
Digital	Science	Center

Big	Data	Benchmarking:	
Applications	and	Systems

Geoffrey	Fox,	December	10,	2018

2018	International	Symposium	on	Benchmarking,	Measuring	and	Optimizing	(Bench’	18)	at	
IEEE	Big	Data	2018

Dec	10	- Dec	11,	2018	@	Seattle,	WA,	USA

Digital	Science	Center
Indiana University

gcf@indiana.edu, http://www.dsc.soic.indiana.edu/, http://spidal.org/

112/29/18



Digital	Science	Center

Big	Data	and	Extreme-scale	Computing
http://www.exascale.org/bdec/

• BDEC	Pathways	to	Convergence	Report	

• New	series	BDEC2	“Common	Digital	Continuum	Platform	for	Big	Data	and	
Extreme	Scale	Computing”	with	first	meeting	November	28-30,	2018	
Bloomington	Indiana	USA	(focus	on	applications).	

• Working	groups	on	platform	(technology),	applications,	community	building
• BigDataBench presented	a	white	paper

• Next	meetings:	February	19-21	Kobe,	Japan	(focus	on	platform)	followed	by	two	
in	Europe,	one	in	USA	and	one	in	China.

http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/w
hitepapers/bdec2017pathways.pdf
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Benchmarks	should	mimic	Use	Cases?
Need	to	collect	use	cases?

Can	classify	use	cases	and	benchmarks	along	several	different	dimensions

312/29/18
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Software:	MIDAS
HPC-ABDS

NSF 1443054: CIF21 
DIBBs: Middleware 
and High Performance 
Analytics Libraries for 
Scalable Data Science

Ogres Application 
Analysis

HPC-ABDS and HPC-
FaaS Software
Harp and Twister2 
Building Blocks

SPIDAL Data 
Analytics Library
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My	view	of	System
GAIMSC

5



Digital	Science	Center

Systems	Challenges	for	GAIMSC
• Microsoft	noted	we	are	collectively	building	the	Global	AI	Supercomputer.
• Generalize	by	adding	modeling
• Architecture	of	the	Global	AI	and	Modeling	Supercomputer	GAIMSCmust	
reflect

• Global captures	the	need	to	mashup	services	from	many	different	sources;	
• AI captures	the	incredible	progress	in	machine	learning	(ML);	
• Modeling captures	both	traditional	large-scale	simulations	and	the	models	and	digital	
twins	needed	for	data	interpretation;	

• Supercomputer	captures	that	everything	is	huge	and	needs	to	be	done	quickly	and	often	
in	real	time	for	streaming	applications.	

• The	GAIMSC	includes	an	intelligent	HPC	cloud	linked	via	an	intelligent	HPC	Fog	to	
an	intelligent	HPC	edge.	We	consider	this	distributed	environment	as	a	set	of	
computational	and	data-intensive	nuggets	swimming	in	an	intelligent	aether.	

• We	will	use	a	dataflow	graph	to	define	a	mesh	in	the	aether
12/29/18 6
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Global	AI	and	Modeling	Supercomputer	GAIMSC
• There	is	only	a	cloud	at	the	logical	center	but	it’s	physically	distributed	and	owned	by	
a	few	major	players

• There	is	a	very	distributed	set	of	devices	surrounded	by	local	Fog	computing;	this	
forms	the	logically	and	physically	distribute	edge

• The	edge	is	structured	and	largely	data
• These	are	two	differences	from	the	Grid	of	the	past
• e.g.	self	driving	car	will	have	its	own	fog	and	will	not	share	fog	with	truck	that	it	is	about	to	collide	
with

• The	cloud	and	edge	will	both	be	very	heterogeneous	with	varying	accelerators,	
memory	size	and	disk	structure.

• GAIMSC	requires	parallel	computing	to	achieve	high	performance	on	large	ML	and	
simulation	nuggets	and	distributed	system	technology	to	build	the	aether and	support	
the	distributed	but	connected	nuggets.	

• In	the	latter	respect,	the	intelligent	aether mimics	a	grid	but	it	is	a	data	grid	where	
there	are	computations	but	typically	those	associated	with	data	(often	from	edge	
devices).	

• So	unlike	the	distributed	simulation	supercomputer	that	was	often	studied	in	previous	grids,	
GAIMSC	is	a	supercomputer	aimed	at	very	different	data	intensive	AI-enriched	problems.
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GAIMSC	Global	AI	&	Modeling	Supercomputer	Questions
• What	do	gain	from	the	concept?	e.g.	Ability	to	work	with	Big	Data	community
• What	do	we	lose	from	the	concept?	e.g.	everything	runs	as	slow	as	Spark
• Is	GAIMSC	useful	for	BDEC2	initiative?	For	NSF?	For	DoE?	

For	Universities?	For	Industry?	For	users?
• Does	adding	modeling	to	concept	add	value?
• What	are	the	research	issues	for	GAIMSC?	e.g.	how	to	program?
• What	can	we	do	with	GAIMSC	that	we	couldn’t	do	with	classic	Big	Data	
technologies?

• What	can	we	do	with	GAIMSC	that	we	couldn’t	do	with	classic	HPC	
technologies?

• Are	there	deep	or	important	issues	associated	with	the	“Global”	in	GAIMSC?
• Is	the	concept	of	an	auto-tuned	Global	AI	and	Modeling	Supercomputer	scary?
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Integration	of	Data	and	Model	functions	with	ML	
wrappers	in	GAIMSC

• There	is	a	rapid	increase	in	the	integration	of	ML	and	simulations.	
• ML	can	analyze	results,	guide	the	execution	and	set	up	initial	configurations	(auto-
tuning).	This	is	equally	true	for	AI	itself	-- the	GAIMSC	will	use	itself	to	optimize	its	
execution	for	both	analytics	and	simulations.	

• In	principle	every	transfer	of	control	(job	or	function	invocation,	a	link	from	device	to	
the	fog/cloud)	should	pass	through	an	AI	wrapper	that	learns	from	each	call	and	can	
decide	both	if	call	needs	to	be	executed	(maybe	we	have	learned	the	answer	already	
and	need	not	compute	it)	and	how	to	optimize	the	call	if	it	really	needs	to	be	executed.

• The	digital	continuum	proposed	by	BDEC2	is	an	intelligent	aether learning	from	and	
informing	the	interconnected	computational	actions	that	are	embedded	in	the	aether.	

• Implementing	the	intelligent	aether embracing	and	extending	the	edge,	fog,	and	cloud	is	a	major	
research	challenge	where	bold	new	ideas	are	needed!	

• We	need	to	understand	how	to	make	it	easy	to	automatically	wrap	every	nugget	with	ML.
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Implementing	the	GAIMSC
• The	new	MIDAS	middleware	designed	in	SPIDAL	has	been	engineered	to	support	
high-performance	technologies	and	yet	preserve	the	key	features	of	the	Apache	
Big	Data	Software.	

