring the system and architecture to characteri stics of data motifs

➢New architecture/accelerator design

Data motif-based libraries

Bottleneck identification and optimization

Overview

- Looking back at history
- What is Data Motif
- BigDataBench 4.0
 - Unified Big Data and AI Benchmark Suite
 - Proxy Benchmarks for Simulation

Conclusion

Scalable Benchmark Methodology

Data motif-based Scalable Methodology

- Micro Benchmark---Single data motif
- Component Benchmark---Data motif combination with different weights
- Application Benchmark---End-to-end application model

Why Data Motif-based Benchmark

- Using the combination to represent a wide variety of big data and AI workloads
 - No need to create a new benchmark or proxy for every possible workload

Data Motif

Representative Application Domain

Top 20 websites http://www.alexa.com/topsites/global;0

http://www.ddbj.nig.ac.jp/breakdown_stats/dbgrowth-e.html#dbgrowth-graph

Bench18

注信计算技术研

INSTITUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SCIENCES

Data Motif

BigDataBench 4.0

Unified Big Data and AI Benchmark Suite --- http://prof.ict.ac.cn/BigDataBench

Micro Benchmarks

Micro Benchmark	Involved Motif	Application Domain	Workload Type	Data Set	Software Stack
Sort	Sort		Offline analytics	Wikipedia entries	Hadoop, Spark, Flink, MPI
Grep	Set		Offline analytics	Wikipedia entries	Hadoop, Spark, Flink, MPI
		SE, SN, EC, MP, BI	Streaming	Random Generate	Spark streaming
WordCount	Basic statistics]	Offline analytics	Wikipedia entries	Hadoop, Spark, Flink, MPI
MD5	Logic		Offline analytics	Wikipedia entries	Hadoop, Spark, MPI
Connected Component	Graph	SN	Graph analytics	Facebook social network	Hadoop, Spark, Flink, GraphLab, MPI
RandSample	Sampling	SE, MP, BI	Offline analytics	Wikipedia entries	Hadoop, Spark, MPI
FFT	Transform	MP	Offline analytics	Two-dimensional matrix	Hadoop, Spark, MPI
Matrix Multiply	Matrix	SE, SN, EC, MP, BI	Offline analytics	Two-dimensional matrix	Hadoop, Spark, MPI
Read	Set	SE, SN, EC	NoSQL	ProfSearch resumes	HBase, MongoDB
Write	Set	SE, SN, EC	NoSQL	ProfSearch resumes	HBase, MongoDB
Scan	Set	SE, SN, EC	NoSQL	ProfSearch resumes	HBase, MongoDB
Convolution	Transform	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, PyTorch
Fully Connected	Matrix	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, PyTorch
Relu	Logic	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, PyTorch
Sigmoid	Matrix	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, PyTorch
Tanh	Matrix	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, PyTorch
MaxPooling	Sampling	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, PyTorch
AvgPooling	Sampling	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, PyTorch
CosineNorm [36]	Basic Statistics	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, PyTorch
BatchNorm [37]	Basic Statistics	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, PyTorch
Dropout [38]	Sampling	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, PyTorch

