
Paper #7 

MLHarness:A Scalable Benchmarking System for MLCommons
Yen-Hsiang Chang1, Jianhao Pu1, Wen-mei Hwu1, Jinjun Xiong1,2

11/01/2021

1University of Illinois at Urbana-Champaign, 2University at Buffalo



2

ÁBackground and Challenge

ÁOur Solution -- MLHarness

ÁExperimental Results ïCase Studies

Overview

2



ÁMachine learning (ML) and deep learning (DL) innovations are being 

developed in a rapid pace.

ÁDifferent people have different needs:

Background

Model Builder

Å Analyze and 

optimize model, 

and publish 

repeatable results.

System Developer

Å Identify and solve 

bottlenecks on a 

complex system 

across hardware 

and software 

stacks.

User

Å Choose models 

and systems under 

a fair comparison.

3 3



1. Analyzing ML/DL innovations

2. Sharing ML/DL innovations

3. Reporting fair benchmarking results

Challenge

4

4
4



ÁML/DL model zoos

ïTorchVision, ONNX Model Zoo, GluonCV

ÁCollections of reproducible components

ïCloudOps, MLOps

ÁPlug-and-play shareable containers

ïMLCube

ÁBenchmarking platforms simulating scenarios

ïMLCommons Inference

ÁProfilers capturing specific stacks

ïCUDA Profiling Tools Interface

Existing Approach

5

5
5



ÁMLHarness is built on top of two existing solutions: MLCommons Inference 

and MLModelScope.

Our Solution --MLHarness

6

MLCommons Inference

Å Properly defined metrics with scenarios

Å Fair benckmarking methodologies

Å Focus on few models

Å Hard to identify bottlenecks

MLModelScope

Å Shareable exchange specification

Å Across stack profiling

Å Limited to computer vision tasks

Å No straightforward reports

6
6



ÁMLHarness extracts advantages from MLCommons Inference and 

MLModelScope and has the following features:

ïCodifying required benchmarking environments

ïReporting metrics defined by MLCommons Inference

ïSupporting across stack profiling functionality from MLModelScope

ïA wide range of models

Our Solution --MLHarness

7

7
7



MLHarness

As C shared Library

Encapsulating MLModelScope

8

8
8

ctypes



ÁMLCommons Inference supports few models.

ÁMLModelScope supports computer vision tasks.

ÁMLHarness extends MLModelScope's

specification to include customized 

pre and postprocessing so that MLHarness

can easily support a wide range of models.

Extending Specification

9

9
9



ÁNeed to run Python functions from Go.

ÁEmbed Python interpreter into Go, with the help of cgo from Go and ctypes 

module in Python.

Preprocessing and Postprocessing

10

10
10



ÁData movement is expensive, especially for serializing and deserializing.

ïInstead, we only send the address and the shape of the tensor from one side, and 

copy data from memory based on these values on the other side.

ÁThe garbage collector at one end doesn't know that it needs to keep data 

before really copied or used at the other end, hence memory will be mis-

collected.

ïManually create blocking statements

ïKeepAlive function in Go and reference count in Python

ïPrevent garbage collection until KeepAlive is executed in Go or the reference count is 

decreased to zero in Python

Data movement between languages

11

11
11



ÁMLHarness encapsulates MLModelScope as an easy-to-use black box 

for MLCommons Inference, with the advantage of supporting across stack 

profiling and reporting properly defined metrics based on scenarios.

ÁMLHarness extends exchange specification from MLModelScope and 

supports user-defined processing methods, in order to embrace various 

models from different tasks.

Contributions of MLHarness

12

12
12



ÁCompare the performance of ResNet50, provided by MLCommons Inference, 

between 1x NVIDIA V100 GPU and 1x NVIDIA A100 GPU.

ÁThe following parameters are the same between experiements:

ïCPU: 1x AMD EPYC 7702 64-Core Processor

ïFramework: ONNX Runtime

ïScenario: Offline and batch size equals to 1

ÁResults:

ïV100: 202 samples per second

ïA100: 159 samples per second

Case Study 1: V100 v.s. A100

13

13
13



ÁWith the across stack profiling support from MLModelScope, MLHarness 

provides crucial insight on this abnormal behavior.

Case Study 1: V100 v.s. A100

14

14
14



ÁCompare the performance of AlexNet and models from the ResNet family, 

provided by TorchVision, between different systems, with variations on 

frameworks, processors, and accelerators.

ÁThe experiements are done with offline scenario and batch size equals to 1.

Case Study 2: Various Models and Systems

15

15
15


