

The Vision Behind MLPerf (mlperf.org):

An ML Benchmark Suite for ML Software Frameworks and ML Hardware Accelerators in ML Cloud and Edge Computing Platforms

2018 International Symposium on Benchmarking, Measuring and Optimizing

December 11th, 2018

Prof. Vijay Janapa Reddi

(representing the viewpoints of many, many, people in MLPerf)

"<u>A New Golden Age for Computer Architecture</u>: **Domain-Specific Hardware/Software Co-Design**, Enhanced Security, Open Instruction Sets, and Agile Chip Development"

John Hennessy and David Patterson

"A New Golden Age in Computer Architecture: Empowering the Machine-Learning Revolution"

Jeff Dean, David Patterson, Cliff Young

Relative Number of ML Arxiv Papers to 2009

The (Rapid) Rise of ML

ML Arxiv Papers

- The number of ML papers published Arxiv each year is growing exponentially
- The pace of growth is on par and if not exceeding the rate of Moore's Law scaling

Al to Compute: 300,000x Increase in Compute

"... since 2012 the amount of compute used in the largest AI training runs has been increasing exponentially with a 3.5 month-doubling time (by comparison, Moore's Law had an 18-month **doubling period**). Since 2012, this metric has grown by more than 300,000x (an 18-month doubling period would yield only a 12x increase). Improvements in compute have been a key component of AI progress, so as long as this trend continues, it's worth preparing for the implications of systems far outside today's capabilities."

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

Source: https://blog.openai.com/ai-and-compute/

Deep Learning has Reinvigorated Hardware

 $GPUs \Rightarrow AlexNet, Speech.$

TPUs ⇒ Many Google applications: AlphaGo and Translate, WaveNet speech.

 \rightarrow Rapidly fueling the renaissance of the hardware industry, including startups

The New York Times

Big Bets on A.I. Open a New Frontier for Chip Start-Ups, Too

By Cade Metz

Jan. 14, 2018

8

Today, at least 45 start-ups are working on chips that can power tasks like speech and self-driving cars, and at least five of them have raised more than \$100 million from investors. Venture capitalists invested more than \$1.5 billion in chip start-ups last year, nearly doubling the investments made two years ago, according to the research firm CB Insights.

How do we **compare** the hardware?

How do we compare the hardware, today?

Answer is "surprisingly badly."

- Example: single-benchmark measurement of throughput
 - Synthetic training data
 - Measure performance, ignoring accuracy
- Poor reproducibility
 - No means to effectively reproduce the same results
 - Hard to compare numbers across different models, inputs and datasets
- "ResNet-50" is not a precise specification, but it's what everyone reports.

How do we **design** better hardware?

How do we design better hardware? More MACS?!

- Model performance cannot be evaluated using raw hardware performance (MACs)
- Model latency varies across different levels of MAC capability
- Latency ultimately impacts or dictates the experience

The Three Cornerstones for ML Performance

ML Model (Inception, MobileNets etc)

Inference Engine (TFLite, CoreML, vendor-specific SW toolchains)

14

ML Hardware Accelerators (TPU, Huawei NPU, etc)

Agenda

- Why ML needs a benchmark suite?
- Are there lessons we can borrow?
- What is MLPerf?
 - How does MLPerf curate a benchmark?
 - What is the "science" behind the curation?
 - Where are we heading now?
- What comes next for MLPerf?

Are there lessons we can borrow?

Are there lessons we can borrow? Yes!

A1: Look to successful history in benchmark suites: **SPEC** and **TPC**.

A2: Draw on experiences of those who have done ML benchmarking.

SPEC Impact

18

- Settled **arguments in the marketplace** (grow the pie)
- Resolved internal **engineering debates** (better investments)
- **Cooperative** ⇒ nonprofit Corporation with 22 members
- **Universities** join at modest cost and help drive innovation
- Became **standard** in marketplace, papers, and textbooks
- Needed to revise regularly to maintain usefulness: SPEC89, SPEC92, SPEC95, SPEC2000, SPEC2006, SPEC2017

Coincides with (caused?) the Golden Age of microprocessors...