• MIDAS	seems	well	suited	to	build	the	prototype	intelligent	high-performance	aether.	

• Note	this	will	mix	many	relatively	small	nuggets	with	AI	wrappers	generating	
parallelism	from	the	number	of	nuggets	and	not	internally	to	the	nugget	and	its	
wrapper.	

• However,	there	will	be	also	large	global	jobs	requiring	internal	parallelism	for	
individual	large-scale	machine	learning	or	simulation	tasks.	

• Thus	parallel	computing	and	distributed	systems	(grids)	must	be	linked	in	a	deep	
fashion	although	the	key	parallel	computing	ideas	needed	for	ML	are	closely	
related	to	those	already	developed	for	simulations.
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Underlying	HPC	Big	Data	
Convergence	Issues	
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• Need	to	discuss	Data	and	Model as	problems	have	both	intermingled,	but	we	can	
get	insight	by	separating	which	allows	better	understanding	of	Big	Data	- Big	
Simulation	“convergence”	(or	differences!)

• TheModel is	a	user	construction	and	it	has	a	“concept”, parameters	and	gives
results	determined	by	the	computation.	We	use	term	“model”	in	a	general	
fashion	to	cover	all	of	these.

• Big	Data	problems can	be	broken	up	into	Data	and	Model
• For	clustering,	the	model	parameters	are	cluster	centers	while	the	data	is	set	
of	points	to	be	clustered

• For	queries,	the	model	is	structure	of	database	and	results	of	this	query	while	
the	data	is	whole	database	queried	and	SQL	query	

• For	deep	learning	with	ImageNet,	the	model	is	chosen	network	with	model	
parameters	as	the	network	link	weights.	The	data	is	set	of	images	used	for	
training	or	classification

Data	and	Model	in	Big	Data	and	Simulations	I
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• Simulations can	also	be	considered	as	Data plus	Model
• Model can	be	formulation	with	particle	dynamics	or	partial	differential	equations	defined	
by	parameters	such	as	particle	positions	and	discretized	velocity,	pressure,	density	values

• Data could	be	small	when	just	boundary	conditions	
• Data large	with	data	assimilation	(weather	forecasting)	or	when	data	visualizations	are	
produced	by	simulation

• Big	Data		implies	Data	is	large	but	Model	varies	in	size
• e.g.	LDA (Latent	Dirichlet	Allocation)	with	many	topics	or	deep	learning	has	a	large	model
• Clustering or	Dimension	reduction	can	be	quite	small	in	model	size

• Data often	static	between	iterations	(unless	streaming);	Model	parameters vary	between	
iterations

• Data and	Model	Parameters	are	often	confused	in	papers	as	term	data	used	to	describe	the	
parameters	of	models.

• Models	in Big	Data	and	Simulations	have	many	similarities	and	allow	convergence

Data	and	Model	in	Big	Data	and	Simulations	II

13



Digital	Science	Center

• Many	applications	use	LML	or	Local	machine	Learning	where	machine	learning	
(often	from	R	or	Python	or	Matlab)	is	run	separately	on	every	data	item	such	as	
on	every	image	

• But	others	are GML	Global	Machine	Learning	where		machine	learning	is	a	basic	
algorithm	run	over	all	data	items	(over	all	nodes	in	computer)

• maximum	likelihood	or	c2 with	a	sum	over	the	N	data	items	– documents,	
sequences,	items	to	be	sold,	images	etc.	and	often	links	(point-pairs).	

• GML	includes	Graph	analytics,	clustering/community	detection,	mixture	
models,	topic	determination,	Multidimensional	scaling,	(Deep)	Learning	
Networks

• Note	Facebook	may	need	lots	of	small	graphs	(one	per	person	and	~LML)	rather	
than	one	giant	graph	of	connected	people	(GML)

Local	and	Global	Machine	Learning
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• Applications	– Divide	use	cases	into Data andModel	and	compare	characteristics	separately	
in	these	two	components	with	64	Convergence	Diamonds	(features).	

• Identify	importance	of	streaming	data,	pleasingly	parallel,	global/local	machine-learning
• Software	– Single	model	of High	Performance	Computing	(HPC)	Enhanced	Big	Data	Stack	
HPC-ABDS.	21	Layers	adding	high	performance	runtime	to	Apache	systems	HPC-FaaS
Programming	Model

• Serverless Infrastructure	as	a	Service	IaaS
• Hardware	system	designed	for	functionality	and	performance	of	application	type	e.g.	disks,	
interconnect,	memory,	CPU	acceleration	different	for	machine	learning,	pleasingly	parallel,	
data	management,	streaming,	simulations

• Use	DevOps	to	automate	deployment	of	event-driven	software	defined	systems	on	
hardware:	HPCCloud 2.0

• Total	System	Solutions	(wisdom)	as	a	Service:	HPCCloud 3.0

Convergence/Divergence	Points	for	HPC-Cloud-Edge-
Big	Data-Simulation
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Application	Structure

http://www.iterativemapreduce.org/

1612/29/18



Digital	Science	Center

• Real-time (streaming)	data	is	increasingly	common	in	scientific	and	engineering	research,	and	
it	is	ubiquitous	in	commercial	Big	Data	(e.g.,	social	network	analysis,	recommender	systems	
and	consumer	behavior	classification)

• So	far	little	use	of	commercial	and	Apache	technology	in	analysis	of	scientific	streaming	
data

• Pleasingly	parallel	applications	important	in	science	(long	tail)	and	data	communities
• Commercial-Science	application	differences:	Search	and	recommender	engines	have	different	
structure	to	deep	learning,	clustering,	topic	models,	graph	analyses	such	as	subgraph	mining

• Latter	very	sensitive	to	communication	and	can	be	hard	to	parallelize
• Search	typically	not	as	important	in	Science	as	in	commercial	use	as	search	volume	scales	
by	number	of	users

• Should	discuss data	and	model separately
• Term	data	often	used	rather	sloppily	and	often	refers	to	model

Structure	of	Applications
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Distinctive	Features	of	Applications

• Ratio	of	data	to	model	sizes:	vertical	axis	on	next	slide
• Importance	of	Synchronization	– ratio	of	inter-node	communication	
to	node	computing:	horizontal	axis	on	next	slide

• Sparsity	of	Data	or	Model;	impacts	value	of	GPU’s	or	vector	
computing

• Irregularity	of	Data	or	Model
• Geographic	distribution	of	Data	as	in	edge	computing;	use	of	
streaming	(dynamic	data)	versus	batch	paradigms

• Dynamic	model	structure	as	in	some	iterative	algorithms	

18
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Big	Data	and	Simulation	Difficulty	in	Parallelism
Size	of	Synchronization	constraints

