Paper #/
MLHarnessA Scalable Benchmarking SysteniMbCommons

Yen-Hsiang Chang?, Jianhao Pu?, Wen-mei Hwu?, Jinjun Xiong!?
lUniversity of lllinois at Urbana-Champaign, 2University at Buffalo
11/01/2021

cognitive computing
systems research

0C
g)n center for
O

I=ES | I ILLINOIS

Overview

v

A Background and Challenge
A Our Solution -- MLHarness
A Experimental Results i Case Studies

C3SR

cognitive computing

== | I ILLINOIS

Background

A Machine learning (ML) and deep learning (DL) innovations are being
developed In a rapid pace.

A Different people have different needs:

Model Builder System Developer User

A Analyze and A Identify and solve A Choose models
optimize model, bottlenecks on a and systems under
and publish complex system a fair comparison.
repeatable results. across hardware

and software
stacks.

center for 3
cognitive computing
systems research

== | I ILLINOIS

C3SR

Challenge

1. Analyzing ML/DL innovations
2. Sharing ML/DL innovations
3. Reporting fair benchmarking results

C3SR

cognitive computing

== | I ILLINOIS

Existing Approach

A ML/DL model zoos
I TorchVision, ONNX Model Zoo, GluonCV
A Collections of reproducible components
I CloudOps, MLOps
A Plug-and-play shareable containers
I MLCube

A Benchmarking platforms simulating scenarios
I MLCommons Inference

A Profilers capturing specific stacks
I CUDA Profiling Tools Interface

C3SR

cognitive computing

=== | I ILLINOIS

Our Solution- MLHarness

A MLHarness is built on top of two existing solutions: MLCommons Inference
and MLModelScope.

MLCommons Inference MLModelScope
A Properly defined metrics with scenarios A Shareable exchange specification
A Fair benckmarking methodologies A Across stack profiling

center for 6
cognitive computing
systems research

C3SR

== | I ILLINOIS

Our Solution-MLHarness

A MLHarness extracts advantages from MLCommons Inference and
MLModelScope and has the following features:
I Codifying required benchmarking environments
I Reporting metrics defined by MLCommons Inference
I Supporting across stack profiling functionality from MLModelScope
I Awide range of models

C3SR

=== | I ILLINOIS

cognitive computing

Encapsulatig MLModelScope

/ Function Wrappers \

[Initialize } [Finalize } [IssueQueryJ

[LoadQuerySamples MUnIoadQuerySamples}

MLCommons Inference in Python
1

Interfaces
[ConstructSUT] [DestroySUT]

I Go Function Calls

[LoadQuerySamples] [UnlnadQuerySamplas] MLModelScope Runtime
[QuerySamplesComplete] [Tracer] [Profiler] [Database]

.

[Framework] [Model] [Dataset]

\MLModeIScope in Go

As C shared Library

center for 8
cognitive computing
systems research

== | I ILLINOIS

C3SR

name: MLPerf_BERT # model name
version: 1.0.0 # semantic version of the model
framework: # framework information

name: PyTorch

version: '>=1.5.0' # framework version constraint

Extending Specification i e

element_type: string
outputs: # model outputs
’ - type: text # output modality

A MLCommons Inference supports few models.

model: # model sources
graph_path: https://.../bert.pt

A MLModelScope supports computer vision tasks.

preprocess: |
from transformers import BertTokenizer

A MLHarness extends MLModelScope's ort ey 5 1
specification to include customized o e
pre and postprocessing so that MLHarness e
can easily support a wide range of models. e o _oxampls_to_fetures(...»

features = []
tokenizer = BertTokenizer(...)

class InputFeatures(object):

examples = read_squad_examples(...)
convert_examples_to_features(features, examples, tokenizer, ...)
def preprocess(ctx, data):
cur = features[int(data)]
return cur.input_ids, cur.input_mask, cur.segment_ids
postprocess: |
import numpy as np
import json
def postprocess(ctx, data):
res = np.stack([data[@], data[1]], axis = -1).squeeze(@).tolist()
return [json.dumps(res)]

C3SR

center for 9 S = 5= ILLINOIS
cognitive computing T —— ! —

systems research

Preprocessing and Postprocessing

A Need to run Python functions from Go.

A Embed Python interpreter into Go, with the help of cgo from Go and ctypes
module in Python.

func Processing(tensor interface{}, functionName string) interface{} {
pyData := MoveDataToPythonInterpreter(tensor)
pyFunc := FindTheProcessingFunctionByItsName(functionName)
pyResult := ExecuteProcessingFunction(pyFunc, pyData)
result := GetResultFromPythonInterpreter(pyResult)
return result

C3SR

center for 10
cognitive computing
systems research

= | X ILLINOIS

Data movement between languages

A Data movement is expensive, especially for serializing and deserializing.

I Instead, we only send the address and the shape of the tensor from one side, and
copy data from memory based on these values on the other side.

A The garbage collector at one end doesn't know that it needs to keep data
before really copied or used at the other end, hence memory will be mis-
collected.

I Manually create blocking statements
I KeepAlive function in Go and reference count in Python

I Prevent garbage collection until KeepAlive is executed in Go or the reference count is
decreased to zero in Python

C3SR

== | X ILLINOIS

[N
'—\
||||||||

I
II|||I

cognitive computing

Contributions of MLHarness

A MLHarness encapsulates MLModelScope as an easy-to-use black box
for MLCommons Inference, with the advantage of supporting across stack
profiing and reporting properly defined metrics based on scenarios.

A MLHarness extends exchange specification from MLModelScope and
supports user-defined processing methods, in order to embrace various
models from different tasks.

C3SR

N
|| I||||
il

== | X ILLINOIS

cognitive computing

Case Study 1: V100 v.s. A100

A Compare the performance of ResNet50, provided by MLCommons Inference,
between 1x NVIDIA V100 GPU and 1x NVIDIA A100 GPU.

A The following parameters are the same between experiements:
I CPU: 1xAMD EPYC 7702 64-Core Processor

I Framework: ONNX Runtime
I Scenario: Offline and batch size equals to 1

A Results:
I V100: 202 samples per second
I Al100: 159 samples per second

C3SR

== | Z ILLINOIS

cognitive computing

Case Study 1: V100 v.s. A100

A With the across stack profiling support from MLModelScope, MLHarness
provides crucial insight on this abnormal behavior.

time (ms)
0 2 4 6 8 10 12 14 16 18

Il Other

[Conv2 + Relu

% @ Pooling
,,,,,,, I Reshape

B Gemm

B Softmax

AMD-ORT-V100 -

,,,,,,
-
-

——

-~
oo
~
-~
-~
-
~
-~
-~
~
.
S
~~
-~

AMD-ORT-A100{ e
______________________ Conv__233 _resnet_model/Relu_47
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
time (ms)
B Other N volta_scudnn_winograd_128x128

[cudnn::winograd::generateWinogradTilesKernel 3 implicit_convolve_sgemm

C3SR

o == | E ILLINOIS

cognitive computing
systems research

Case Study 2: Various Models and Systems

A Compare the performance of AlexNet and models from the ResNet family,
provided by TorchVision, between different systems, with variations on
frameworks, processors, and accelerators.

A The experiements are done with offline scenario and batch size equals to 1.

C3SR

&

== | I ILLINOIS

cognitive computing

