

Efficient HTTP based I/O on very large
datasets for high performance

computing with the Libdavix library

Authors
Devresse Adrien (CERN)
Fabrizio Furano (CERN)

Typical HPC architecture

Computing
 Cluster

High speed
 network

Large data
 storage
systems

Remote I/O
requirements in HPC

→ Low latency

→ High throughput

→ Parallel access

→ Reliability

HPC I/O protocols

A protocol Zoo...

GridFTP

AFS

dCapdCap

iRods

Very specific protocols

● They are often specific to a storage system

● They use advanced caching strategies and
optimizations

● They are optimized for the previous HPC
requirements
● High throughput
● Parallel access
● Low latency

Standards : Should we re-define
one more ?

Classic problem

Crazy Idea

Why not using HTTP ?

Is this madness ?

First, it seems crazy

● Text based, Stateless
● No multi-plexing
● Suffers of the TCP slow start mechanism
● No standard « fail-over » mechanism
● No multi-sources / multi-streams
● Incomplete support for partial I/O

Not so crazy

● Widespread
● has a rich ecosystem and powerful actors

● A protocol that scales
● HTTP Caching is easy to deploy

● Today most Storage Systems provide an HTTP
gate

● Flexible, Extensible

HTTP is

What we did

● Created a tool-kit for HPC I/O with HTTP
protocol named DAVIX

● Apply several optimizations to make HTTP a
competitive protocol in term of performance
with HPC specific protocols.

● Benchmark it with a High Energy physics
data analysis work-flow.

Problem : Parallelism and
persistent connection

HPC I/O
protocol HTTP

Operation
Multiplexing

YES Pipelining

Persistent
connection

YES KeepAlive

Multi-plexing vs pipelining

→ Request Pipelining are in
order
→ Request Pipelining introduces
latency

Optimization: recycling and
request dispatch pattern

➢ Maximize the usage of each TCP connection
with KeepAlive

➢ Dispatch parallel queries to different
execution queues using a session pool
pattern

Optimization: recycling and
request dispatch pattern

Requests
Dispatch Connections

 Recycler

KeepAlive

KeepAlive

Optimization: Bulk query system
with branch prediction

● High Energy physics data are compressed
● Significant number of little data chunk

● We vectorize sequential I/O operations
into Bulk operations
● Based on HTTP Multi-part content type
● Vector size > 10000 chunks

● We use a cache with informed
prefetching “TTreeCache”

● reduce the number of network queries.

Optimization: Bulk queries system
with Informed Prefetching

Details of the benchmarks (1)

● Execute a HEP analysis job based on the
ROOT data analysis framework

● Each job reads 12000 events in a 700
MBytes in a compressed file remotely

● We use for remote I/O
● XrootD toolkit with the XrootD protocol

● DAVIX with the HTTP protocol

Details of the benchmarks (2)

● Each job is executed with the
HammerCloud grid testing framework

● Results obtained on 576 run over 12 days

● Tests executed against Disk Pool Manager
1.8.8 storage system
● 4 Core Intel Xeon CPU
● 32 GB of RAM
● 1 Gigabit network link

Performance after optimizations

Average Execution time of the Job

CERN ↔ CERN : Analysis over LAN access

Time (s)

CERN ↔ UK: Analysis over European PAN Network

Problem: Reliability and replicas

● We are in a world wide distributed
environment
● Data object replicas are spread in different

datacenters and stored with different Storage
system technologies

● HTTP is a 1-1 client server protocol
● No recovery in case of server failure

Metalink and HTTP

● Metalink is a
standard file format
supporting replicas
and meta-data
descriptions

● We use metalink for
transparent recovery
in case of server
unavailability

 <?xml version="1.0" encoding="UTF-8"?>
 <metalink xmlns="urn:ietf:params:xml:ns:metalink">
 <published>2009-05-15T12:23:23Z</published>
 <file name="example.ext">
 <size>14471447</size>
 <identity>Example</identity>
 <version>1.0</version>

 <file name="example2.ext">
 <size>14471447</size>
 <identity>Example2</identity>
 <description>
 Another description for a second file.
 </description>
 <hash type="sha-256">2f548ce50c459a0270e85a7d63b2383c5523...</hash>
 <url location="de"
 priority="1">ftp://ftp.example.com/example2.ext</url>
 <url location="fr"
 priority="1">http://example.com/example2.ext</url>
 <metaurl mediatype="torrent"
 priority="2">http://example.com/example2.ext.torrent</metaurl>
 </file>
 </metalink>

Optimization: Metalink and HTTP
for transparent recovery

Dynamic Storage
Federator

DFS

Worker
Node

Optimization: Metalink and HTTP
for transparent recovery

● Transparently recovers from a server
failure as long as one replica is
available world wide

● Multi-stream from different sources
based on HTTP

Conclusion

● HTTP can compete with HPC specific
protocols for data analysis use cases.

● HTTP weakness in HPC can be compensate
with informed prefetching, session recycling
and Large bulk operation support.

● Reliability of I/O over HTTP in Distributed
environment can be greatly improved with
Metalink support.

About DAVIX

● Offers a I/O and a file management API

● Shared Library C++ & set of tools

● Already released
● Open Source
● Integrated with the ROOT Analysis
framework

● Used by the File Transfer Service of of the
Worldwide LHC Computing Grid

Informations

http://dmc.web.cern.ch/projects/davix/home

About Davix

About our HTTP dynamic federation

https://svnweb.cern.ch/trac/lcgdm/wiki/Dynafeds

http://dmc.web.cern.ch/projects/davix/home

About the ROOT analysis framework

http://root.cern.ch/drupal/

Questions ?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26

