High Performance Computing: Where We Are Today And A Look Into The Future

Jack Dongarra
University of Tennessee
Oak Ridge National Laboratory
University of Manchester
Overview

• How I got started in high performance computing
• Supercomputing today
• Some of the trends in the field
• A look at the future
An Accidental Benchmarker

LINPACK was an NSF Project w/ ANL, UNM, UM, & UCSD
We worked independently and came to Argonne in the summers

Appendix B of the Linpack Users’ Guide
Designed to help users estimate the run time for solving systems of equation using the Linpack software.
First benchmark report from 1977; Cray 1 to DEC PDP-10

Top 23 List from 1977
Performance of solving Ax=b using LINPACK software

<table>
<thead>
<tr>
<th>Facility</th>
<th>N=100 micro-</th>
<th>Computer</th>
<th>Type</th>
<th>Compiler</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCAR</td>
<td>14.6</td>
<td>0.14</td>
<td>CRAY-1</td>
<td>S CFT, Assembly BLAS</td>
</tr>
<tr>
<td>LASL</td>
<td>20.6</td>
<td>0.43</td>
<td>CDC 7600</td>
<td>S FTN, Assembly BLAS</td>
</tr>
<tr>
<td>NCAR</td>
<td>15.1</td>
<td>0.26</td>
<td>CRAY-1</td>
<td>S CFT</td>
</tr>
<tr>
<td>LASL</td>
<td>25.7</td>
<td>0.61</td>
<td>CDC 7600</td>
<td>S FTN</td>
</tr>
<tr>
<td>Argonne</td>
<td>2.31</td>
<td>0.86</td>
<td>IBM 370/195</td>
<td>D H</td>
</tr>
<tr>
<td>NGAR</td>
<td>161.3</td>
<td>1.05</td>
<td>CDC 7600</td>
<td>S Local</td>
</tr>
<tr>
<td>Argonne</td>
<td>2177.3</td>
<td>1.33</td>
<td>IBM 3033</td>
<td>D H</td>
</tr>
<tr>
<td>NASA Langley</td>
<td>100.6</td>
<td>1.42</td>
<td>CDC Cyber 175</td>
<td>S FTN</td>
</tr>
<tr>
<td>U. Ill. Urbana</td>
<td>196.5</td>
<td>1.47</td>
<td>CDC Cyber 175</td>
<td>S Ext. 4.6</td>
</tr>
<tr>
<td>LLL</td>
<td>189.5</td>
<td>1.61</td>
<td>CDC 7600</td>
<td>S CHAT, No optimize</td>
</tr>
<tr>
<td>SIAC</td>
<td>119.4</td>
<td>1.69</td>
<td>IBM 370/168</td>
<td>D H Ext., Fast mult.</td>
</tr>
<tr>
<td>Michigan</td>
<td>109.6</td>
<td>1.84</td>
<td>AMDahl 470/V6</td>
<td>D H</td>
</tr>
<tr>
<td>Toronto</td>
<td>77.4</td>
<td>2.59</td>
<td>IBM 370/165</td>
<td>D H Ext., Fast mult.</td>
</tr>
<tr>
<td>Northwestern</td>
<td>87.1</td>
<td>4.20</td>
<td>CDC 6600</td>
<td>S FTN</td>
</tr>
<tr>
<td>Texas</td>
<td>105.0</td>
<td>5.63</td>
<td>CDC 6600</td>
<td>S RN</td>
</tr>
<tr>
<td>China Lake</td>
<td>251.4</td>
<td>5.69</td>
<td>Univac 1110</td>
<td>S V</td>
</tr>
<tr>
<td>Yale</td>
<td>252.7</td>
<td>7.33</td>
<td>DEC KL-20</td>
<td>S F20</td>
</tr>
<tr>
<td>Bell Labs</td>
<td>197.3</td>
<td>10.1</td>
<td>Honeywell 5080</td>
<td>S V</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>1073.4</td>
<td>11.9</td>
<td>Univac 1110</td>
<td>S V</td>
</tr>
<tr>
<td>Iowa State</td>
<td>103.5</td>
<td>10.2</td>
<td>Intel 85/5 mod3</td>
<td>D H</td>
</tr>
<tr>
<td>U. Ill. Chicago</td>
<td>314.10</td>
<td>11.9</td>
<td>IBM 370/158</td>
<td>D C1</td>
</tr>
</tbody>
</table>
Top500 Since 1993

