

MemTest: A Novel Benchmark for In-memory Database

Qiangqiang Kang, Cheqing Jin, Zhao Zhang, Aoying Zhou

Institute for Data Science and Engineering, East China Normal University, Shanghai, China

- Motivation & Introduction
- Metrics
- Data Model
- Workload
- Experiment
- Conclusions

Qiangqiang Kang, ECNU

Motivation

- The price of memory continues to decrease, making it possible to deploy a computer system with huge memory size
- Several commercial and open source providers have devoted huge resources to develop IMDBs (In-Memory Databases)
- The appearance of more and more IMDB products brings a need to devise a benchmark to test and evaluate them fairly and objectively

Database Benchmark

- The development of benchmark has shown great success in the past 30 years
 - For relational DBMS (RDBMS)
 - Wisconsin Benchmark, CH-Benchmark, Set query Benchmark
 - TPC-X series: TPC-C, TPC-E, TPC-H, TPC-DS, etc.
 - For object-oriented DBMS
 - OO7 and Bucky, etc
 - For XML data
 - XMARK and EXRT, etc
 - For big data applications
 - YCSB, YCSB++ and BigBench, etc

Some Properties in IMDBs

- Data Compression
 - In IMDBs, data is often stored in compressed form.
- Minimal Memory Space
 - Each IMDB has a request for the minimal memory space.
- CPU
 - Most conventional systems attempt to minimize disk access
 - IMDBs have overlooked I/O cost and focus more on the processing cost of CPU
- Cache
 - Cache is employed to reduce the data transfer between memory and CPU.

Components in MemTest

- Metrics
 - Compression ratio, response time, minimal memory space, CPU usage and cache miss.
- Data model
 - Based on an inter-bank transaction scenario
 - A star schema
 - one big table (>200 columns)
 - five small tables (<30 columns)
 - A new data generator
 - uniform and skew distribution
 - Scalable
- Workload
 - Covering business questions
 - OLAP & OLTP
 - 12 queries and 2 transactions

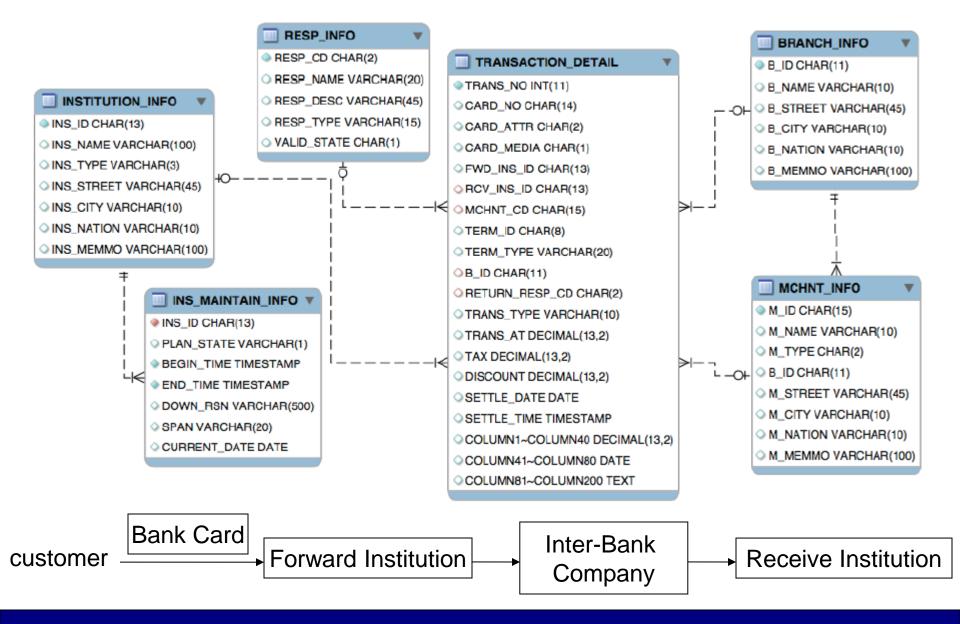
Comparison with existing works

Characteristic	SSB	TPC-C	ТРС-Н	TPC-DS	CH- Benchmark	MemTest
OLTP	\times	V	X	×	V	V
OLAP	V	×	٧	V	V	V
Multi-user model	×	٧	٧	٧	V	V
Compression Ratio	X	×	×	×	×	V
Minimal Memory Space	×	×	×	×	×	V
CPU Usage	\times	×	X	×	X	V
Cache Miss	\times	×	×	×	×	V

- Introduction & Motivation
- Metrics
- Data Model
- Workload
- Experiment
- Conclusions

