DCMIX: Generating Mixed Workloads for the Cloud Data Center

XingWang Xiong, Lei Wang, WanLing Gao, Rui Ren, Ke Liu, Chen Zheng, Yu Wen, YiLiang

Institute of Computing Technology, Chinese Academy of Sciences

Bench 2018, Seattle, USA

Outline

- Motivation & challenges
- What is DCMIX?
- System Entropy
- Experiment
- Conclusion

Cloud Data Center

Co-locating workloads on shared resources

State-of-Practise

Higher utilizations but poor user experience (<u>Resources Contentions</u>)

Workloads: Redis+Sort+MD5+ WordCount

Benchmarking Cloud data center

- More and more efforts try to do it: user experiences & system utilizations
 - Cache Allocation Technology, Linux Containers Technology

Benchmark is the first step

How to generate real Co-locating workloads and measure the corresponding system?

DCMIX

BENCH 2018

INSTITUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SCIENC

Challenges and Our contributions

Benchmarks: DCMIX

a) 17 typical cloud data center workloads, latencies of workloads range from microseconds to minutes.b) Mixture of serial execution and parallel execution.

Metrics: the system entropy

a) The joint entropy of four system-level performance metric

医计算格术

b) Obtaining easily & not interfere with workloads

Experiments: four different modes on the X86 platform

- a) Mixed mode V.s. Standalone: the latency increased 7 times, and resource utilizations increased 10 times.
- b) The isolation mechanism has some efforts under the mixed mode, especially the CPUaffinity mechanism.

DCMIX

Outline

- Motivation & challenges
- What is DCMIX?
- System Entropy
- Experiment
- Conclusion

DCMIX's Framework

DCMIX

BENCH 2018

中国科学院计算技术研究码

DCMIX's Workloads

Workloads

- Online services
- Data analytic workloads

Application fields

- Big data
- Al
- High performance computing
- Transaction databases

DCMIX's Workloads(Cont'd)

Coverage both in application fields and latency

DCMIX's Workload Generator

BENCH 2018

Mixture execution

- Serial execution
- Parallel execution

User-defined configurations

- Request intensity(i.e. QPS)
- Number of requests
- Number of warm-up requests
- Data size of jobs
- Threads number of jobs

17 mode = "serial" #"parallel"or"serial"
18 online_tasks = (0 1 + 1)
19 offline_tasks = (2 3)

20 app_names = ("xapian" "redis" "sort" "wordcount")

7 NSERVERS=1

- 8 QPS=500
- 9 WARMUPREQS=1000
- 10 REQUESTS=3000
- 11 MINSLEEPNS=10000

经计算好是

DCMIX

Outline

- Motivation & challenges
- What is DCMIX?
- System Entropy
- Experiment
- Conclusion

DCMIX

Motivations

Metrics that the cloud vendor considered

System resource utilizations: <u>benefits</u>

System resource contentions : <u>disturbances</u>

<u>The system entropy</u>

the uncertainty associated with resources usage

经计算技术

DCMIX

The Definition of System Entropy

Based on Shannon entropy

• the uncertainty associated with a random variable

$$H(X) = -\sum_{x \in X} p(x) * \log_2 p(x)$$

Joint entropies of four system-level metrics

System Entropy Calculation

The sum of four element's entropies H(S) = H(C) + H(M) + H(D) + H(N)

Element's entropies based on Shannon entropy

$$H(X) = -\sum_{x \in X} p(x) * \log_2 p(x)$$

$$p(c) = \frac{Num(c)}{n}$$

BENCH 2018

いみんちょ

DCMIX

Outline

- Motivation & challenges
- What is DCMIX?
- System Entropy
- **Experiment**
- Conclusion

DCMIX

Experiment Configurations

Two Nodes:

- The Client Node
 - workloads generator
- The Server Node
 - target node
- Data analytic
 workloads(8GB text data)
 - Sort, MD5, WordCount
- Redis Requests
 - 50,000 requests per second

CPU	Intel(R) Xeon(R) E5645 2.40G
Memeory	96GB DDR3 1333MHz bandwidth:8GB/s
Network	Ethernet 1G bandwidth:943Mbits/s
Disk	SATA 1T bandwidth:154.82MB/s
OS	Ubuntu 16.04 and the kernel is 4.13.0-43-generic
GCC	4.3
Redis	4.2.5

Configurations of The Server Node

Experimental Methodology

BENCH 2018

Four modes:

- Standalone
- Mixed
- Mixed-Tied
- Mixed-Docker

中国科学院计算技术研

DCMIX

Metrics

- User-observed metrics
 - Latency
- System level metrics
 - CPU utilization
 - Memory bandwidth utilization
 - Disk bandwidth utilization
 - Network bandwidth utilization

 Micro-architectural metrics

- L1I Cache Miss
- L2 Cache Miss
- L3 Cache Miss
- DTLB Cache Miss
- ITLB Cache Miss
- The System entropy

Latency Behaviors

Co-locating deployment without any isolation mechanism incurs the high latency.

DCMIX

System Resource Utilizations

Co-locating deployment can prompt the resource utilizations.

DCMIX

BENCH 2018

罗中国科学院计算技术研究的 INSTITUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SCIENCES

The System Entropy

The entropy of mixed modes is much larger than that of the Standalone mode.

的计算技术研

DCMIX

Micro-architecture Behaviors

The micro-architecture metrics can't reflect the system resource contention .

的计算技术研究的

DCMIX

The Experiment Summary

- Co-location brings higher resource utilization and longer latency
 - 10 times resource utilization
 - 7 times the average latency & 14 times the 99.9th latency
- The system entropy can reflect the resource contention
 - System entropy in Standalone mode is 6 times that in Mixed mode
- Isolation mechanisms can reduce the interference between Co-locating workloads
 - CPU-affinity mechanism reduces interference.

Conclusion

DCMIX

Co-locating workloads for Cloud data center

17 typical cloud data center workloads, latencies of workloads range from microseconds to minutes. And mixture of serial execution and parallel execution

will open sourced soon

- X86 version
- RISC-V version

DCMIX