- Hans Meuer and Erich Strohmaier had a list of fastest computers ranked by peak performance.
- I had a list of benchmark results and we put the two lists together.
- Listing of the 500 most powerful computers in the World.
- Yardstick: Performance for $Ax=b$, dense problem

Maintained and updated twice a year:
- SC‘xy in the States in November
- Meeting in Germany in June
PERFORMANCE DEVELOPMENT OF HPC OVER THE LAST 28 YEARS FROM THE TOP500

- Thinking Machine CM-5 with 1024 Processors at Los Alamos Nat Lab used for nuclear weapons design
June 2021: The TOP 10 Systems *(38% of the Total Performance of Top500)*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RIKEN Center for Computational Science</td>
<td>Fugaku, ARM A64FX (48C, 2.2 GHz), Tofu D Interconnect</td>
<td>Japan</td>
<td>7,299,072</td>
<td>82</td>
<td>29.9</td>
<td>14.8</td>
</tr>
<tr>
<td>2</td>
<td>DOE / OS Oak Ridge Nat Lab</td>
<td>Summit, IBM Power 9 (22C, 3.0 GHz), NVIDIA GV100 (80C), Mellonox EDR</td>
<td>USA</td>
<td>2,397,824</td>
<td>74</td>
<td>10.1</td>
<td>14.7</td>
</tr>
<tr>
<td>3</td>
<td>DOE / NNSA L Livermore Nat Lab</td>
<td>Sierra, IBM Power 9 (22C, 3.1 GHz), NVIDIA GV100 (80C), Mellonox EDR</td>
<td>USA</td>
<td>1,572,480</td>
<td>75</td>
<td>7.44</td>
<td>12.7</td>
</tr>
<tr>
<td>4</td>
<td>National Super Computer Center in Wuxi</td>
<td>Sunway TaihuLight, SW26010 (260C) + Custom</td>
<td>China</td>
<td>10,649,000</td>
<td>74</td>
<td>15.4</td>
<td>6.05</td>
</tr>
<tr>
<td>5</td>
<td>DOE / OS NERSC - LBNL</td>
<td>Perlmutter HPE Cray EX235n, AMD EPYC 64C 2.45GHz, NVIDIA A100, Slingshot-10</td>
<td>USA</td>
<td>706,304</td>
<td>69</td>
<td>2.53</td>
<td>25.5</td>
</tr>
<tr>
<td>6</td>
<td>NVIDIA Corporation</td>
<td>Selene NVIDIA DGX A100, AMD EPYC 7742 (64C, 2.25GHz), NVIDIA A100 (108C), Mellonox HDR Infiniband</td>
<td>USA</td>
<td>555,520</td>
<td>80</td>
<td>2.64</td>
<td>23.9</td>
</tr>
<tr>
<td>7</td>
<td>National Super Computer Center in Guangzhou</td>
<td>Tianhe-2A NUDT, Xeon (12C) + MATRIX-2000 (128C) + Custom</td>
<td>China</td>
<td>4,981,760</td>
<td>61</td>
<td>18.5</td>
<td>3.32</td>
</tr>
<tr>
<td>8</td>
<td>JUWELS Booster Module</td>
<td>Bull Sequana XH-2000 , AMD EPYC 7402 (24C, 2.8GHz), NVIDIA A100 (108C), Mellonox HDR Infiniband/ParTec ParaStation ClusterSuite</td>
<td>Germany</td>
<td>448,280</td>
<td>62</td>
<td>1.76</td>
<td>25.0</td>
</tr>
<tr>
<td>9</td>
<td>Eni S.p.A in Italy</td>
<td>HPC5, Dell EMC PowerEdge C4140, Xeon (24C, 2.1 GHz) + NVIDIA V100 (80C), Mellonox HDR</td>
<td>Italy</td>
<td>669,760</td>
<td>69</td>
<td>2.25</td>
<td>15.8</td>
</tr>
<tr>
<td>10</td>
<td>Texas Advanced Computing Center / U of Texas</td>
<td>Frontera, Dell C6420, Xeon Platinum, 8280 (28C, 2.7 GHz), Mellonox HDR</td>
<td>USA</td>
<td>448,448</td>
<td>61</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fugaku Total System Config & Performance

