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Background

A Machine learning (ML) and deep learning (DL) innovations are being
developed In a rapid pace.

A Different people have different needs:

Model Builder System Developer User

A Analyze and A Identify and solve A Choose models
optimize model, bottlenecks on a and systems under
and publish complex system a fair comparison.
repeatable results. across hardware

and software
stacks.
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Challenge

1. Analyzing ML/DL innovations
2. Sharing ML/DL innovations
3. Reporting fair benchmarking results
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Existing Approach

A ML/DL model zoos
I TorchVision, ONNX Model Zoo, GluonCV
A Collections of reproducible components
I CloudOps, MLOps
A Plug-and-play shareable containers
I MLCube

A Benchmarking platforms simulating scenarios
I MLCommons Inference

A Profilers capturing specific stacks
I CUDA Profiling Tools Interface
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Our Solution- MLHarness

A MLHarness is built on top of two existing solutions: MLCommons Inference
and MLModelScope.

MLCommons Inference MLModelScope
A Properly defined metrics with scenarios A Shareable exchange specification
A Fair benckmarking methodologies A Across stack profiling
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Our Solution-MLHarness

A MLHarness extracts advantages from MLCommons Inference and
MLModelScope and has the following features:
I Codifying required benchmarking environments
I Reporting metrics defined by MLCommons Inference
I Supporting across stack profiling functionality from MLModelScope
I Awide range of models
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Encapsulatig MLModelScope

/ Function Wrappers \

[ Initialize } [ Finalize } [IssueQueryJ

[ LoadQuerySamples MUnIoadQuerySamples}

MLCommons Inference in Python
1

Interfaces
[ ConstructSUT ] [ DestroySUT ]

I Go Function Calls

[ LoadQuerySamples ] [UnlnadQuerySamplas] MLModelScope Runtime
[ QuerySamplesComplete ] [ Tracer ] [ Profiler ] [ Database ]

.

[Framework] [ Model ] [ Dataset ]

\MLModeIScope in Go

As C shared Library
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name: MLPerf_BERT # model name
version: 1.0.0 # semantic version of the model
framework: # framework information

name: PyTorch

version: '>=1.5.0' # framework version constraint

Extending Specification i e

element_type: string
outputs: # model outputs
’ - type: text # output modality

A MLCommons Inference supports few models.

model: # model sources
graph_path: https://.../bert.pt

A MLModelScope supports computer vision tasks.

preprocess: |
from transformers import BertTokenizer

A MLHarness extends MLModelScope's ort ey 5 1
specification to include customized o e
pre and postprocessing so that MLHarness e
can easily support a wide range of models. e o _oxampls_to_fetures(...»

features = []
tokenizer = BertTokenizer(...)

class InputFeatures(object):

examples = read_squad_examples(...)
convert_examples_to_features(features, examples, tokenizer, ...)
def preprocess(ctx, data):
cur = features[int(data)]
return cur.input_ids, cur.input_mask, cur.segment_ids
postprocess: |
import numpy as np
import json
def postprocess(ctx, data):
res = np.stack([data[@], data[1]], axis = -1).squeeze(@).tolist()
return [json.dumps(res)]

C3SR

center for 9 S = 5= ILLINOIS
cognitive computing T —— ! —

systems research




Preprocessing and Postprocessing

A Need to run Python functions from Go.

A Embed Python interpreter into Go, with the help of cgo from Go and ctypes
module in Python.

func Processing(tensor interface{}, functionName string) interface{} {
pyData := MoveDataToPythonInterpreter(tensor)
pyFunc := FindTheProcessingFunctionByItsName(functionName)
pyResult := ExecuteProcessingFunction(pyFunc, pyData)
result := GetResultFromPythonInterpreter(pyResult)
return result
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Data movement between languages

A Data movement is expensive, especially for serializing and deserializing.

I Instead, we only send the address and the shape of the tensor from one side, and
copy data from memory based on these values on the other side.

A The garbage collector at one end doesn't know that it needs to keep data
before really copied or used at the other end, hence memory will be mis-
collected.

I Manually create blocking statements
I KeepAlive function in Go and reference count in Python

I Prevent garbage collection until KeepAlive is executed in Go or the reference count is
decreased to zero in Python
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Contributions of MLHarness

A MLHarness encapsulates MLModelScope as an easy-to-use black box
for MLCommons Inference, with the advantage of supporting across stack
profiing and reporting properly defined metrics based on scenarios.

A MLHarness extends exchange specification from MLModelScope and
supports user-defined processing methods, in order to embrace various
models from different tasks.
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Case Study 1: V100 v.s. A100

A Compare the performance of ResNet50, provided by MLCommons Inference,
between 1x NVIDIA V100 GPU and 1x NVIDIA A100 GPU.

A The following parameters are the same between experiements:
I CPU: 1xAMD EPYC 7702 64-Core Processor

I Framework: ONNX Runtime
I Scenario: Offline and batch size equals to 1

A Results:
I V100: 202 samples per second
I Al100: 159 samples per second
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Case Study 1: V100 v.s. A100

A With the across stack profiling support from MLModelScope, MLHarness
provides crucial insight on this abnormal behavior.
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Case Study 2: Various Models and Systems

A Compare the performance of AlexNet and models from the ResNet family,
provided by TorchVision, between different systems, with variations on
frameworks, processors, and accelerators.

A The experiements are done with offline scenario and batch size equals to 1.
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