Pleasingly	Parallel
Often	independent	events

MapReduce	as	in	
scalable	databases

Structured	Adaptive	Sparse

Loosely	Coupled

Largest	scale	
simulations

Current	major	Big	
Data	category

Commodity	Clouds
HPC	Clouds:	Accelerators

High	Performance	Interconnect

Exascale	Supercomputers

Global	Machine	
Learning
e.g.	parallel	
clustering	

Deep	Learning

HPC	Clouds/Supercomputers
Memory	access	also	critical

Unstructured	Adaptive	Sparse

Graph	Analytics	e.g.	
subgraph	mining

LDA

Linear	Algebra	at	core	
(often	not	sparse)

Size	of	
Disk	I/O

Tightly	Coupled

Parameter	sweep	
simulations

Just	two	problem	characteristics
There	is	also	data/compute	distribution	seen	in	grid/edge	computing
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Application	Nexus	of	
HPC,	Big	Data,	Simulation	

Convergence
Use-case	Data	and	Model
NIST	Collection
Big	Data	Ogres
Convergence	Diamonds
https://bigdatawg.nist.gov/
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• 26	fields	completed	for	51	areas
• Government	Operation:	4
• Commercial:	8
• Defense:	3
• Healthcare	and	Life	Sciences:	10
• Deep	Learning	and	Social	Media:	6
• The	Ecosystem	for	Research:	4
• Astronomy	and	Physics:	5
• Earth,	Environmental	and	Polar	Science:	10
• Energy:	1

• Security	&	Privacy	Enhanced	version	2
• BDEC	HPC	enhanced	version

Original	Use	Case	
Template

21
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• Government	Operation(4):	National	Archives	and	Records	Administration,	Census	Bureau

• Commercial(8):	Finance	in	Cloud,	Cloud	Backup,	Mendeley (Citations),	Netflix,	Web	Search,	Digital	Materials,	Cargo	shipping	
(as	in	UPS)

• Defense(3):	Sensors,	Image	surveillance,	Situation	Assessment

• Healthcare	and	Life	Sciences(10):	Medical	records,	Graph	and	Probabilistic	analysis,	Pathology,	Bioimaging,	Genomics,	
Epidemiology,	People	Activity	models,	Biodiversity

• Deep	Learning	and	Social	Media(6):	Driving	Car,	Geolocate images/cameras,	Twitter,	Crowd	Sourcing,	Network	Science,	NIST	
benchmark	datasets

• The	Ecosystem	for	Research(4):	Metadata,	Collaboration,	Language	Translation,	Light	source	experiments

• Astronomy	and	Physics(5):	Sky	Surveys	including	comparison	to	simulation,	Large	Hadron	Collider	at	CERN,	Belle	Accelerator	
II	in	Japan

• Earth,	Environmental	and	Polar	Science(10):	Radar	Scattering	in	Atmosphere,	Earthquake,	Ocean,	Earth	Observation,	Ice	
sheet	Radar	scattering,	Earth	radar	mapping,	Climate	simulation	datasets,	Atmospheric	turbulence	identification,	Subsurface	
Biogeochemistry	(microbes	to	watersheds),	AmeriFlux	and	FLUXNET	gas	sensors

• Energy(1):	Smart	grid

• Published	by	NIST	as	version	2	https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-3r1.pdf with	common	set	of	26	features	
recorded	for	each	use-case

51	Detailed	Use	Cases:	Contributed	July-September	2013
Covers	goals,	data	features	such	as	3	V’s,	software,	hardware

26	Features	for	each	use	case	Biased	to	science 22
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Part	of	Property	
Summary	Table
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• People:	either	the	users	(but	see	below)	or	subjects	of	application	and	often	both

• Decision	makers	like	researchers	or	doctors	(users	of	application)

• Items such	as	Images,	EMR,	Sequences	below;	observations	or	contents	of	online	store
• Images	or	“Electronic	Information	nuggets”
• EMR:	Electronic	Medical	Records	(often	similar	to	people	parallelism)
• Protein	or	Gene	Sequences;
• Material properties,	Manufactured	Object	specifications,	etc.,	in	custom	dataset
• Modelled entities like	vehicles	and	people

• Sensors – Internet	of	Things

• Events such	as	detected	anomalies	in	telescope	or	credit	card	data	or	atmosphere

• (Complex)	Nodes in	RDF	Graph
• Simple	nodes	as	in	a	learning	network

• Tweets,	Blogs,	Documents,	Web	Pages,	etc.
• And	characters/words	in	them

• Files or	data	to	be	backed	up,	moved	or	assigned	metadata

• Particles/cells/mesh points as	in	parallel	simulations

51	Use	Cases:	What	is	Parallelism	Over?
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• PP	(26) “All”	Pleasingly	Parallel	or	Map	Only
• MR	(18)	Classic	MapReduce	MR	(add	MRStat below	for	full	count)
• MRStat (7)	Simple	version	of	MR	where	key	computations	are	simple	reduction	as	found	in	
statistical	averages	such	as	histograms	and	averages

• MRIter (23) Iterative	MapReduce	or	MPI	(Flink,	Spark,	Twister)
• Graph	(9) Complex	graph	data	structure	needed	in	analysis	
• Fusion	(11) Integrate	diverse	data	to	aid	discovery/decision	making;	could	involve	
sophisticated	algorithms	or	could	just	be	a	portal

• Streaming	(41)	Some	data	comes	in	incrementally	and	is	processed	this	way
• Classify (30)	Classification:	divide	data	into	categories
• S/Q	(12)	Index,	Search	and	Query

Sample	Features	of	51	Use	Cases	I
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• CF	(4)	Collaborative	Filtering	for	recommender	engines
• LML	(36)	Local	Machine	Learning	(Independent	for	each	parallel	entity)	– application	
could	have	GML	as	well

• GML	(23)	Global	Machine	Learning:	Deep	Learning,	Clustering,	LDA,	PLSI,	MDS,	
• Large	Scale	Optimizations	as	in	Variational Bayes,	MCMC,	Lifted	Belief	Propagation,	
Stochastic	Gradient	Descent,	L-BFGS,	Levenberg-Marquardt	.	Can	call	EGO	or	
Exascale	Global	Optimization	with	scalable	parallel	algorithm

• Workflow	(51)	Universal	
• GIS	(16)	Geotagged	data	and	often	displayed	in	ESRI,	Microsoft	Virtual	Earth,	Google	
Earth,	GeoServer etc.