- **Total # Nodes:** 158,976 nodes (1 CPU/node)
 - 384 nodes/rack x 396 (full) racks = 152,064 nodes and
 - 192 nodes/rack x 36 (half) racks = 6,912 nodes

- **Theoretical Peak Compute Performances**
 - Normal Mode (CPU Frequency 2GHz)
 - **64 bit** Double Precision FP: 488 Petaflops
 - **32 bit** Single Precision FP: 977 Petaflops
 - **16 bit** Half Precision FP (AI training): 1.95 Exaflops
 - **8 bit Integer** (AI Inference): 3.90 Exaops
 - **Theoretical Peak Memory BW:** 163 Petabytes/s

Fugaku represents 16% of the Top500 systems.

Current #2 System Overview

System Performance
- Peak performance of 200 Pflop/s for modeling & simulation
- Peak performance of 3.3 Eflop/s for 16 bit floating point used in for data analytics, ML, and artificial intelligence

Each node has
- 2 IBM POWER9 processors
 - Each w/22 cores
 - 2.3% performance of system
- 6 NVIDIA Tesla V100 GPUs
 - Each w/80 SMs
 - 97.7% performance of system
- 608 GB of fast memory
- 1.6 TB of NVMe memory

The system includes
- 4608 nodes
 - 27,648 GPUs
 - Street value $10K each
- Dual-rail Mellanox EDR InfiniBand network
- 250 PB IBM Spectrum Scale file system transferring data at 2.5 TB/s
TOP500 Highlights From June 2021

- Japanese’s Fugaku continues as #1 in the TOP500
 - 16% of the sum of the TOP500 performance
 - It performed at over 2 Exaflop/s on the HPL-AI using mixed precision algorithm (16-bit floating point arithmetic)
- TOP10 has one new system, Perlmutter at LBNL from HPE/Cray, AMD, & NVIDIA
 - 38% of the Top500 performance in the Top10
- The entry level to the list moved up to the 1.52 Pflop/s mark on the Linpack benchmark.
- China: Top consumer and producer overall.
- Intel processors largest share, 86% followed by AMD, 10%.
Countries Share

Number of Systems in a Country

Top 10 Performance

China: 186
US: 123
Japan: 35
Germany: 23
France: 16
Canada: 11
UK: 11
Italy: 6
Russia: 3
Rumored 2 Exascale Systems Up and Running in Chinese

- Qingdao Marine Sunway Pro “OceanLight” supercomputer (national lab) (Shandong Prov)
 - Completed March 2021, ~1.3 EFlops Rpeak, ~1.05 EFlops Rmax full Linpack run
 - ShenWei post-Alfa CPU ISA architecture with big & small core structure
 - Est 96 cabinets x 1024 SW39010 390-core CPU with pan-tree next-gen connect. 35MW +/- 10%
 - Access for outside institutions slowly rolling out

- NSCC Tianjin Tianhe-3 supercomputer (recall 2010 Tianhe-1A)
 - Dual-chip FeiTeng ARM and Matrix accelerator node architecture
 - Full completion expected Oct 2021
 - Est ~1.7 EFlops Rpeak and 1.3 EFlops Rmax, full system Linpack results unknown at this time
 - Likely to be more open to outside access than OceanLight
HPCG Results; The Other Benchmark

- High Performance Conjugate Gradients (HPCG).
- Solves $Ax=b$, A large, sparse, b known, x computed.
- An optimized implementation of PCG contains essential computational and communication patterns that are prevalent in a variety of methods for discretization and numerical solution of PDEs.

Patterns:
- Dense and sparse computations.
- Dense and sparse collectives.
- Multi-scale execution of kernels via MG (truncated) V cycle.
- Data-driven parallelism (unstructured sparse triangular solves).
- Strong verification (via spectral properties of PCG).

