
Predoop: Preempting Reduce Task
for job execution accelerations

Yi Liang

Beijing University of Technology

2014.09.05

Outline

• Motivation

• Main Contributions

• Performance Evaluation

• Conclusion and Future work

Outline

• Motivation

• Main Contributions

• Performance Evaluation

• Conclusion and Future work

Background

• Hadoop Map/Reduce

Programming the commodity computer clusters to
perform the large-scale data processing

• Scheduling granularity --- task level

• Resource allocation --- once allocated, held till
task ends

Motivation: Idle period

• Data dependency among Map/Reduce tasks --
- map output - reduce input

Intermediate Data Data Dependency

Motivation

• Idle time of reduce tasks

 Different Start time of map tasks Different execution time of map

tasks

time

R

Map2

Reduce I R C

Map1

Map4

Map3

task

time

R

Map2

Reduce I R C

Map1

Map4

Map3

task

R: Read data

I: Idle

C: Compute

T1 T2 T3 T4 T5
T1 T2 T3 T4 T5

Motivation

• Running 20 WordCount map/reduce jobs on a
12-node cluster

Job Number 5 15 20

Idle time of reduce task / total
execution time of reduce task

31.2% 31.8% 44.5%

Idle time of reduce task / total
execution time of job

13.9% 23.3% 15.7%

Outline

• Motivation

• Main Contributions

• Performance Evaluation

• Conclusion and Future work

Basic idea of Predoop

–Idea 1: Preempt the idle reduce tasks
to mitigate the idle time

–Idea 2: Allocate the preempted
resources to map tasks on schedule to
accelerate the job execution

Main Contributions

– The preempting-resuming model for the reduce task

• To determine the candidate time point of reduce
task preempting and resuming

– Preemption-aware task scheduling

• Scheduling strategy to allocate preempted
resources

– The preemptive mechanism for map tasks and reduce
tasks

• To enable the preemption of map tasks and reduce
tasks

The preempting-resuming model

– Basic idea

• Once the length of a reduce task’s idle time is long
enough, the start point of its idle time can be
determined as the candidate preempting time
point.

– Determination factors

• the estimation of the start point of reduce task’s
idle time

• the estimation of the length of reduce task’s idle
time

The preempting-resuming model
• Estimation of the start point of reduce task’s

idle time

– In predoop, the estimated start time point is the
candidate time point to preempt a reduce task

The preempting-resuming model

• Estimation of the length of reduce task’s idle
time

– Remaining execution time of map task (Trm) is
calculated based on the hypothesis that map task
spends the same time on processing each data
element.

The preempting-resuming model

• Preempting model of reduce tasks

– Idea: Once the minimum possible length of a
reduce task’s idle time accounts for a specific
proportion(DP) of the average execution of the
map tasks

– The start point is determined as the preempting
point.

The preempting-resuming model

(2) Resuming model of reduce task

– Condition 1

• A reduce task can be resumed only when a specific
proportion(Dr) of its depended map tasks
completed since its last preemption.

– Condition 2

• All map tasks allocated with the preempted
computing resource of the reduce task are not in
the intermediate data partition phase.

Preemption-aware task scheduling

• Preemption-aware task scheduling

– Basic idea

(1) Queue map/reduce jobs in FIFO way

(2) Perform the scheduling based on three rules

(3) Assign the preempted resources to map
tasks with the consideration of data locality

Preemption-aware task scheduling

• Three Scheduling rules

Rule 1

The allocation of preempted resource is prior to the regular
resource.

Rule 2

The preempted resource can only be allocated to the map
tasks.

Rule 3

The resources allocated to a map task can only released
from one preempted reduce task.

Outline

• Motivation

• Main Contributions

• Performance Evaluation

• Conclusion and Future work

Performance evaluation setup

• Experimental Methodology
– Comparison: Predoop vs. YARN with FIFO scheduler
– Workload

• Single-application workload: Wordcount and Sort from
BigDataBench

• Mix workloads from SWIM

– Cluster
• 13-node cluster, Each node is equipped with two Intel(R)

Pentium(R) 4 cpus, 3GB memory and one 160GB SATA hard
driver.

• HDFS Block: 64MB

– Performance Metric
• Average Turnaround Time

Evaluation target

• Evaluation

– Performance of single-application workloads

– Performance of the mix workloads

– Performance sensitivity to the threshold
configurations

– Performance scalability

Performance of single-application
workloads

Configuration

– the input data size set as: 8GB, 10GB, 12GB, 14GB,
16GB.

– the reduce task number set as 8 for each job

– Memory requirement of each task set as 1024MB
as default.

– Dp : 20%, Dr :40%

Performance of single-application
workloads

Performance of the mix workloads

Configuration

– 4 mix workloads from SWIM

– the memory requirement of each map and reduce
task varies as 512MB, 1GB (default set in YARN),
and 1.5GB

– Dp : 20%, Dr :40%

Performance of the mix workloads

 Bin1 Bin2 Bin3 Bin4

Job number 120 150 180 200

Total size of Map Input data (GB) 46.66 64.19 72.32 82.94

Total size of Intermediate data (GB) 6 6.25 6.47 6.58

Total size of Reduce Output data (GB) 1.36 1.44 2.26 7.19

Performance of the mix workloads

Performance sensitivity to the
threshold configurations

Configuration

– Choose Bin1 and Bin4

– Dp varies as 10%,20%, 30%, 40%, 50%, 60%, 70%

– Dr varies as 20%, 40%, 60%, 80%, 100%

The Percentage of Job Acceleration

Performance Scalability

• Configuration

– generate five groups of workloads for the cluster
size of 4,6,8,10,12

– For each group, generate three workloads with
120 jobs each

– calculate the average job turnaround time of the
corresponding three workloads

Performance Scalability

Conclusion and Future work

• Predoop: Preempting resources of idle reduce
tasks to on-schedule map tasks to accelerating
job execution
– Preempting-resuming model of reduce task
– Preemption-aware task scheduling
– Preemptive mechanism of reduce tasks and map tasks

• Ongoing work

– Improving the preempting-resuming model for more
complex map/reduce jobs

– The online adjustment of the threshold in the
preemption model.

Outline

• Motivation

• Main Contributions

• Performance Evaluation

• Conclusion and Future work

Thanks