• HPC	(5)	Classic	large-scale	simulation	of	cosmos,	materials,	etc.	generating	
(visualization)	data

• Agent	(2)	Simulations	of	models	of	data-defined	macroscopic	entities	represented	as	
agents

Sample	Features	of	51	Use	Cases	II
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BDEC2	and	NIST	Use	Cases
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53	NIST	Use	Cases	for	Research	Space	I
• GOVERNMENT	OPERATION

• 1:	Census	2010	and	2000—Title	13	Big	Data	
• 2:	NARA	Accession,	Search,	Retrieve,	Preservation	
• 3:	Statistical	Survey	Response	Improvement
• 4:	Non-Traditional	Data	in	Statistical	Survey	Response	Improvement	(Adaptive	Design)

1-4 are related to social science survey problems and are “Classic Data+ML” with interesting 
algorithms (recommender engines) plus databases and important privacy issues which are present in 
research cases

• COMMERCIAL
• 5:	Cloud	Eco-System	for	Financial	Industries	NO
• 6:	Mendeley—An	International	Network	of	Research	
• 7:	Netflix	Movie	Service	NO
• 8:	Web	Search	NO
• 9:	Big	Data	Business	Continuity	and	Disaster	Recovery	Within	a	Cloud	Eco-System	 NO
• 10:	Cargo	Shipping	Edge	Computing	NO
• 11:	Materials	Data	for	Manufacturing	
• 12:	Simulation-Driven	Materials	Genomics

6 is “Classic Data+ML” with Text Analysis (citation identification, topic models etc.)
10 is DHL/Fedex/UPS and has no direct scientific analog. However, it is a good example of Edge 
computing system of a similar nature to the scientific research case.
11 and 12 are material science covered in BDEC2 meeting

12/29/18 28
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53	NIST	Use	Cases	for	Research	Space	II
• DEFENSE

• 13:	Cloud	Large-Scale	Geospatial	Analysis	and	Visualization
• 14:	Object	Identification	and	Tracking	from	Wide-Area	Large	Format	Imagery	or	
Full	Motion	Video—Persistent	Surveillance

• 15:	Intelligence	Data	Processing	and	Analysis	
13-15 are very similar to disaster response problems. They involve extensive “Classic 
Data+ML” for sensor collections and/or image processing. GIS and spatial analysis are 
important as in BDEC2 Pathology and Spatial Imagery talk. The geospatial aspect of 
applications means they are similar to earth science examples.

• Color	coding	of	use	cases
• NO	means	not	similar	to	research	application
• Red means	not	relevant	to	BDEC2
• Orange means	related	to	BDEC2	Bloomington	presentations
• Black	are	unique	use	cases	of	relevance	to	BDEC2	but	not	presented	at	Bloomington
• Purple are comments
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Use	Cases	III:	HEALTH	CARE	AND	LIFE	SCIENCES
• 16:	Electronic	Medical	Record
• 17:	Pathology	Imaging/Digital	Pathology
• 18:	Computational	Bioimaging
• 19:	Genomic	Measurements
• 20:	Comparative	Analysis	for	Metagenomes	and	Genome
• 21:	Individualized	Diabetes	Management
• 22:	Statistical	Relational	Artificial	Intelligence	for	Health	Care
• 23:	World	Population-Scale	Epidemiological	Study
• 24:	Social	Contagion	Modeling	for	Planning,	Public	Health,	and	Disaster	
Management	

• 25:	Biodiversity	and	LifeWatch

12/29/18 30



Digital	Science	Center

Comments	on	Use	Cases	III
• 16 and 22 are “classic data + ML + database” based use cases using an 

important technique, understood by the community but not presented at 
BDEC2

• 17 came originally from Saltz’s group and was updated in his BDEC2 talk
• 18 describes biology image processing from many instruments microscopes, 

MRI and light sources. The latter was directly discussed at BDEC2 and the 
other instruments were implicit.

• 19 and 20 are well recognized as a distributed Big Data problems with 
significant computing. They were represented by Chandrasekaran’s 
presentation at BDEC2 which inevitably only covered part (gene assembly) of 
problem.

• 21 relies on “classic data + graph analytics” which was not discussed in BDEC2 
meeting but is certainly actively pursued.

• 23 and 24 originally came from Marathe and were updated in his BDEC2 
presentation on massive bio-social systems

• 25 generalizes BDEC2 talks by Taufer and Rahnemoonfar on ocean and land 
monitoring and sensor array analysis.
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Use	Cases	IV:	DEEP	LEARNING	AND	SOCIAL	MEDIA
• 26:	Large-Scale	Deep	Learning
• 27:	Organizing	Large-Scale,	Unstructured	Collections	of	Consumer	Photos	NO
• 28:	Truthy—Information	Diffusion	Research	from	Twitter	Data
• 29:	Crowd	Sourcing	in	the	Humanities	as	Source	for	Big	and	Dynamic	Data	
• 30:	CINET—Cyberinfrastructure	for	Network	(Graph)	Science	and	Analytics
• 31:	NIST	Information	Access	Division—Analytic	Technology	Performance	Measurements,	
Evaluations,	and	Standards	

• 26 on deep learning was covered in great depth at the BDEC2 meeting
• 27 describes an interesting image processing challenge of geolocating multiple 

photographs which is not so far directly related to scientific data analysis 
although related image processing algorithms are certainly important

• 28-30 are “classic data + ML” use cases with a focus on graph and text mining 
algorithms not covered in BDEC2 but certainly relevant to the process

• 31 on benchmarking and standard datasets is related to BigDataBench talk at 
end of BDEC2 meeting and Fosters talk on a model database
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53	NIST	Use	Cases	for	Research	Space	VI
• THE	ECOSYSTEM	FOR	RESEARCH
• 32:	DataNet Federation	Consortium
• 33:	The	Discinnet Process	NO
• 34:	Semantic	Graph	Search	on	Scientific	Chemical	and	Text-Based	Data	
• 35:	Light	Source	Beamlines

32 covers data management with iRODS which is well regarded by the community but not discussed in BDEC2.
33 is a Teamwork approach that doesn’t seem relevant to BDEC2
34 is a “classic data+ML” use case with a similar comments to 28-30
35 was covered with more advanced deep learning algorithms in Yager and Foster’s BDEC2 talks

ASTRONOMY	AND	PHYSICS
• 36:	Catalina	Real-Time	Transient	Survey:	A	Digital,	Panoramic,	Synoptic	Sky	Survey	
• 37:	DOE	Extreme	Data	from	Cosmological	Sky	Survey	and	Simulations
• 38:	Large	Survey	Data	for	Cosmology
• 39:	Particle	Physics—Analysis	of	Large	Hadron	Collider	Data:	Discovery	of	Higgs	Particle
• 40:	Belle	II	High	Energy	Physics	Experiment	

36 to 38 are “Classic Data+ML” astronomy use cases related to BDEC2 SKA presentation and covering both archival 
and event detection cases. Use case 37 covers the integration of simulation data and observational data FOR 
ASTRONOMY; A TOPIC COVERED IN OTHER CASES AT BDEC2.
39 and 40 are “Classic Data+ML” use cases for accelerator data analysis. This was not covered in BDEC2 but is 
currently the largest volume scientific data analysis problem whose importance and relevance is well understood.
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Use	Cases	VII:	EARTH,	ENVIRONMENTAL,	AND	POLAR	SCIENCE
• 41:	European	Incoherent	Scatter	Scientific	Association	3D	Incoherent	Scatter	Radar	System	
Big	Radar	instrument	monitoring	atmosphere.	