hpcg-benchmark.org With Piotr Luszczek and Mike Heroux
HPCG Details

3D Laplacian discretization

Preconditioned Conjugate Gradient solver

\[p_0 \leftarrow x_0, \quad r_0 \leftarrow b - Ap_0 \]

\[\text{for } i = 1, 2, \text{ to } \text{max_iterations} \text{ do} \]

\[z_i \leftarrow M^{-1}r_{i-1} \]

\[\text{if } i = 1 \text{ then } \quad \text{Multigrid and Gauss-Seidel} \]

\[p_i \leftarrow z_i \]

\[\alpha_i \leftarrow \text{dot_prod}(r_{i-1}, z_i) \]

\[\text{else} \]

\[\alpha_i \leftarrow \text{dot_prod}(r_{i-1}, z_i) \]

\[\beta_i \leftarrow \alpha_i / \alpha_{i-1} \]

\[p_i \leftarrow \beta_i p_{i-1} + z_i \]

\[\text{end if} \]

\[\alpha_i \leftarrow \text{dot_prod}(r_{i-1}, z_i) / \text{dot_prod}(p_i, Ap_i) \]

\[x_{i+1} \leftarrow x_i + \alpha_i p_i \]

\[r_i \leftarrow r_{i-1} - \alpha_i Ap_i \]

\[\text{if } \|r_i\|_2 < \text{tolerance} \text{ then} \]

\[\text{STOP} \]

\[\text{end if} \]

\[\text{end for} \]
<table>
<thead>
<tr>
<th>Rank</th>
<th>Site</th>
<th>Computer</th>
<th>Cores</th>
<th>HPL Rmax (Pflop/s)</th>
<th>TOP500 Rank</th>
<th>HPCG (Pflop/s)</th>
<th>Fraction of Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RIKEN Center for Computational Science Japan</td>
<td>Fugaku, Fujitsu A64FX 48C 2.2GHz, Tofu D, Fujitsu</td>
<td>7,630,848</td>
<td>442.0</td>
<td>1</td>
<td>16.0</td>
<td>3.0%</td>
</tr>
<tr>
<td>2</td>
<td>DOE/SC/ORNL USA</td>
<td>Summit, AC922, IBM POWER9 22C 3.7GHz, Dual-rail Mellanox FDR, NVIDIA Volta V100, IBM</td>
<td>2,414,592</td>
<td>148.6</td>
<td>2</td>
<td>2.93</td>
<td>1.5%</td>
</tr>
<tr>
<td>3</td>
<td>DOE/SC/LBNL USA</td>
<td>Perlmutter, HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10</td>
<td>761,856</td>
<td>64.6</td>
<td>5</td>
<td>1.91</td>
<td>2.0%</td>
</tr>
<tr>
<td>4</td>
<td>DOE/NNSA/LLNL USA</td>
<td>Sierra, S922LC, IBM POWER9 20C 3.1 GHz, Mellanox EDR, NVIDIA Volta V100, IBM</td>
<td>1,572,480</td>
<td>94.6</td>
<td>3</td>
<td>1.80</td>
<td>1.4%</td>
</tr>
<tr>
<td>5</td>
<td>NVIDIA USA</td>
<td>Selene, DGX SuperPOD, AMD EPYC 7742 64C 2.25 GHz, Mellanox HDR, NVIDIA Ampere A100</td>
<td>555,520</td>
<td>63.5</td>
<td>6</td>
<td>1.62</td>
<td>2.0%</td>
</tr>
<tr>
<td>6</td>
<td>Forschungszentrum Juelich (FZJ) Germany</td>
<td>JUWELS Booster Module, Bull Sequana XH2000, AMD EPYC 7402 24C 2.8GHz, Mellanox HDR InfiniBand, NVIDIA Ampere A100</td>
<td>449,280</td>
<td>44.1</td>
<td>8</td>
<td>1.28</td>
<td>1.8%</td>
</tr>
<tr>
<td>7</td>
<td>Saudi Aramco Saudi Arabia</td>
<td>Dammam-7, Cray CS-Storm, Xeon Gold 6248 20C 2.5GHz, Infiniband HDR 100, NVIDIA Volta V100, HPE</td>
<td>672,520</td>
<td>22.4</td>
<td>11</td>
<td>0.88</td>
<td>1.6%</td>
</tr>
<tr>
<td>8</td>
<td>Eni S.p.A. Italy</td>
<td>HPCS, PowerEdge, C4140, Xeon Gold 6252 24C 2.1 GHz, Mellanox HDR, NVIDIA Volta V100, Dell</td>
<td>669,760</td>
<td>35.5</td>
<td>9</td>
<td>0.86</td>
<td>1.7%</td>
</tr>
<tr>
<td>9</td>
<td>Information Technology Center, The University of Tokyo, Japan</td>
<td>Wisteria/BDEC-01 (Odyssey), PRIMEHPC FX1000, A64FX 48C 2.2GHz, Tofu D</td>
<td>368,640</td>
<td>22.1</td>
<td>13</td>
<td>0.82</td>
<td>3.2%</td>
</tr>
<tr>
<td>10</td>
<td>Japan Agency for Marine-Earth Science and Technology</td>
<td>Earth Simulator -SX-Aurora TSUBASA , A412-8, Vector Engine Type20B 8C 1.6GHz, Infiniband HDR200</td>
<td>43,776</td>
<td>0.01</td>
<td>41</td>
<td>0.75</td>
<td>5.6%</td>
</tr>
</tbody>
</table>
Comparison between Peak and HPL for June 2021
Comparison between Peak, HPL, and HPCG for June 2021
DOE HPC Roadmap to Exascale Systems