Data Motif

Component Benchmarks

Component Bench- mark	Involved Motif	Application Domain	Workload Type	Data Set	Software Stack
Xapian Server	Get, Put, Post	SE	Online service	Wikipedia entries	Xapian
PageRank	Matrix, Sort, Basic statis- tics, Graph	SE	Graph analytics	Google web graph	Hadoop, Spark, Flink, GraphLab, MPI
Index	Logic, Sort, Basic statis- tics, Set	SE	Offline analytics	Wikipedia entries	Hadoop, Spark
Rolling top words	Sort, Basic statistics	SN	Streaming	Random generate	Spark streaming, JStorm
Kmeans	Matrix Sort Pasia statistics	SE, SN, EC,	Offline analytics	Facebook social network	Hadoop, Spark, Flink, MPI
Rincuns	Wattix, Sort, Dasie statistics	MP, BI	Streaming	Random generate	Spark streaming
Collaborative	Graph Matrix	EC	Offline analytics	Amazon movie review	Hadoop, Spark
Filtering	Graph, Marix	EC	Streaming	MovieLens dataset	JStorm
Naive Bayes	Basic statistics, Sort	SE, SN, EC	Offline analytics	Amazon movie review	Hadoop, Spark, Flink, MPI
SIFT	Matrix, Sampling, Trans- form, Sort	MP	Offline analytics	ImageNet	Hadoop, Spark, MPI
LDA	Matrix, Graph, Sampling	SE	Offline analytics	Wikipedia entries	Hadoop, Spark, MPI
OrderBy	Set, Sort	EC	Data warahawaa	E-commerce transaction	Hive, Spark-SQL, Impala
Aggregation	Set, Basic statistics	EC	Data warehouse	E-commerce transaction	Hive, Spark-SQL, Impala
Project, Filter	Set	EC	Data warahousa	E-commerce transaction	Hive, Spark-SQL, Impala
Select, Union	Set	EC	Data watehouse	E-commerce transaction	Hive, Spark-SQL, Impala
Alexnet		SN, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, PyTorch
Googlenet		SN, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, PyTorch
Resnet	Matrix, Transform,	SN, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, PyTorch
Inception Resnet V2	Sampling, Logic,	SN, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, PyTorch
VGG16	Basic statistics	SN, MP, BI	AI	Cifar, ImageNet	TensorFlow, Caffe, PyTorch
DCGAN		SN, MP, BI	AI	LSUN	TensorFlow, Caffe, PyTorch
WGAN		SN, MP, BI	AI	LSUN	TensorFlow, Caffe, PyTorch
GAN	Matrix, Sampling, Logic,	SN, MP, BI	AI	LSUN	TensorFlow, Caffe, PyTorch
Seq2Seq	Basic statistics	SE, EC, BI	AI	TED Talks	TensorFlow, Caffe, PyTorch
Word2vec	Matrix, Basic statistics, Logic	SE, SN, EC	AI	Wikipedia entries, Sogou data	TensorFlow, Caffe, PyTorch

Data Motif

Overview

- Looking back at history
- What is Data Motif

BigDataBench 4.0

- Unified Big Data and AI Benchmark Suite
- Proxy Benchmarks for Simulation

Conclusion

Simulation

Wanling Gao, Jianfeng Zhan, Lei Wang, et al. Data Motif-based Proxy Benchmarks for Big Data and AI Workloads. Workload Characterization (IISWC 2018).

Data Motif

Proxy benchmarks

- Data Motif-based proxy benchmark generating methodology
 - A DAG-like combination of data motifs
 - An auto-tuning tool using machine learning model
 - Mimic system and micro-architectural behaviors

Overview

- Looking back at history
- What is Data Motif
- BigDataBench 4.0
 - Unified Big Data and AI Benchmark Suite
 - Proxy Benchmarks for Simulation

Conclusion

Executive summary

Big Data and AI Benchmark

- Collaborate between industry and academia
 - Industry: workload & dataset
 - Academia: benchmark specification
- Various application domains !
 - Internet service
 - Scientific data
 - Medical domain

Publications

- Data Motifs: A Lens Towards Fully Understanding Big Data and AI Workloads.
 PACT'18.
- BigDataBench: a Motif-based Big Data and Artificial Intelligence Benchmark Suite. Technical Report.
- Understanding Big Data Analytics Workloads on Modern Processors. TPDS'16
- Auto-tuning Spark Big Data Workloads on POWER8: Prediction-Based Dynamic <u>SMT</u>. PACT'16
- BigDataBench: a Big Data Benchmark Suite from Internet Services. **HPCA'14**
- CVR: Efficient Vectorization of SpMV on X86 Processors. CGO'18.
- BOPS, Not FLOPS! A New Metric, Measuring Tool, and Roofline Performance Model For Datacenter Computing. Technical report.
- Data Motif-based Proxy Benchmarks for Big Data and AI Workloads. IISWC 2018.

Data Motif