• 42:	Common	Operations	of	Environmental	Research	Infrastructure
• 43:	Radar	Data	Analysis	for	the	Center	for	Remote	Sensing	of	Ice	Sheets
• 44:	Unmanned	Air	Vehicle	Synthetic	Aperture	Radar	(UAVSAR)	Data	Processing,	Data	
Product	Delivery,	and	Data	Services

• 45:	NASA	Langley	Research	Center/	Goddard	Space	Flight	Center	iRODS Federation	Test	Bed
• 46:	MERRA	Analytic	Services	(MERRA/AS)	Instrument
• 47:	Atmospheric	Turbulence	– Event	Discovery	and	Predictive	Analytics	Imaging
• 48:	Climate	Studies	Using	the	Community	Earth	System	Model	at	the	U.S.	Department	of	
Energy	(DOE)	NERSC	Center

• 49:	DOE	Biological	and	Environmental	Research	(BER)	Subsurface	Biogeochemistry	Scientific	
Focus	Area

• 50:	DOE	BER	AmeriFlux and	FLUXNET	Networks	Sensor	Networks
• 2-1:	NASA	Earth	Observing	System	Data	and	Information	System	(EOSDIS)	Instrument
• 2-2:	Web-Enabled	Landsat	Data	(WELD)	Processing	Instrument
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Comments	on	Use	Cases	VII
• 41 43 44 are “Classic Data+ML” use cases involving radar data from 

different instruments-- specialized ground, vehicle/plane, satellite  - not 
directly covered in BDEC2

• 2-1 and 2-2 are use cases similar to 41 43 and 44 but applied to EOSDIS 
and LANDSAT earth observations from satellites in multiple modalities.

• 42 49 and 50 are  “Classic Data+ML”  environmental sensor arrays that 
extend the scope of talks of Taufer and Rahnemoonfar at BDEC2. See 
also use case 25 above

• 45 to 47 describe datasets from instruments and computations relevant 
to climate and weather. It relates to BDEC2 talk by Denvil and Miyoshi. 
47 discusses the correlation of aircraft turbulent reports with 
simulation datasets

• 48 is data analytics and management associated with climate studies as 
covered in BDEC2 talk by Denvil
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Use	Cases	VIII:	ENERGY
• 51:	Consumption	Forecasting	in	Smart	Grids

51 is a different subproblem but in the same area as Pothen and Azad’s 
talk on the electric power grid at BDEC2. This is a challenging edge 
computing problem as a large number of distributed but correlated 
sensors

• SC-18	BOF	Application/Industry	Perspective	by	David	Keyes,	King	Abdullah	University	
of	Science	and	Technology	(KAUST)

• https://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/SC18_BDEC2_Bo
F-Keyes.pdf

This is a presentation by David Keyes on seismic imaging for oil discovery 
and exploitation. It is “Classic Data+ML” for an array of sonic sensors
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BDEC2	Use	Cases	I:	Classic	Observational	Data	plus	ML
• BDEC2-1:	M.	Deegan,	Big	Data	and	Extreme	Scale	Computing,	2nd	Series	(BDEC2)	- Statement	of	
Interest	from	the	Square	Kilometre Array	Organisation (SKAO)

• Environmental	Science
• BDEC2-2:	M.	Rahnemoonfar,	Semantic	Segmentation	of	Underwater	Sonar	Imagery	based	on	Deep	
Learning

• BDEC2-3:	M.	Taufer,	Cyberinfrastructure	Tools	for	Precision	Agriculture	in	the	21st	Century
• Healthcare	and	Life	sciences
• BDEC2-4:	J.	Saltz,	Multiscale	Spatial	Data	and	Deep	Learning
• BDEC2-5:	R.	Stevens,	Exascale	Deep	Learning	for	Cancer
• BDEC2-6:	S.	Chandrasekaran,	Development	of	a	parallel	algorithm	for	whole	genome	alignment	for	
rapid	delivery	of	personalized	genomics

• BDEC2-7:	M.	Marathe,	Pervasive,	Personalized	and	Precision	(P3)	analytics	for	massive	bio-social	
systems

Instruments include Satellites, UAV’s, Sensors (see edge examples), Light sources (X-ray 
MRI Microscope etc.), Telescopes, Accelerators, Tokomaks (Fusion), Computers (as in 
Control, Simulation, Data, ML Integration)
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BDEC2	Use	Cases	II:	Control,	Simulation,	Data,	ML	Integration
• BDEC2-8:	W.	Tang,	New	Models	for	Integrated	Inquiry:	Fusion	Energy	Exemplar
• BDEC2-9:	O.	Beckstein,	Convergence	of	data	generation	and	analysis	in	the	biomolecular
simulation	community

• BDEC2-10:	S.	Denvil,	From	the	production	to	the	analysis	phase:	new	approaches	needed	in	climate	
modeling

• BDEC2-11:	T.	Miyoshi,	Prediction	Science:	The	5th	Paradigm	Fusing	the	Computational	Science	and	Data	
Science	(weather	forecasting)

See also Marathe and Stevens talks
See also instruments under Classic Observational Data plus ML

• Material	Science
• BDEC2-12:	K.	Yager,	Autonomous	Experimentation	as	a	Paradigm	for	Materials	Discovery
• BDEC2-13:	L.	Ward,	Deep	Learning,	HPC,	and	Data	for	Materials	Design
• BDEC2-14:	J.	Ahrens,	A	vision	for	a	validated	distributed	knowledge	base	of	material	behavior	at	
extreme	conditions	using	the	Advanced	Cyberinfrastructure	Platform

• BDEC2-15:	T.	Deutsch,	Digital	transition	of	Material	Nano-Characterization.
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Comments	on	Control,	Simulation,	Data,	ML	Integration
• Simulations often involve outside Data but always inside Data (from 

simulation itself). Fields covered include Materials (nano), Climate, 
Weather, Biomolecular, Virtual tissues (no use case written up)

• We can see ML wrapping simulations to achieve many goals. ML replaces 
functions and/or ML guides functions

• Initial Conditions
• Boundary Conditions
• Data assimilation
• Configuration -- blocking, use of cache etc. 
• Steering and Control
• Support multi-scale
• ML learns from previous simulations and so can predict function calls

• Digital Twins are a commercial link between simulation and systems
• There are fundamental simulations covered by laws of physics and growingly 

Complex System simulations with Bio (tissue) or social entities.
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BDEC2	Use	Cases	III:	Edge	Computing
• Smart	City	and	Related	Edge	Applications
• BDEC2-16:	P.	Beckman,	Edge	to	HPC	Cloud
• BDEC2-17:	G.	Ricart,	Smart	Community	CyberInfrastructure at	the	Speed	of	Life
• BDEC2-18:	T.	El-Ghazawi,	Convergence	of	AI,	Big	Data,	Computing	and	IOT	(ABCI)-
Smart	City	as	an	Application	Driver	and	Virtual	Intelligence	Management	(VIM)