Qiangqiang Kang, ECNU

Metrics


- Basic Performance Measure
 - Response time
 - The total time of 12 queries and two transactions
- CPU Measures
 - CPU Usage
 - Cache Miss
- Memory Measures
 - Compression Ratio
 - S_{Mem}: the data size in memory
 - S_{Disk}: the data size in disk
 - Minimal Memory Space
 - Except the data size, it needs to consider the memory allocation to execute the workload

- Introduction & Motivation
- Metrics
- Data Model
- Workload
- Experiment
- Conclusions

Qiangqiang Kang, ECNU

Schema

BPOE-05 2014, Hangzhou, China

Qiangqiang Kang, ECNU

Table Structure

- TRANSACTION_DETAIL
 - details the transaction information, including the receive institution, the forward institution, the card
- RESP_INFO
 - uses RESP_CD to judge whether the transaction is successful and have many types of response codes
- BRANCH_INFO
 - stores the information of branches, including its name, nation, city, street and so on
- MCHNT_INFO
 - stores the information of merchants, including name, type of a merchant, address and so on
- INSTITUTION_INFO
 - records the information of institutions.
- INS_MAINTAIN_INFO
 - stores the abnormal information of institutions

Data Generation and Distribution

• The following table lists the detailed distribution of data after analyzing a realistic applications for one day.

	Ins	Mchnt	Branch		$Resp_Cd$		Trans Freq
Big Cities	60%	70%	50%	Suc	90%	Big Ins	80%
Small Cities	40%	30%	50%	Fail	10%	Small Ins	20%

- Generate data which conforms uniform distribution and skew distribution
 - Uniform distribution: use RND function
 - Skew distribution
 - Given a set {r1, r2, r3, r4, r5}, assume the skewed rate of r1 is 0.7
 - Generate a Random Number n between 1 and 10 by using RND function
 - If n<=7, r1 will be generated, else one of the set {r2, r3, r4, r5} will be generated randomly

- Introduction & Motivation
- Metrics
- Data Model
- Workload
- Experiment
- Conclusions

Qiangqiang Kang, ECNU

Business Cases (1)

- There are four query groups and two transactions.
- Query Group 1: Institutions' Transaction Statistics and Analysis
 - Query 1.1 computes the total amount, average tax and average discount of each institution for each day
 - Query 1.2 computes the transaction frequency of each institution for each day
 - Query 1.3 keeps count of the successful rate and failure rate of each institution for each day according to the response code.

• Query Group 2: Transaction Quality Analysis

- Query 2.1 finds the total number and amount of transactions for each day according to different response codes
- Query 2.2 keeps count of the total number of failure transactions according to the failure response code
- Query 2.3 computes the total number of institutions, terms and merchants.

Business Cases (2)

Query Group 3: Transaction Compliance Analysis

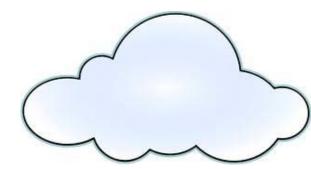
- Query 3.1 computes low-amount transaction number and average transaction amount according to the term, merchant and branch
- Query 3.2 records the sign-in transactions and return the top 10 merchants and terms in the branch
- Query 3.3 return the high-rate failure transactions for each day

Query Group 4: Institutions' Abnormal Statistics and Analysis

- Query 4.1 divides the institutions into three classes (e.g. high-incident, middleincident, low-incident) according to their abnormal frequency in the history
- Query 4.2 computes the number of cards, terms, branches and merchants, etc for each abnormal institution in the transaction
- Query 4.3 computes the total amount, average tax and average discount of transactions during the institutions incident

Business Cases (3)

- Transaction 1: Generating New Transactions
 - insert data into table TRANSACTION_DETAIL every day


- Transaction 2: Capturing the Most Abnormal Institutions
 - find the most abnormal institution

Technical Details

- In the workload, all queries have aggregations, 90% of queries have join operators and a transaction includes update operations.
- A query may have some arguments, like SETTLE_DATE, VALID_STATE and RESP_TYPE. All the arguments can be randomly replaced by a query generator from a predefined dictionary.
- We list the specification of query 2.3 as an example.

SELECT RESP_CD, RESP_NAME, INS_NAME, TERM_ID, TERM_TYPE, M_NAME, COUNT(*) TRANS_NUM
FROM TRANSACTION_DETAIL T, RESP_INFO R, INSTITUTION_INFO I, MCHNT_INFO M
WHERE T.RETURN_RESP_CD=R.RESP_CD AND T.RCV_INS_ID=I. INS_ID AND T.MCHNT_CD=M.M_ID AND RESP_TYPE='DELTA1' AND VALID_STATE='DELTA2' AND SETTLE_DATE BETWEEN 'DELTA3' AND 'DELTA4'
CROUP BY RESP_CD, RESP_NAME, INS_NAME, TERM_ID, TERM_TYPE, M_NAME
ORDER BY TRANS_NUM DESC;