Can we start a new Golden Age for ML Systems?

Agenda

20

What is MLPerf?

- How does MLPerf curate a benchmark?
- What is the "science" behind the curation?
- Where are we heading now?
- What comes next for MLPerf?

Growing Number of Supporting Organizations

CAlibaba Group		arm	Bai de 百度	cādence°	(cerebras	cisco	•	500+ discussion
Alibaba	AMD	Arm	Baidu	Cadence	Cerebras	Cisco		group members
	$\frac{d\vec{v}}{dt}$	()Enflame	Esperanto Technologies	Google	groq	HUAWEI	٠	Researchers from 7 institutions
Cray	Dividiti	Enflame Tech	Esperanto	Google	Groq	Huawei		7 1115(1(0)115
(intel) Al	медитек	A Servers Buchers	MYTHIC	NetApp		One Convergence	•	28+ Companies
Intel	MediaTek	Mentor Graphics	Mythic	NetApp	NVIDIA	One Convergence		
rpa2ai	SambaNova	SAMSUNG Exynos	D SIG OPT	Synopsys [.]	TENSYR driving diployment	COMPUTING		
21 ^{Rpa2ai}	Sambanova	Samsung S.LSI	Sigopt	Synopsys	Tensyr	Wave Computing		MLPerf

Supporting Research Institutions

Stanford ENGINEERING

Cockeel School of Engineering

Harvard University Stanford University

University of University of Arkansas, Littlerock California, Berkeley

University of Minnesota University of Texas, University of Toronto Austin

MLPerf Goals

- Accelerate progress in ML via **fair and useful measurement**
- Serve both the **commercial and research communities**
- **Encourage innovation** to improve the state-of-the-art of ML
- **Enforce replicability** to ensure reliable results
- Use **representative workloads**, reflecting production use-cases
- Keep **benchmarking affordable** (so that all can play)

MLPerf Philosophy: Agile Benchmark Development

- Rapidly iterate the benchmark suite
 - Remain relevant in the very fast moving machine learning field
 - Correct inevitable mistakes during the fast-paced benchmark formulation
 - Scale problems to match faster hardware, and better systems
- At least initially, revise annually? MLPerf18, MLPerf19, ...
- Like SPEC, have quarterly deadlines and then publish searchable results

Agile Benchmarking (**Training**) Timeline (in 2018)

- May First general meeting
- June Added benchmarks (volunteers!)
- JulyChartered working groups:
On-premise, Cloud, Submitters, special topics
- AugustWGs report solid progress; inference WG chartered
- September More WG progress
- **October** First v0.5 submissions, with review period

November First results submissions!

26 December MLPerf results discussion (December 13th)

Agile Benchmarking (Inference) Timeline (in 2018)

June Proposed an inference benchmark suite

- July Gathered the important ML tasks to consider for inclusion
- August WG sanctions the tasks to generate implementations
- **September** Discussions on the models, datasets and metrics
- **October** Discussions on power and performance measurement
- **November** Code development and specification refinement

December Code drops coming in (as we "speak")

Agenda

- What is the "science" behind the curation?
- Where are we heading now?
- What comes next for MLPerf?

Bootstrapping MLPerf 0.5v Training Effort

- Gathered researchers
 - Baidu (DeepBench)
 - Google (TF benchmarks)
 - Harvard (Fathom)
 - Stanford (DAWNBench)
- Combined the best parts from all of our experiences
- Planned to cover both training and inference; initial focus on **training**

MLPerf Training Benchmarks 0.5v

30

Task	Model	Dataset
Image Classification	ResNet-50	ImageNet
Object Detection	Mask-RCNN SSD	MS-COCO 2017
Translation	Google NMT Transformer	WMT16 WMT17
Recommendation	Neural Collaborative Filtering	MovieLens ml-20m
Reinforcement Learning	Minigo	NA
Speech Recognition	DeepSpeech2*	Librispeech