• BDEC2-19:	M.	Kondo,	The	Challenges	and	opportunities	of	BDEC	systems	for	Smart	
Cities

• Other	Edge	Applications
• BDEC2-20:	A	Pothen,	High-End	Data	Science	and	HPC	for	the	Electrical	Power	Grid
• BDEC2-21:	J.	Qiu,	Real-Time	Anomaly	Detection	from	Edge	to	HPC-Cloud

There are correlated edge devices such as power grid and nearby vehicles 
(racing, road). Also largely independent edge devices interacting via 
databases such as surveillance cameras
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BDEC	Use	Cases	IV
• BDEC	Ecosystem
• BDEC2-22:	I	Foster,	Learning	Systems	for	Deep	Science
• BDEC2-23:	W.	Gao,	BigDataBench:	A	Scalable	and	Unified	Big	Data	and	AI	Benchmark	
Suite

• Image-based Applications
• One cross-cutting theme is understanding Generalized (light, sound, other 
sensors such as temperature, chemistry, moisture) Images with 2D, 3D 
spatial and time dependence

• Modalities include Radar, MRI, Microscopes, Surveillance and other 
cameras, X-ray scattering, UAV hosted, and related non-optical sensor 
networks as in agriculture, wildfires, disaster monitoring and Oil 
exploration. GIS and geospatial properties are often relevant
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NIST	Generic	Data	
Processing	Use	Cases

42



Digital	Science	Center

10	Generic	Data	Processing	Use	Cases
1) Multiple	users	performing	interactive	queries	and	updates	on	a	database	with	basic	availability	and	

eventual	consistency	(BASE	=	(Basically	Available,	Soft	state,	Eventual	consistency)	as	opposed	to	
ACID	=	(Atomicity,	Consistency,	Isolation,	Durability)	)

2) Perform	real	time	analytics	on	data	source	streams	and	notify	users	when	specified	events	occur
3) Move	data	from	external	data	sources	into	a	highly	horizontally	scalable	data	store,	transform	it	using	

highly	horizontally	scalable	processing	(e.g.	Map-Reduce),	and	return	it	to	the	horizontally	scalable	
data	store	(ELT	Extract	Load	Transform)

4) Perform	batch	analytics	on	the	data	in	a	highly	horizontally	scalable	data	store	using	highly	
horizontally	scalable	processing	(e.g MapReduce)	with	a	user-friendly	interface	(e.g.	SQL	like)

5) Perform	interactive	analytics	on	data	in	analytics-optimized	database	with	5A)	Science
6) Visualize	data	extracted	from	horizontally	scalable	Big	Data	store
7) Move	data	from	a	highly	horizontally	scalable	data	store	into	a	traditional	Enterprise	Data	Warehouse	

(EDW)
8) Extract,	process,	and	move	data	from	data	stores	to	archives
9) Combine	data	from	Cloud	databases	and	on	premise	data	stores	for	analytics,	data	mining,	and/or	

machine	learning
10) Orchestrate	multiple	sequential	and	parallel	data	transformations	and/or	analytic	processing	using	a	

workflow	manager
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Access	Pattern	
5A.	Perform	
interactive	
analytics	on	
observational	
scientific	data

44
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Polar	Grid

Lightweight	
Cyberinfrastructure	to	
support	mobile	Data	
gathering	expeditions	plus	
classic	central	resources	(as	
a	cloud)
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“The	Universe	is	now	being	explored	
systematically,	in	a	panchromatic	
way,	over	a	range	of	spatial	and	
temporal	scales	that	lead	to	a	more	
complete,	and	less	biased	
understanding	of	its	constituents,	
their	evolution,	their	origins,	and	
the	physical	processes	governing	
them.”

Towards	a	National	Virtual	
Observatory

Hubble	Telescope Palomar	Telescope

Sloan	Telescope

Tracking	the	Heavens
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Other	Use-case	Collections
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7	Computational	Giants	of	
NRC	Massive	Data	Analysis	Report	

1) G1: Basic	Statistics	e.g.	MRStat
2) G2: Generalized	N-Body	Problems
3) G3: Graph-Theoretic	Computations
4) G4: Linear	Algebraic	Computations
5) G5: Optimizations	e.g.	Linear	Programming
6) G6: Integration	e.g.	LDA	and	other	GML
7) G7: Alignment	Problems	e.g.	BLAST

http://www.nap.edu/catalog.php?record_id=18374 Big Data Models?
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• Linpack or	HPL:	Parallel	LU	factorization	
for	solution	of	linear	equations;	HPCG

• NPB version	1:	Mainly	classic	HPC	solver	kernels
• MG:	Multigrid
• CG:	Conjugate	Gradient
• FT:	Fast	Fourier	Transform
• IS:	Integer	sort
• EP:	Embarrassingly	Parallel
• BT:	Block	Tridiagonal
• SP:	Scalar	Pentadiagonal
• LU:	Lower-Upper	symmetric	Gauss	Seidel

HPC	(Simulation)	Benchmark	Classics

Simulation Models
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1) Dense	Linear	Algebra	
2) Sparse	Linear	Algebra
3) Spectral	Methods
4) N-Body	Methods
5) Structured	Grids
6) Unstructured	Grids
7) MapReduce
8) Combinational	Logic
9) Graph	Traversal
10) Dynamic	Programming
11) Backtrack	and	

Branch-and-Bound
12) Graphical	Models
13) Finite	State	Machines

13	Berkeley	Dwarfs
First	6	of	these	correspond	to	Colella’s original.	(Classic	
simulations)
Monte	Carlo	dropped.
N-body	methods	are	a	subset	of	Particle	in	Colella.

Note	a	little	inconsistent	in	that	MapReduce	is	a	
programming	model	and	spectral	method	is	a	numerical	
method.
Need	multiple	facets	to	classify	use	cases!

Largely	Models	for	Data	or	Simulation
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Classifying	Use	cases
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• The	Big	Data	Ogres	built	on	a	collection	of	51	big	data	uses	gathered	by	the	NIST	
Public	Working	Group	where	26	properties	were	gathered	for	each	application.	

• This	information	was	combined	with	other	studies	including	the	Berkeley	dwarfs,	
the	NAS	parallel	benchmarks	and	the	Computational	Giants	of	the	NRC	Massive	
Data	Analysis	Report.	

• The	Ogre	analysis	led	to	a	set	of	50	features	divided	into	four	views	that	could	be	
used	to	categorize	and	distinguish	between	applications.	

• The	four	views	are	Problem	Architecture	(Macro	pattern);	Execution	Features	
(Micro	patterns);	Data	Source	and	Style;	and	finally	the	Processing	View	or	
runtime	features.	