- Introduction & Motivation
- Metrics
- Data Model
- Workload
- Experiments
- Conclusions

Qiangqiang Kang, ECNU

Experiments

- Experimental Configuration
 - Server Under Test
 - 0.5 TB memory and 8 CPUs
 - L1 Cache (private): 32KB
 - L2 Cache (private): 256KB
 - L3 Cache (shared within a CPU): 30MB
 - Three IMDBs: DBMS-X, DBMS-Y, and MonetDB
- By default, the memory size that three IMDBs can use is 90% of total memory and all queries are generated previously and keep unchanged during the benchmark run

Testing for Response Time (1)

• Execution time of Q1.1, Q1.2, Q1.3, Q2.1, Q2.2, Q3.1 and T2 are low in three IMDBs since their operators are relatively simple.

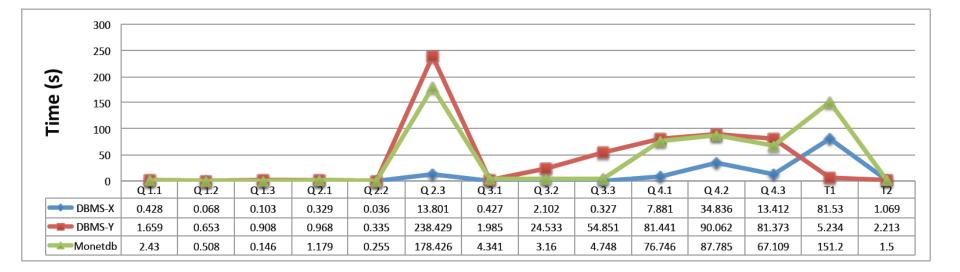
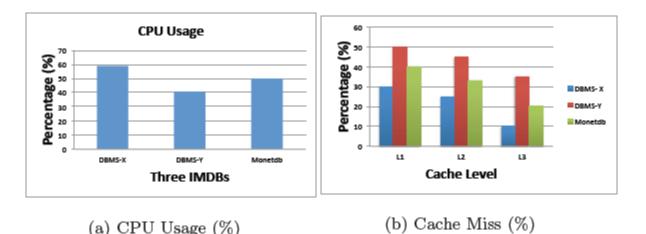


Fig. 2: Testing for Query and Transaction (SF=2)

Testing for Response Time (2)

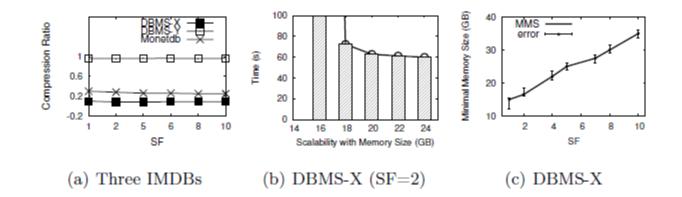
- We also test the performance of IMDBs when multiple users execute the whole workload.
- In this test, we implement a parallel tool to simulate the operator of multiple users.
- We can see that the results of three IMDBs are similar and DBMS-X has a slightly better scalability than other two IMDBs..

Users IMDB	2	4	6	
DBMS-X	558.12s	1412.51s	$\geq 1500 \mathrm{s}$	
DBMS-Y	824s	$\geq 1800s$	_	
Monetdb	613s	$\geq 1500 \mathrm{s}$	_	•••


Table 3: Testing in the multi-user model

BPOE-05 2014, Hangzhou, China

Qiangqiang Kang, ECNU


Testing for CPU Measures

- We can see that three IMDBs have a relatively high CPU usage (> 40%) and DBMS-X and Monetdb behave better than DBMS-Y. This phenomenon can be explained based on the physical organization.
- If the data is organized based on the column-store style, it can load more data tuples that are referenced

Testing for Memory Measures

- It is observed that DBMSX and monetdb have better compression ratios, approximately 0.1 and 0.3. DBMS-Y almost has no compression. That is because in the column-store system a field stores the data sets which have the same type. (The first figure in the left)
- Testing for MMS is an iterative plan and we need to change the memory size continuously. (Two figures in the right)

- Introduction & Motivation
- Metrics
- Data Model
- Workload
- Experiment
- Conclusions

Qiangqiang Kang, ECNU

Conclusion

- MemTest takes special consideration of main characteristics of IMDBs.
 - Novel metrics are especially designed for testing and evaluating IMDBs.
 - A schema based on inter-bank transaction applications are provided and the workload is devised to cover OLAP and OLTP operations.
 - Finally, experiments are conducted to verify the effectiveness and efficiency of our benchmark.
- For future work, we may devise more complex queries and conduct the experiments on more IMDBs.

Thank You

Questions?

BPOE-05 2014, Hangzhou, China

Qiangqiang Kang, ECNU