<table>
<thead>
<tr>
<th>FY 2012</th>
<th>FY 2016</th>
<th>FY 2018</th>
<th>FY 2021</th>
<th>FY 2022</th>
<th>FY 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORNL</td>
<td>ORNL</td>
<td>ORNL</td>
<td>ORNL</td>
<td>ORNL</td>
<td>ORNL</td>
</tr>
<tr>
<td>Titan</td>
<td>Summit</td>
<td>Summit</td>
<td>Summit</td>
<td>ORNL</td>
<td>ORNL</td>
</tr>
<tr>
<td>Cray/AMD/NVIDIA</td>
<td>IBM/NVIDIA</td>
<td>IBM/NVIDIA</td>
<td>IBM/NVIDIA</td>
<td>HPE/AMD</td>
<td>HPE/AMD</td>
</tr>
<tr>
<td>ANL</td>
<td>LANL/SNL</td>
<td>LANL/SNL</td>
<td>LANL/SNL</td>
<td>LANL/SNL</td>
<td>LANL/SNL</td>
</tr>
<tr>
<td>IBM BG/Q</td>
<td>Cray/Intel Xeon/KNL</td>
<td>Cray/Intel Xeon/KNL</td>
<td>Cray/Intel Xeon/KNL</td>
<td>Cray/Intel Xeon/KNL</td>
<td>Cray/Intel Xeon/KNL</td>
</tr>
<tr>
<td>LLNL</td>
<td>LLNL</td>
<td>LLNL</td>
<td>LLNL</td>
<td>LLNL</td>
<td>LLNL</td>
</tr>
<tr>
<td>Sequoia</td>
<td>Trinity</td>
<td>Sierra</td>
<td>Sierra</td>
<td>Sierra</td>
<td>Sierra</td>
</tr>
<tr>
<td>LLNL BG/Q</td>
<td>Cray/Intel Xeon/KNL</td>
<td>Cray/Intel Xeon/KNL</td>
<td>Cray/Intel Xeon/KNL</td>
<td>Cray/Intel Xeon/KNL</td>
<td>Cray/Intel Xeon/KNL</td>
</tr>
<tr>
<td>Exascale Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exascale architectures will excel at HPC and HPC + AI problems
Exascale is costing DOE $3.6B in total, over 5 years
What do you get for $3.6B

- 3 computers
 - $600M each

- 21 Applications

- A bunch of software (84 projects)
What’s Next After Exascale? - AI for Science

- Over 1,300 scientists participated in four town halls during the summer/fall of 2019
- Research Opportunities in AI
 - Biology, Chemistry, Materials,
 - Climate, Physics, Energy, Cosmology
 - Mathematics and Foundations
 - Data Life Cycle
 - Software Infrastructure
 - Hardware for AI
 - Integration with Scientific Facilities
- Modeled after the Exascale Series in 2007
- DOE’s Office of Science Advisory Subcommittee Report Sept 2020

https://www.anl.gov/ai-for-science-report

https://doi.org/10.2172/1734848
Modern Hardware: Lower Precision for Deep Learning

- Hardware (company)
 - GPU Tensor Cores (NVIDIA)
 - TPU MXU (Google)
 - Zion (Facebook)
 - DaVinci (Huawei)
 - Dot-product engine (HPE)
 - Eyeriss (Amazon)
 - Wafer Scale Engine (Cerebras)
 - Nervana (Intel)
 - Deep Learning Boost (Intel AI)
 - Graph Core
 - ...