• We	generalized	this	approach	to	integrate	Big	Data	and	Simulation	applications	
into	a	single	classification	looking	separately	at	Data	and	Model with	the	total	
facets	growing	to	64	in	number,	called	convergence	diamonds,	and	split	between	
the	same	4	views.

• A	mapping	of	facets	into	work	of	the	SPIDAL	project	has	been	given.

Classifying	Use	Cases

52



Digital	Science	Center
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Convergence	Diamonds	and	their	4	Views	I
• One	view is	the	overall problem	architecture	or	macropatterns which	
is	naturally	related	to	the	machine	architecture	needed	to	support	
application.	

• Unchanged	from	Ogres	and	describes	properties	of	problem	such	as	
“Pleasing	Parallel”	or	“Uses	Collective	Communication”

• The	execution	(computational)	features	or	micropatterns view,	
describes	issues	such	as	I/O	versus	compute	rates,	iterative	nature	and	
regularity	of	computation	and	the	classic	V’s	of	Big	Data:	defining	
problem	size,	rate	of	change,	etc.

• Significant	changes	from	ogres	to	separate	Data	and	Model	and	
add	characteristics	of	Simulation	models.	e.g.	both	model	and	data	
have	“V’s”;	Data	Volume,	Model	Size

• e.g.	O(N2)	Algorithm	relevant	to	big	data	or	big	simulation	model
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Convergence	Diamonds	and	their	4	Views	II
• The	data	source	&	style view includes	facets	specifying	how	the	data	is	collected,	
stored	and	accessed.	Has	classic	database	characteristics

• Simulations	can	have	facets	here	to	describe	input	or	output	data
• Examples:	Streaming,	files	versus	objects,	HDFS	v.	Lustre

• Processing view has	model	(not	data)	facets	which	describe	types	of	processing	steps	
including	nature	of	algorithms	and	kernels	by	model	e.g.	Linear	Programming,	Learning,	
Maximum	Likelihood,	Spectral	methods,	Mesh	type,

• mix	of	Big	Data	Processing	View	and	Big	Simulation	Processing	View	and	includes	
some	facets	like	“uses	linear	algebra”	needed	in	both:	has	specifics	of	key	simulation	
kernels	and	in	particular		includes	facets	seen	in	NAS	Parallel	Benchmarks	and	
Berkeley	Dwarfs

• Instances	of	Diamonds	are	particular	problems	and	a	set	of	Diamond	instances	that	
cover	enough	of	the	facets	could	form	a	comprehensive		benchmark/mini-app set

• Diamonds	and	their	instances	can	be	atomic or	composite
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Programming	Environment	for	
Global	AI	and	Modeling	
Supercomputer	GAIMSC	

http://www.iterativemapreduce.org/
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Ways	of	adding	High	Performance	to	
Global	AI	(and	Modeling)	Supercomputer

• Fix	performance	issues	in	Spark,	Heron,	Hadoop,	Flink	etc.
• Messy	as	some	features	of	these	big	data	systems	intrinsically	slow	in	some	(not	all)	
cases

• All	these	systems	are	“monolithic”	and	difficult	to	deal	with	individual		components
• Execute	HPBDC	from	classic	big	data	system	with	custom	communication	
environment	– approach	of	Harp	for	the	relatively	simple	Hadoop	
environment

• Provide	a	native	Mesos/Yarn/Kubernetes/HDFS	high	performance	execution	
environment	with	all	capabilities	of	Spark,	Hadoop	and	Heron	– goal	of	
Twister2

• Execute	with	MPI	in	classic	(Slurm,	Lustre)	HPC	environment
• Add	modules	to	existing	frameworks	like	Scikit-Learn	or	Tensorflow either	as	
new	capability	or	as	a	higher	performance	version	of	existing	module.
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GAIMSC	Programming	Environment	Components	I
Area Component Implementation Comments: User API

Architecture 
Specification

Coordination Points
State and Configuration Management; 
Program, Data and Message Level

Change execution mode; save and 
reset state

Execution 
Semantics

Mapping of Resources to Bolts/Maps in 
Containers, Processes, Threads

Different systems make different 
choices - why?

Parallel Computing Spark Flink Hadoop Pregel MPI modes Owner Computes Rule

Job Submission (Dynamic/Static) 
Resource Allocation

Plugins for Slurm, Yarn, Mesos, 
Marathon, Aurora

Client API (e.g. Python) for Job 
Management

Task System

Task migration Monitoring of tasks and migrating tasks 
for better resource utilization 

Task-based programming with 
Dynamic or Static Graph API; 

FaaS API; 

Support accelerators 
(CUDA,FPGA, KNL)

Elasticity OpenWhisk

Streaming and 
FaaS Events

Heron, OpenWhisk, Kafka/RabbitMQ

Task Execution Process, Threads, Queues

Task Scheduling Dynamic Scheduling, Static Scheduling,
Pluggable Scheduling Algorithms

Task Graph Static Graph, Dynamic Graph 
Generation
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GAIMSC	Programming	Environment	Components	II
Area Component Implementation Comments

Communication 
API

Messages Heron This is user level and could map to 
multiple communication systems

Dataflow 
Communication

Fine-Grain Twister2 Dataflow 
communications: MPI,TCP and RMA

Coarse grain Dataflow from NiFi, Kepler?

Streaming, ETL data pipelines;

Define new Dataflow communication
API and library

BSP Communication
Map-Collective

Conventional MPI, Harp MPI Point to Point and Collective API

Data Access
Static (Batch) Data File Systems, NoSQL, SQL

Data API
Streaming Data Message Brokers, Spouts

Data 
Management Distributed Data Set

Relaxed Distributed Shared 
Memory(immutable data), 
Mutable Distributed Data

Data Transformation API; 

Spark RDD, Heron Streamlet

Fault Tolerance Check Pointing
Upstream (streaming) backup; 
Lightweight; Coordination Points; 
Spark/Flink, MPI and Heron models

Streaming and batch cases
distinct; Crosses all components

Security Storage, Messaging, 
execution

Research needed Crosses all Components
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• Harp-DAAL with	a	kernel	Machine	Learning	library	exploiting	the	Intel	node	library	DAAL	and	
HPC	communication	collectives	within	the	Hadoop	ecosystem.	

• Harp-DAAL	supports	all	5	classes	of	data-intensive	AI	first	computation,	from	pleasingly	parallel	to	machine	
learning	and	simulations.	

• Twister2 is	a	toolkit	of	components	that	can	be	packaged	in	different	ways
• Integrated	batch	or	streaming	data	capabilities	familiar	from	Apache	Hadoop,	Spark,	Heron	
and	Flink	but	with	high	performance.	