LPerf

M

Toward the Definition of a ML Inference Task

• Task description

• An overview of the ML task

• Dataset

 A set of inputs and the corresponding ground-truth outputs. The dataset associated with a task also prescribes the input/output data format for the task

• Quality metric

31

 A measure of the model's quality/accuracy that is calculated using the ML task's output(s), the ground-truth output(s) from the dataset and a loss function

Task	Task Description	Dataset	Quality metric	Sample Apps
Recognition	Classify an input into one of many categories. Alternatively, generate a high dimensional embedding that can be used for recognition	Imagenet/COCO Input: RGB image of size XX x YY Output: label index	Top-1 error rate	Face authenticati on, Music recognition

MLPerf Cloud Inference

ML Tasks	Owner	Framework	Model	Dataset	
Image Classification	Guenther	TF and ONNX	Resnet50 1.5v	ImageNet	
Object Detection	Itay Hubara ihubara@habana.ai/ christine.cheng@intel.com	PyTorch	(1) VGG16 (2) SSD-MobileNet	MS-COCO	
Speech Recognition	Gennady/Anton	PyTorch	DeepSpeech2	Librispeech	
Machine Translation	rohit.kalidindi@intel.com	Tensorflow	 (1) GNMT http://download.tensorflow.org/mo dels/nmt/10122017/deen_gnmt_ model_4_layer.zip (2) transformer 	WMT16	
Recommendation	adselvar@cisco.com , manasa.kankanala@intel. com	PyTorch	Neural Collaborative Filtering	MovieLens 20M	
Text (e.g. Sentiment) Classification	Itay Hubara ihubara@habana.ai	PyTorch	seq2-CNN	IMDB	
Language Modeling	gregdiamos@baidu.com	TF	https://github.com/tensorflow/mod els/tree/master/research/lm_1b	(1) 1 billion words(2) Amazon reviews	
Text To Speech	Amit Bleiweiss amit.bleiweiss@intel.com	Caffe2	WaveNet	LJSpeech	
3Z		N/A	MaskRCNN	0000	

MLPerf Edge Inference

ML Tasks	Owner	Framework	Model	Dataset			
Image Classification	(1) Anton (2) Fei and Mejia, Andres <andres.mejia@intel.com></andres.mejia@intel.com>	(1) TF-Lite (2) Caffe2/ONNX	 (1) MobileNets-v1.0 224?? (2) ShuffleNet (https://s3.amazonaws.com/download. onnx/models/opset_6/shufflenet.tar.gz) 	ImageNet			
Object Detection	(1) Yuchen (yuchen.zhou@gm.com) (2) Scott Gardner (MN)/ christine.cheng@intel.com	(1) TF (2) TF-Lite	(1) SSD-ResNet50 (2) SSD-MobileNetsV1	(1) VOC (2) COCO			
Speech Recognition	Scott Gardner	TF	DeepSpeech1 (Mozilla)	(1) Librispeech(2) "noisy" validation			
Machine Translation	rohit.kalidindi@intel.com	Tensorflow	GNMT http://download.tensorflow.org/models/ nmt/10122017/deen_gnmt_model_4_la yer.zip	WMT16			
Text To Speech			WaveNet				
Face Identification	David Lee <david.lee@mediatek.com></david.lee@mediatek.com>	TF-Lite	SphereFace	LFW			
Image Segmentation	Carole Wu/Fei Sun <carolejeanwu feisun@fb.com=""></carolejeanwu>	Caffe2/ONNX	MaskRCNN2Go	сосо			
33 Imaga Enhancement	obvioting abong@intol.com	Tensorflow based on https://github.com/tenso	SRGAN (https://github.com/tensorlayer/srgan/re				

MLPerf Cloud/Edge Inference Matrix

Agenda

- Are there lessons we can borrow?
- What is MLPerf?
 - - How does MLPerf curate a benchmark?
 - What is the "science" behind the curation?
 - Where are we heading now?
- What comes next for MLPerf?

Toward a Unified Metric: Performance and Quality

- **Performance**: how fast is a model for training, inference?
- **Quality**: how good are a model's predictions?