- Lower-precision benchmarks
 - Baidu
 - Dawn
 - mlperf
 - Deep500
 - ...
 - HPL-AI

60+
WHY MIXED PRECISION? (Less is Faster)

- There are many reasons to consider mixed precision in our algorithms...
 - **Less Communication**
 - Reduce memory traffic
 - Reduce network traffic
 - **Reduce memory footprint**
 - **More Flop per second**
 - Reduced energy consumption
 - Reduced time to compute
 - Accelerated hardware in current architecture.
 - Suitable numerical properties for some algorithms & problems.

HPL-AI Benchmark Utilizing 16-bit Arithmetic

1. Generate random linear system $Ax = b$
2. Represent the matrix A in low precision (16-bit floating point)
3. Factor A in lower precision into LU by Gaussian elimination
4. Compute approximate solution with LU factors in low precision
5. Perform up to 50 iterations of refinement, e.g., GMRES to get accuracy up to 64-bit floating point
6. Use LU factors for preconditioning
7. Validate the answer is correct: scaled residual small
 \[
 \frac{||Ax - b||}{||A||||x|| + ||b||} \times \frac{1}{n\epsilon} \leq O(10)
 \]
8. Compute performance rate as
 \[
 \frac{2}{3} \times \frac{n^3}{\text{time}}
 \]

Iterative refinement for dense systems, $Ax = b$, can work this way.

\[
LU = lu(A) \quad \text{lower precision} \quad O(n^3)
\]

\[
x = U \backslash (L \backslash b) \quad \text{lower precision} \quad O(n^2)
\]

GMRes preconditioned by the LU to solve $Ax = b$

\[
\text{FP64 precision} \quad O(n^2)
\]
<table>
<thead>
<tr>
<th>Rank</th>
<th>Site</th>
<th>Computer</th>
<th>Cores</th>
<th>HPL Rmax (Eflop/s)</th>
<th>TOP500 Rank</th>
<th>HPL-AI (Eflop/s)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RIKEN Center for Computational Science, Japan</td>
<td>Fugaku, Fujitsu A64FX, Tofu D</td>
<td>7,630,848</td>
<td>0.442</td>
<td>1</td>
<td>2.0</td>
<td>4.5</td>
</tr>
<tr>
<td>2</td>
<td>DOE/SC/ORNLE USA</td>
<td>Summit, AC922 IBM POWER9, IB Dual-rail FDR, NVIDIA V100</td>
<td>2,414,592</td>
<td>0.149</td>
<td>2</td>
<td>1.15</td>
<td>7.7</td>
</tr>
<tr>
<td>3</td>
<td>NVIDIA USA</td>
<td>Selene, DGX SuperPOD, AMD EPYC 7742 64C 2.25 GHz, Mellanox HDR, NVIDIA A100</td>
<td>555,520</td>
<td>0.063</td>
<td>6</td>
<td>0.63</td>
<td>9.9</td>
</tr>
<tr>
<td>4</td>
<td>DOE/SC/LBNL/NERSC USA</td>
<td>Perlmutter, HPE Cray EX235n, AMD EPYC 7763 64C 2.45 GHz, Slingshot-10, NVIDIA A100</td>
<td>761,856</td>
<td>0.065</td>
<td>5</td>
<td>0.59</td>
<td>9.1</td>
</tr>
<tr>
<td>5</td>
<td>Forschungszentrum Juelich (FZJ) Germany</td>
<td>JUWELS Booster Module, Bull Sequana XH2000, AMD EPYC 7402 24C 2.8GHz, Mellanox HDR InfiniBand, NVIDIA A100, Atos</td>
<td>449,280</td>
<td>0.044</td>
<td>8</td>
<td>0.47</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>University of Florida USA</td>
<td>HiPerGator, NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Infiniband HDR</td>
<td>138,880</td>
<td>0.017</td>
<td>23</td>
<td>0.17</td>
<td>9.9</td>
</tr>
<tr>
<td>7</td>
<td>Information Technology Center, The University of Tokyo, Japan</td>
<td>Wisteria/BDEC-01 (Odyssey), PRIMEHPC FX1000, A64FX 48C 2.2GHz, Tofu D, Fujitsu</td>
<td>368,640</td>
<td>0.022</td>
<td>13</td>
<td>0.10</td>
<td>4.5</td>
</tr>
<tr>
<td>8</td>
<td>National Supercomputer Centre (NSC), Sweden</td>
<td>Berzelius, NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, A100, Infiniband HDR, Atos</td>
<td>59,520</td>
<td>0.005</td>
<td>84</td>
<td>0.05</td>
<td>9.9</td>
</tr>
<tr>
<td>9</td>
<td>Information Technology Center, Nagoya University, Japan</td>
<td>Flow Type II subsystem, PRIMERGY CX2570 M5, Xeon Gold 6230 20C 2.1GHz, NVIDIA Tesla V100 SXMM2, Infiniband EDR</td>
<td>79,560</td>
<td>0.0049</td>
<td>87</td>
<td>0.03</td>
<td>4.3</td>
</tr>
<tr>
<td>10</td>
<td>#CloudMTS Russia</td>
<td>MTS GROM, NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, A100 40GB, Infiniband</td>
<td>19,840</td>
<td>0.0023</td>
<td>245</td>
<td>0.015</td>
<td>7</td>
</tr>
</tbody>
</table>
Comparison between HPL-AI, Peak, HPL, and HPCG for June 2021
2026 and 2030 Planning Targets