• Separate	bulk	synchronous	and	data	flow	communication;	
• Task	management	as	in	Mesos,	Yarn	and	Kubernetes
• Dataflow	graph	execution	models
• Launching	of	the	Harp-DAAL		library	with	native	Mesos/Kubernetes/HDFS	environment
• Streaming	and	repository	data	access	interfaces,	
• In-memory	databases	and	fault	tolerance	at	dataflow	nodes.	(use	RDD	to	do	classic	
checkpoint-restart)

Integrating	HPC	and	Apache	Programming	Environments
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Map Collective Run time merges MapReduce and HPC

allreducereduce

rotatepush & pull

allgather

regroup

broadcast

Run	time	software	for	Harp
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• Datasets:	5	million	points,	10	thousand	
centroids,	10	feature	dimensions

• 10	to	20	nodes	of	Intel	KNL7250	
processors

• Harp-DAAL	has	15x	speedups	over	Spark	
MLlib

• Datasets:	500K	or	1	million	data	
points	of	feature	dimension	300

• Running	on	single	KNL	7250	
(Harp-DAAL)	vs.	single	K80	GPU	
(PyTorch)

• Harp-DAAL	achieves	3x	to	6x	
speedups		

• Datasets:	Twitter	with	44	million	
vertices,	2	billion	edges,	subgraph	
templates	of	10	to	12	vertices

• 25	nodes	of	Intel	Xeon	E5	2670	
• Harp-DAAL	has	2x	to	5x	speedups	

over	state-of-the-art	MPI-Fascia	
solution	

Harp	v.	Spark																			Harp	v.	Torch												Harp	v.	MPI
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Twister2	Dataflow	Communications
• Twister:Net offers	two	communication	models
• BSP (Bulk	Synchronous	Processing)	message-level	communication	using	TCP	or	
MPI	separated	from	its	task	management	plus	extra	Harp	collectives

• DFW	a	new	Dataflow	library	built	using	MPI	software	but	at	data	movement	
not	message	level

• Non-blocking
• Dynamic	data	sizes
• Streaming	model

• Batch	case	is	modeled	as	a	finite	stream
• The	communications	are	between	a	set	of	
tasks	in	an	arbitrary	task	graph

• Key	based	communications
• Data-level	Communications	spilling	to	disks
• Target	tasks	can	be	different	from	source	tasks
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Latency	of	Apache	
Heron	and	Twister:Net
DFW	(Dataflow)	for	
Reduce,	Broadcast	and	
Partition	operations	in	
16	nodes	with	256-way	
parallelism

Twister:Net and	Apache	
Heron	and	Spark
Left:	K-means	job	execution	time	on	16	nodes	
with	varying	centers,	2	million	points	with	
320-way	parallelism.	Right:	K-Means	wth 4,8	
and	16	nodes	where	each	node	having	20	
tasks.	2	million	points	with	16000	centers	
used.
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Intelligent	Dataflow	Graph
• The	dataflow	graph	specifies	the	distribution	and	interconnection	of	
job	components

• Hierarchical	and	Iterative
• Allow	ML	wrapping	of	component	at	each	dataflow	node
• Checkpoint	after	each	node	of	the	dataflow	graph	

• Natural	synchronization	point
• Let’s	allows	user	to	choose	when	to	checkpoint	(not	every	stage)
• Save	state	as	user	specifies;	Spark	just	saves	Model	state	which	is	
insufficient	for	complex	algorithms

• Intelligent	nodes	support	customization	of	checkpointing,	ML,	
communication

• Nodes	can	be	coarse	(large	jobs)	or	fine	grain	requiring	different	
actions
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Dataflow	at	Different	
Grain	sizes

Reduce

Maps

Iterate

Internal	Execution
Dataflow	Nodes

HPC
Communication

Coarse	Grain	Dataflows	links	jobs	in	such	a	pipeline

Data	preparation Clustering
Dimension
Reduction

Visualization

But	internally	to	each	
job	you	can	also	
elegantly	express	
algorithm	as	dataflow	
but	with	more	
stringent	
performance	
constraints

• P	=	loadPoints()
• C	=	loadInitCenters()
• for	(int i =	0;	i <	10;	i++)	{
• T	=	P.map().withBroadcast(C)
• C	=	T.reduce()					}

Iterate

Corresponding	to	classic	Spark	K-means	Dataflow
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NiFi Coarse-grain	Workflow
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Futures	
Implementing		Twister2

for	Global	AI	and	Modeling	Supercomputer

http://www.iterativemapreduce.org/
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Twister2	Timeline:	
Current	Release	(End	of	September	2018)

• Twister:Net Dataflow	Communication	API
• Dataflow	communications	with	MPI	or	TCP

• Data	access
• Local	File	Systems
• HDFS	Integration

• Task	Graph
• Streaming	and	Batch	analytics	– Iterative	jobs
• Data	pipelines
• Deployments	on	Docker,	Kubernetes,	Mesos	(Aurora),	Slurm
• Harp	for	Machine	Learning	(Custom	BSP	Communications)

• Rich	collectives
• Around	30	ML	algorithms
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Twister2	Timeline:	January	2018
• DataSet API	similar	to	Spark	batch	and	Heron	streaming	with	Tset
realization	

• Can	use	Tsets for	writing	RDD/Streamlet	style	datasets

• Fault	tolerance	as	in	Heron	and	Spark
• Storm	API	for	Streaming
• Hierarchical	Dynamic	Heterogeneous	Task	Graph

• Coarse	grain and	fine	grain	dataflow

• Cyclic	task	graph	execution
• Dynamic	scaling	of	resources	and	heterogeneous resources	(at	
the resource	layer)	for	streaming	and	heterogeneous	workflow

• Link to	Pilot	Jobs

7112/29/18



Digital	Science	Center

Twister2	Timeline:	July	1,	2018
• Naiad	model	based	Task	system	for	Machine	Learning
• Native	MPI	integration	to	Mesos,	Yarn
• Dynamic	task	migrations
• RDMA	and	other	communication	enhancements
• Integrate	parts	of	Twister2	components	as	big	data	systems	enhancements	
(i.e.	run	current	Big	Data	software	invoking	Twister2	components)

• Heron	(easiest),	Spark,	Flink,	Hadoop	(like	Harp	today)
• Tsets become	compatible	with	RDD	(Spark)	and	Streamlet	(Heron)

• Support	different	APIs	(i.e.	run	Twister2	looking	like	current	Big	Data	
Software),Hadoop, Spark	(Flink), Storm

• Refinements	like	Marathon	with	Mesos	etc.
• Function	as	a	Service	and	Serverless
• Support	higher	level	abstractions

• Twister:SQL (major	Spark	use	case)
• Graph	API
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Conclusions
• Can	make	use	case	collections	to	motivate	benchmarks

• NIST	and	BDEC	have	templates
• Could	helpfully	fill	in	templates	for	benchmarks

• Research	applications	have	some	similarities	but	many	differences	
from	commercial	use	cases

• Increasing	importance	of	integration	of	simulation	and	Machine	
Learning

• Increasing	importance	of	distributed	Edge	applications
• Should	benchmark	dataflow	and	BSP	style	communication
• Twister2	will	combine	Heron	and	Spark	with	built	in	HPC	performance
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