Important for benchmark to capture **both** performance and quality

Performance and Quality Aren't Always Correlated

Training

- End-to-end training of a ResNet56 CIFAR10 model
- Nvidia P100 machine with 512 GB of memory and 28 CPU cores
- TensorFlow 1.2 compiled from source with CUDA 8.0 and CuDNN 5.1

Training Metric: Time to reach quality target

- Quality target is *specific for each benchmark* and *close to state-of-the-art* Opdated w/ each release to keep up with the state-of-the-art
- Time includes preprocessing, validation over median of 5 runs
- Available: reference implementations that achieve quality target

Performance and Quality Aren't Always Correlated

Inference

- For a given latency target, you can achieve different levels of model quality
- Possible to trade-off model accuracy with complexity
- Model performance (inference/s) is insufficient

ps://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html

Performance and Quality Aren't Always Correlated

Inference

- For a given latency target, you can achieve different levels of model quality
- Possible to trade-off model accuracy with complexity
- Model performance (inference/s) is insufficient

https://arxiv.org/pdf/1801.04381.pdf

What start/ends do we measure and why?

On-Device OCR: A case study

		La	$\mathcal{P}_{\mathcal{C}}$	títe Maisor
Starters	Hors D'Oeuvres		Hulters Polage Docade Bouilla Quiche Tyrbol Orenad Vachen Ratato Hors d Grenou Moules	en rage glocae du Sor marinte, cresson basee au Rouguefort et aux Poreae out au plat In de venu au auxdor en contemporain alle ceuvre du Sor des a la Provencei
	Entree	S	Les Entrees	Lamb Noisette Lamb Noisette Pole Dive Taperu Filet Mignon a la Bo Poulet Chasseur Vesu Braise a la Pro Vesu Braise a
Goog	gle Lens			•

<u>PhotoOCR</u> Normalized Performance (CPU only)

• Sparse

• Dense

Total Inference and Total Non-Inference

PhotoOCR Task Breakdown

Detection

47

Recognition

Do we account for pre- and post-processing times in the inference run test?

MLPerf Challenges

Cloud (Training E.g.)

- Hyperparameters
- Scale
- Power
- Cost
- Variance
- On-premise vs. cloud
- ...

48

Edge (Inference E.g.)

- Quantizations
- Sparsity
- Pruning
- Scores
- Variance
- Power
- ...

Agenda

- Are there lessons we can borrow?
- What is MLPerf?
 - - How does MLPerf curate a benchmark?
 - What is the "science" behind the curation?
 - Where are we heading now?
- What comes next for MLPerf?

Where are we heading now?

- First version: **reference** code, in two frameworks, of each benchmark.
- Resolving or controlling the **variance** issues.
- Working on the **inference** suite.

50

• Getting to **governance**, and an umbrella organization.

Reference Implementations \rightarrow Call for Submissions

Closed division

submissions

- Requires using the specified model
- Limits overfitting
- Enables apples-to-apples comparison
- Simplifies work for HW groups

Open division submissions

- Open division allows using any model
- Encourages innovation
- Ensures Closed division does not stagnate

Agenda

- What is the "science" behind the curation?
- Where are we heading now?
- What comes next for MLPerf?

Agenda

Concluding thoughts...

Recap of "The Vision Behind MLPerf"

- Machine Learning needs benchmarks!
- Goals: agility, both research and development, replicability, affordability
- MLPerf Training: v0.5 deadline was in November
- MLPerf Inference is under construction
 - Inference workload suite under development
 - Q1 reference implementations finalized

58

• Q2/3 solicit inference result submissions"

(for rapid iteration to work, we need good input!)

MLPerf needs your help!

- Join the discussion community at MLPerf.org
- Help us by joining a working group: Cloud scale, on-premises scale, submitters, special topics, inference. Help us design submission criteria, to include the data you want
- Propose new benchmarks and data sets
- Submit your benchmark results!

More at MLPerf.org, or contact info@mlperf.org

Acknowledgements

Peter Mattson

Cliff Young

David Patterson

Greg Diamos

Carole-Jean Wu

... and countless other working group members!

Thank You

