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• Deep Learning is a sub-set of Machine 
Learning

– Most radical and revolutionary subset

• Deep Learning is going through a resurgence

– Model: Excellent accuracy for 
deep/convolutional neural networks

– Data: Public availability of versatile 
datasets like MNIST, CIFAR, and ImageNet

– Capability: Unprecedented computing 
and communication capabilities: Multi-
/Many-Core, GPGPUs, Xeon Phi, 
InfiniBand, RoCE, etc.

Overview of Deep Learning

Courtesy: http://www.zdnet.com/article/caffe2-deep-learning-wide-ambitions-
flexibility-scalability-and-advocacy/

MNIST handwritten digits Deep Neural Network

http://www.zdnet.com/article/caffe2-deep-learning-wide-ambitions-flexibility-scalability-and-advocacy/
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Trends of Deep Learning Systems

• Google TensorFlow

• Microsoft CNTK
• Facebook Caffe2
• PyTorch

• Google Search Trend (Dec 10, 2018)
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Big Data 
(Hadoop, Spark, 

HBase, 
Memcached, 

etc.)

Deep Learning
(Caffe, TensorFlow, BigDL, 

etc.)

HPC 
(MPI, RDMA, 
Lustre, etc.)

Increasing Usage of HPC, Big Data and Deep Learning on Modern 
Datacenters

Convergence of HPC, Big 
Data, and Deep Learning!

Increasing Need to Run these 
applications on the Cloud!!
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Drivers of Modern Data Center Architecture

• Multi-core/many-core technologies

• Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand, iWARP, RoCE, and Omni-Path)

• Single Root I/O Virtualization (SR-IOV)

• Solid State Drives (SSDs), NVMe/NVMf, Parallel Filesystems, Object Storage Clusters

• Accelerators (NVIDIA GPGPUs and FPGAs)

High Performance Interconnects –
InfiniBand (with SR-IOV)

<1usec latency, 200Gbps Bandwidth>
Multi-/Many-core 

Processors

Cloud CloudSDSC Comet TACC Stampede

Accelerators
high compute density, high 

performance/watt
>1 TFlop DP on a chip 

SSD, NVMe-SSD, NVRAM
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• BLAS Libraries – the heart of math 

operations

– Atlas/OpenBLAS

– NVIDIA cuBlas

– Intel Math Kernel Library (MKL)

• DNN Libraries – the heart of Convolutions!

– NVIDIA cuDNN

– Intel MKL-DNN

• Communication Libraries – the heart of 

model parameter updating

– MPI

– gRPC

– RDMA / GPUDirect RDMA

Modern Deep Learning System Architecture
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• Layers of DLoBD Stacks
– Deep learning application layer

– Deep learning library layer

– Big data analytics framework layer 

– Resource scheduler layer 

– Distributed file system layer 
– Hardware resource layer

• Where are the bottlenecks for deep 
learning jobs?

Example: Overview of DLoBD Stacks

Bottlenecks?
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• Stanford DAWNBench
– An open-source benchmark and competition for end-to-end deep learning training and inference

– End-to-end training time, cost, accuracy

– Support TensorFlow and PyTorch

– Various types of hardware, like GPU, CPU

– https://dawn.cs.stanford.edu/benchmark/

• Baidu DeepBench
– An open-source benchmark covering both training and inference 

– Performance of basic operations in neural network libraries 

– Determining the most suitable hardware for specific operations, and communicating requirements to 

hardware manufacturers 

– Various types of hardware, like GPU, CPU, mobile devices

– https://github.com/baidu-research/DeepBench

A Quick Survey on Current Deep Learning Bechmarks
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• Facebook AI Performance Evaluation Platform

– Compare Machine Learning or Deep Learning inferencing performance metrics on a set of models over 

different backends 

– Total execution time, error rate, and power consumption 

– Support Caffe2 and TFLite

– Various types of hardware, like GPU, CPU, DSP,  mobile devices

– https://github.com/facebook/FAI-PEP

• ICT BigDataBench 4.0

– A comprehensive Big Data and AI benchmark suite 

– Data motifs, which considers any Big Data and AI workload as a pipeline of one or more classes of 

computation units performed on different input data sets  

– Eight data motifs, including Matrix, Sampling, Logic, Transform, Set, Graph, Sort, and Statistic computation 

– Support TensorFlow and Caffe

– http://prof.ict.ac.cn/

A Quick Survey on Current Deep Learning Benchmarks (Cont.)
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• MLPerf: a synthetic benchmark suite for measuring the performance of software 
frameworks, hardware accelerators, and cloud platforms for machine learning 

• Fathom: a set of reference implementations of state-of-the-art deep learning models and has 
the ability to provide a quantitative analysis of the fundamental computational characteristics 
of these workloads 

• TensorFlow Benchmark: a selection of image classification models across multiple platforms 

