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Why	Benchmarking?

“To	Measure	Is	To	Know”
-- William	Thomson	(Lord	Kelvin)
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We	have	an	implementation
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But,	what	if	…
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Why	SpMV?
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SpMV:	Sparse	matrix-vector	multiplication

Given	a	sparse	m×n matrix	A	and	an	dense	n×1	vector	x:	

y	=	A	� x:	

=

A x y
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SpMV Application	Scenarios
n HPC

n Various	linear	algebra	algorithms:	CG	(Conjugate	
Gradients)	…

n Graph	Computing
n Page	Rank,	BFS,		etc.

n CNN
n Convolution		
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Factors	important	to	SpMV performance
n Characteristics	of	the matrix

n Data scale
n Sparsity
n Sparse Pattern

n SpMV Methods
n CSR, CSC, DIA, COO, CSR5, CVR, ELL, ESB, Merge … (dozens)
n Parallelization, Vectorization, Blocking …

n Platform
n X86, ARM, GPU …
n Different architecture design impact the final performance a lot.How to locate the best SpMV method for a given

sparse matrix on a specific architecture?



Bench’18 @	Seattle,	WA,	USA

Benchmarking	Methodology
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Sparse Matrix (Data	Set)
n Sparse Matrix

n 1,500+	sparse	matrices	from	UFL (discard small	matrices)
n Various sparse patterns and data scales

Wikipedia	-Talk Web-Google

higgs-Twitter Amazon-0312

Cantilever

EconomicsASIC-
100k

Wind	Tunnel

Ga41As41H72
Circuit5M
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SpMV Methods
n SpMV algorithms:

n 27 SpMV implementations.
n From high-quality research	(ICS, SC, CGO …)
n From commercial/open-source packages
n Widely	used	(CSR, COO …)

CSR: By rows
CSC: By columns
BSR: By blocks
DIA: By diagonals
CVR: By multi-rows
ELL: By blocks & rows
… …
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Platforms	(Architectures)
n Architecture	(Many-core)

n Representative many-core architectures: Intel Xeon Phi,	GPGPU
n Much different architecture design:

• Intel Xeon Phi: Knights Landing, CMP+ SIMD
• GPGPU: NVidia Tesla M40, SIMT
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Performance	on	CPU
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Performance	on	CPU	(Continued)
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Observations	on	CPU

n CSR,	IE,	CSR5	and	CVR,	show	good	performance	on	
both	small	and	large	sparse	matrices	with	various	
sparse	patterns.

n COO,	CSC,	and	DIA,	which	are	widely	used	in	real-
world	scenarios,	show	much	poorer	performance.

n BSR,	ESB-d	and	ESB-s	are	sensitive	to	the	
sparse	patterns
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Performance	on	GPU
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Observations	on	GPU

n BSR,	HYB,	ELL	and	DIA	are	sensitive	to	the	
sparse	patterns

n Merge	method	is	stable	and	insensitive	to	
sparse	patterns



@	Seattle,	WA,	USABench’18

Best Methods Distribution
n No single SpMV method is suitable for all sparse matrices
n Some methods show much better performance than others

CPU GPU



@	Seattle,	WA,	USABench’18

Optimal	Methods Distribution
n On Phi:

n CVR and CSR5 are	the	optimal	for more than 84% data	sets

n On GPU:
n The	optimal method is quite scattered. CSR5 occupies 56%.
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Sub-optimal
n Sub-optimal	methods:

n Slightly worse than the best performance
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n Xeon Phi:
n CVR is the best on more than 82% matrices with less than
20% performance loss	to	the	optimal.

n Widely used SpMV methods, like CSR, CSC,	COO, DIA is not
as good as expected.
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n Tesla:
n CSR5 achieves sub-optimal	on 65% sparse matrices with less
than 20% performance loss.

n ELL and its derivative	show modest performance
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Correlation Analysis
n Correlation :

n Analyze the correlation between SpMV performance and
the features(data scale,	sparse pattern and etc.)

n Pearson	correlation	coefficient	range	-1	to	1:
• 1:	positive	linear	correlation,	
• 0:	no	linear	correlation,	
• −1:	total	negative	linear	correlation
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Correlation Analysis
n Data scale:

n With the number of non-zero elements increasing, the performance of
most SpMV methods increase.
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Correlation Analysis
n Density:

n Most SpMV methods show lower throughput when the matrix is
sparser.
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Conclusion
n Three factors:

n Sparse matrix: sparse pattern, data scale …
n SpMV method: parallelization, vectorization, blocking…
n Hardware platform: Xeon Phi, GPGPU …

n Taking away:
n Certain	methods	can	achieve	good	performance	for	most	data	sets
n Some widely used methods, i.e.,	CSR, CSC,	are	not	as	good	as	

emerging	ones
n For most SpMV methods, sparser matrix results in lower throughput

n Open-source	project:
n https://github.com/puckbee/pava: a benchmarking framework,	which	

supports	almost all SpMV methods on Intel Xeon Phi and GPGPU.	
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More	result	in	the	paper

Coming	soon…



@	Seattle,	WA,	USABench’18

Thanks!
Q&A
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Slides	for	Defending