2026 – 10 Eflop/s (fp64) and >100 Eflop/s (AI bfp16)

2030 – 50 Eflop/s (fp64) and > 1000 Eflop/s (1 Zflop/s) (AI bfp16)

A few questions:
• How achievable are these targets given the roadmaps and vendor plans?
• Will AI accelerators (distinct from GPUs) make sense to integrate into future nodes or as sub-clusters?
• When will quantum computing accelerators intersect mainstream supercomputing?
Zettascale System Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak performance</td>
<td>1 Zflops</td>
</tr>
<tr>
<td>Power consumption</td>
<td>100 MW</td>
</tr>
<tr>
<td>Power efficiency</td>
<td>10 Tflops/W</td>
</tr>
<tr>
<td>Peak performance per node</td>
<td>10 Pflops/node</td>
</tr>
<tr>
<td>Bandwidth between nodes</td>
<td>1.6 Tb/s</td>
</tr>
<tr>
<td>I/O bandwidth</td>
<td>10–100 PB/s</td>
</tr>
<tr>
<td>Storage capacity</td>
<td>1 ZB</td>
</tr>
<tr>
<td>Floor space</td>
<td>1000 m²</td>
</tr>
</tbody>
</table>

Chinese proposes Zettascale by 2035

- 600x Frontier (58% CAGR)
- 3.4x Frontier (9% CAGR)
- 200x Frontier (46% CAGR)
- 66x Frontier (=> 10x nodes)
- 16x Frontier (22% CAGR)
- 1000x Frontier (64% CAGR)
- 1000x Frontier (64% CAGR)
- 2x Frontier (5% CAGR)

https://doi.org/10.1631/FITEE.1800494 Front Inform Technol Electron Eng
Emergence of AI-Specific Hardware Ecosystem

MYTHIC DEEPHi GRAPHCORE NVIDIA
thinci RAIN WAVE COMPUTING
aws NEUROMORPHICS Google intel
flexlogix cerebras XILINX
Baidu SambaNova SYSTEMS
What’s Next Summary

• **US Exascale deployments 2021-2023: Frontier, Aurora and El Capitan**
 • Roadmap for 2025 and 2030 increasingly challenging as fab hit Angstrom nodes

• **AI for Science and AI Grand Challenges will require Exascale and More**
 • Inverse materials design and improved climate models among many

• **AI driven surrogates have the potential for “effective” Zetta and Yotta scale**
 • Improvements in accuracy, UQ, network search, automatic transformations

• **AI hardware accelerators 2nd and 3rd generation in flight**
 • Open question is how to integrate into HPC architectures and ecosystems
 • Need tight integration in memory space and
 • Integration of programming models Python/Julia, C++, OneAPI, etc.

• **Quantum Computing could breakout in the next decade**
 • Initial opportunities in quantum simulation, dependent on scalability and error correction
 • Will be tightly coupled to classical and AI systems for control, sampling, programming, and optimization

• Interesting article on AI: https://arxiv.org/pdf/2104.12871.pdf
The Take Away

• HPC Hardware is Constantly Changing
 • Scalar
 • Vector
 • Distributed
 • Accelerated
 • Mixed precision
• Three computer revolutions
 • High performance computing
 • Deep learning
 • Edge & AI
• Algorithm / Software advances follows hardware.
 • And there is “plenty of room at the top”
• We will need additional benchmarks to measure performance for all this.