• CortexSuite: a Synthetic Brain Benchmark Suite which classifies and identifies benchmarks by 
analogy to the human neural processing functions 

• BenchNN: a hardware-based neural network accelerator can be compatible with many of the 
emerging benchmarks for high-performance micro-architectures 

• DjiNN: an open infrastructure for providing Deep Neural Networks (DNN) as a service 

• Tonic: provides image, speech, and natural language processing applications that can have a 
common DNN backend 

Many Other Benchmarks
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• Current DL models and benchmarks are deep
learning research oriented.
• Example: Facebook caffe2 takes 1 hour to

train ImageNet data1

• System researchers just focus on improving
the computation and communication engine
of deep learning systems
• A fast benchmark that models deep learning

characteristics is highly desirable

• Understanding the cross-layer activities

Motivation

1. Goyal, Priya, et al. "Accurate, large minibatch SGD: training 
imagenet in 1 hour." arXiv preprint arXiv:1706.02677 (2017).

mailto:panda@cse.ohio-state.edu
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Case Studies - Characterizing and Benchmarking TensorFlow

• Standalone TensorFlow
• TensorFlow on Spark
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Overview of TensorFlow
Key Features: 
• Widely used for Deep Learning 
• Open source software library for numerical 

computation using data flow graphs
• Nodes in the graph represent mathematical 

operations
• Graph edges represent the multidimensional 

data arrays

• Flexible architecture allows to deploy 
computation to one or more CPUs or GPUs in a 
desktop, server, or mobile device

• Used by Google, Airbnb, DropBox, Snapchat, 
Twitter, and many other companies

• Communication and Computation intensive 

Before and After Usage of Distributed TF

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. 
Ghemawat, G. Irving, M. Isard et al., “TensorFlow: A System for Large-Scale 

Machine Learning.” in OSDI, vol. 16, 2016, pp. 265–283. 

Communication

Image courtesy: http://cs231n.stanford.edu/

mailto:panda@cse.ohio-state.edu
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Overview of Distributed Execution 

TensorFlow PS Architecture 

• Training variables are updated using 
aggregated gradients and deltas, 
represented as tensors

• Widely used approach for managing the 
training variables is Parameter Server

• Parameter Server (PS) owns the master 
copies of the variables

• Workers request for those variables 
when needed

• Workers compute (such as gradient 
updates) a new value of a variable, it 
sends an update to the PS

• Variable updates (tensor updates) are 
communication intensive
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Payload Distribution 
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Payload Distribution 

iovec Buffer Distribution Observed for TensorFlow training over 
gRPC 

• Profiled different CNNs
• Small, Medium and Large indicate 

buffers of few Bytes, KBytes and 
MBytes of length, respectively

• gRPC payload may contain a 
uniform distribution of such Small 
buffers 

• A lot of Large buffers and a few 
Small buffers may create a skew 
distribution of such buffers in one 
gRPC payload 
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TensorFlow DL Micro-benchmarks for gRPC 

Design Considerations for TF-
gRPC-Bench Micro-benchmark 

R. Biswas, X. Lu, and D. K. Panda, Designing a 
MicroBenchmark Suite to Evaluate gRPC for 
TensorFlow: Early Experiences, BPOE-9, 2018.
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Design of TF-gRPC-Bench Micro-benchmark Suite 

TF-gRPC-Bench Deployment

• Deploys in Parameter Server architecture to 
exactly model the distributed TensorFlow 
communication pattern

• Three different benchmarks to measure –
• Point-to-Point latency
• Point-to-Point Bandwidth
• Parameter Server Throughput

• Supports both serialized and non-serialized 
mode of payload transfer

• Written using gRPC’s C++ language binding 
API’s

• Uses gRPC’s core C APIs directly  to avoid any 
serialization overhead

• Payload generation Schemes:
• Uniform 
• Random
• Skew
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Experimental Setup

• We have used two different clusters

• Software Stack used

A: OSU-RI2-IB-EDR B: SDSC-Comet-IB-FDR 

qIntel Broadwell, dual fourteen-core processors qIntel Haswell, dual twelve-core processors 

q512 GB RAM q128 GB RAM

q370 GB Local NVMe-SSD q320 GB Local SSD

qInfiniBand EDR qInfiniBand FDR

Stack Version Cluster

gRPC 1.5.0 A, B

AR-gRPC (OSU 
RDMA gRPC)1

Based on 1.5.0 A, B

TensorFlow 1.4 , Python 2.7 A

1. R. Biswas, X. Lu, and D. K. Panda, 

Accelerating TensorFlow with Adaptive 

RDMA-based gRPC. HiPC’18.
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TF-gRPC-P2P-Bandwidth 
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Cluster A Cluster B

• Cluster A: RDMA gRPC achieves a 2.14x bandwidth increase compared to IPoIB and Ethernet.

