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Typical HPC architecture

Computing
 Cluster

High speed
 network

Large data
 storage 
systems

Remote I/O 
requirements in HPC 

→ Low latency

→ High throughput

→ Parallel access

→ Reliability



    

HPC I/O  protocols

A protocol Zoo...

GridFTP

AFS

dCapdCap

iRods



    

Very specific protocols

● They are often specific to a storage system 

● They use advanced caching strategies and 
optimizations

● They are optimized for the previous HPC 
requirements
● High throughput
● Parallel access
● Low latency
 



    

Standards : Should we re-define 
one more ?

Classic problem



  

Crazy Idea 

Why not using HTTP ?

Is this madness ?



    

First, it seems crazy 

● Text based, Stateless
● No multi-plexing
● Suffers of the TCP slow start mechanism
● No standard « fail-over » mechanism
● No multi-sources / multi-streams
● Incomplete support for partial I/O



    

Not so crazy

● Widespread
● has a rich ecosystem and powerful actors

● A protocol that scales
● HTTP Caching is easy to deploy  

● Today most Storage Systems provide an HTTP 
gate

● Flexible, Extensible

 

HTTP is



    

What we did

● Created a tool-kit for HPC I/O with HTTP 
protocol named DAVIX 

● Apply several optimizations to make HTTP a 
competitive protocol in term of performance 
with HPC specific protocols.

● Benchmark it with a High Energy physics 
data analysis work-flow.



    

Problem : Parallelism and 
persistent connection

HPC I/O 
protocol HTTP

Operation 
Multiplexing

YES Pipelining

Persistent 
connection

YES KeepAlive



    

Multi-plexing vs pipelining

→ Request Pipelining are in 
order
→ Request Pipelining introduces 
latency



    

Optimization: recycling and 
request dispatch pattern

➢ Maximize the usage of each TCP connection 
with KeepAlive

➢ Dispatch parallel queries to different 
execution queues using a session pool 
pattern



    

Optimization: recycling and 
request dispatch pattern

Requests  
Dispatch Connections 

 Recycler

KeepAlive

KeepAlive



    

Optimization: Bulk query system 
with branch prediction

● High Energy physics data are compressed
● Significant number of little data chunk

● We vectorize sequential I/O operations 
into Bulk operations
● Based on HTTP Multi-part content type
● Vector size > 10000 chunks

●  We use a cache with informed 
prefetching “TTreeCache”

●  reduce the number of network queries.



    

Optimization: Bulk queries system 
with Informed Prefetching



    

Details of the benchmarks (1)

● Execute a HEP analysis job based on the 
ROOT data analysis framework

● Each job reads 12000 events in a 700 
MBytes in a compressed file remotely

● We use for remote I/O
●  XrootD toolkit with the XrootD protocol

● DAVIX with the HTTP protocol



    

Details of the benchmarks (2)

● Each job is executed with the 
HammerCloud grid testing framework 

●  Results obtained on 576 run over 12 days

● Tests executed against Disk Pool Manager 
1.8.8 storage system
● 4 Core Intel Xeon CPU
● 32 GB of RAM
● 1 Gigabit network link



    

Performance after optimizations

Average Execution time of the Job

CERN ↔ CERN : Analysis over LAN access

Time (s)

CERN ↔ UK:  Analysis over European  PAN Network



    

Problem: Reliability and replicas

● We are in a world wide distributed 
environment
● Data object replicas are spread in different 

datacenters and stored with different Storage 
system technologies

● HTTP is a 1-1 client server protocol
● No recovery in case of server failure



    

Metalink and HTTP

● Metalink is a 
standard file format 
supporting replicas 
and meta-data 
descriptions

● We use metalink for 
transparent recovery 
in case of server 
unavailability  

 <?xml version="1.0" encoding="UTF-8"?>
 <metalink xmlns="urn:ietf:params:xml:ns:metalink">
   <published>2009-05-15T12:23:23Z</published>
   <file name="example.ext">
     <size>14471447</size>
     <identity>Example</identity>
     <version>1.0</version>

   <file name="example2.ext">
     <size>14471447</size>
     <identity>Example2</identity>
     <description>
     Another description for a second file.
     </description>
     <hash type="sha-256">2f548ce50c459a0270e85a7d63b2383c5523...</hash>
     <url location="de"
          priority="1">ftp://ftp.example.com/example2.ext</url>
     <url location="fr"
          priority="1">http://example.com/example2.ext</url>
     <metaurl mediatype="torrent"
          priority="2">http://example.com/example2.ext.torrent</metaurl>
   </file>
 </metalink>



    

Optimization: Metalink and HTTP 
for transparent recovery

Dynamic Storage
Federator

DFS

Worker 
Node



    

Optimization: Metalink and HTTP 
for transparent recovery

●  Transparently recovers from a server 
failure as long as one replica is 
available world wide

● Multi-stream from different sources 
based on HTTP 



    

Conclusion

● HTTP can compete with HPC specific 
protocols for data analysis use cases.

● HTTP weakness in HPC can be compensate  
with informed prefetching, session recycling 
and Large bulk operation support.

●  Reliability of I/O over HTTP in Distributed 
environment can be greatly improved with 
Metalink support.



    

About DAVIX

● Offers a I/O and a file management API

● Shared Library C++  & set of tools

● Already released
● Open Source
● Integrated with the ROOT Analysis 
framework

● Used by the File Transfer Service of of the 
Worldwide LHC Computing Grid



    

Informations

http://dmc.web.cern.ch/projects/davix/home

About Davix

About our HTTP dynamic federation

https://svnweb.cern.ch/trac/lcgdm/wiki/Dynafeds

http://dmc.web.cern.ch/projects/davix/home

About the ROOT analysis framework

http://root.cern.ch/drupal/



    

Questions ?
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