• Cluster B: RDMA achieves 3.2x bandwidth compared to IPoIB for skewed data. 
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Point-to-Point Latency 
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gRPC Point-to-Point Latency Evaluation on Cluster B 

• AR-gRPC reduces 32 Bytes latency by 60%
• Shows a speedup of about 2.5x and 4.1x for 64 KBytes and 1 MBytes payload, respectively
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Performance Comparison in Fully-Connected Architecture 
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Performance Comparison in Fully-Connected Architecture of gRPC on Cluster B 

• AR-gRPC achieves 60% reduction in average latency.
• Obtains throughput speedup of about 2.68x for 4 Mbytes payload.
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Evaluation of TensorFlow: Inception4
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• AR-gRPC improves TensorFlow performance by a maximum of 29%, 80%, and 144% compared to default gRPC 
on  4, 8, and 12 nodes, respectively
• For example: Improvement of 80% (93 vs 51 images) for batch size 16/GPU (total 176) on 12 nodes

• AR-gRPC process a maximum of 27%, 12%, and 31% more images than Verbs channel
• AR-gRPC outperforms MPI channel by a maximum of 29%, 151%, and 228% for 4, 8, and 12 nodes

Inception4 Evaluation on Cluster A (Higher Better); TotalBatchSize = (BatchSize/GPU)×NUMofGPUs

4 Nodes 8 Nodes 12 Nodes
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Evaluation of TensorFlow: Resnet152
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Resnet152 Evaluation on Cluster A (Higher Better); TotalBatchSize = (BatchSize/GPU)×NUMofGPUs

• AR-gRPC accelerates TensorFlow by 62% (batch size 8/GPU) more compared to default gRPC on 4 nodes 

• AR-gRPC improves Resnet152 performance by 32% (batch size 32/GPU) to 147% on 8 nodes
• AR-gRPC incurs a maximum speedup of 3x (55 vs 18 images) compared to default gRPC 12 nodes

• Even for higher batch size of 32/GPU (total 352) AR-gRPC improves TensorFlow performance by 82% 12 nodes

• AR-gRPC processes a maximum of 40%, 35%, and 30% more images, on 4, 8, and 12 nodes,  respectively, than Verbs 

• AR-gRPC achieves a maximum speedup of 1.61x, 3.3x and 4.5x compared to MPI channel on 4, 8, and 12 nodes, 
respectively

4 Nodes 8 Nodes 12 Nodes
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Case Studies - Characterizing and Benchmarking 
TensorFlow

• Standalone TensorFlow
• TensorFlow on Spark
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• Spark Executors acting as containers 
used to run TensorFlow code

• Two different modes to ingesting data
– Read data directly from HDFS using 

built-in TensorFlow modules 
– Feeding data from Spark RDDs to Spark 

executors (TensorFlow core)
• Scalable and Communication intensive
– Parameter Server-based approach

– Embedded inside one Spark executor and 
talk to other workers over gRPC or gPRC
with RDMA

– Out-of-band communication

Overview of TensorFlowOnSpark
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Performance Characterization for IPoIB and RDMA with 
TensorFlowOnSpark (IB EDR)

• RDMA outperforms IPoIB by 33% for 8 GPUs in training CIFAR-10 model. However, in 
training MNIST, RDMA is 4.9% faster for 2 GPUs and worse than IPoIB for 4 GPUs

• The default RDMA design in TensorFlowOnSpark is not fully optimized yet. For MNIST 
tests, RDMA is not showing obvious benefits
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• SoftMax Regression model, over MNIST 
dataset 

• Up to 15.5% time in Apache Hadoop
YARN scheduler layer 

• Up to 18.1% execution time in Spark job 
execution layer 

• Data size is small, so we do not count 
the time spent on accessing HDFS layer. 

• Need more effort to reduce the 
overhead across different layers of 
DLoBD stacks

• Maybe amortized in long-running deep 
learning jobs

Performance Overhead across Layers in DLoBD Stacks
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X. Lu, H. Shi, R. Biswas, M. H. Javed, and D. K. Panda, DLoBD: A Comprehensive 
Study of Deep Learning over Big Data Stacks on HPC Clusters. TMSCS’18.
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• Deep Learning community needs system perspective benchmarks to understand the
complex executions in deep learning stacks, like TF and TF-on-Spark

• Such benchmarks should also be able to help system design and optimization

• Early experience with TF-gRPC-Bench

– Measures Point-to-Point latency, Point-to-Point bandwidth, and Parameter Server
throughput that models the distributed TensorFlow communication pattern

– Supports gRPC workload generation that captures the TensorFlow deep learning workload
characteristics

• More bottlenecks in DLoBD stacks and lack of benchmarking tools

• Future Work

– Designing more generic and highly optimized DL Stacks and Benchmark Suites

Concluding Remarks and Future Work
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Q & A
Thank You!


