
Page	Table	Walk	Aware	Cache	
Management	for	Efficient	

Big	Data	Processing

Eishi Arima†‡ and	Hiroshi	Nakamura†

†The	University	of	Tokyo
‡Lawrence	Livermore	National	Laboratory

4/9/17 BPOE-8 1



Executive	Summary

• Background: The	performance	penalty	of	page	table	walks after	
TLB	misses	is	serious	for	modern	computer	systems.
• It	is	reported	around	40% of	the	total	execution	time	is	spent	on	the	
virtual	to	physical	address	translation	while	executing	applications	that	
use	very	large	memory	with	irregular	access	patterns	
[A.Bhattacharjee+MICRO2013]

• Our	focus:	Cache	management	for	mitigating	the	overhead	of	
page	table	walks
• Caches	are	accessed	during	page	table	walks	to	fetch	Page	Table	
Entries(PTEs)	but	not	optimized	accordingly

• Our	proposal: Storing	PTEs	preferentially	on	upper	level	caches
• PTEs fundamentally	have	much	higher	locality	than	usual	data	
• PTEs are	usually	evicted from	upper	level	caches	before	re-referenced	
due	to	the	conflict	with	data	brought	by	frequent	cache	misses

4/9/17 BPOE-8 2



Virtual	memory	and	page	table	walk

• Virtual	memory	is	ubiquitous	in	modern	computer	systems
• Benefits:	process	isolation,	inter-process	data	sharing	and	memory	
capacity	management	

• Page	table:	used	for	virtual	to	physical	memory	translation
• In	modern	systems,	it	is	implemented	with	a	4-level	radix	tree

• A	table	access	called	page	table	walk requires	4	times	memory	references

4/9/17 BPOE-8 3

Page	Table

Virtual	address
Physical	address1

2
3

4

Page	table	walk



PTEs

PTEs

PWC

Conventional	hardware	for
accelerating	page	table	walk
• TLB:	A	cache	that	keeps	page	table	entries	(PTEs,	the	lowest	level	
entries	of	page	tables)
• Due	to	the	size	limitation,	only	few	10s	of	PTEs	are	cached	on	a	TLB

• Page	walker	cache	(PWC): A	cache	that	keeps	higher	level	entries	
of	page	tables
• Also	known	as	MMU	Cache

• In	addition,	usual	data	caches	can	also	keep	these	entries

4/9/17 BPOE-8 4

TLB

Page	Table

Vaddr Paddr L1D L2

Vaddr

Hardware	implementation

Miss

Hit Paddr

Page	Table	WalkPTEs

PTEs



Performance	overhead	of	
page	table	walks

4/9/17 BPOE-8 5
Performance	overhead	of	page	table	walk	

[A.Bhattacharjee+MICRO2013]	

PTE	access	overhead

PWC

TLB
L1D L2

Vaddr

Miss

Hit Paddr

PTE	access

• The	overhead	of	page	table	walks	accounts	for	43% of	total	
execution	time	at	the	worst	case.	
• 28% of	the	execution	time	is	spent	on	PTE	accesses	which	
follow	after	PWC	accesses
• We	should	revisit	the	cache	management	for	PTEs to	mitigate	the	
performance	overhead	of	page	table	walks



Goal,	observation	and	proposal

• Goal:
• Mitigating	the	performance	overhead	of	page	table	walks	by	
optimizing	allocations	of	PTEs	on	caches

• Observations:
• PTEs	fundamentally	have	much	higher	locality	than	usual	data	
• PTEs	are	usually	evicted	from	upper	level	caches	before	re-
referenced	

• Proposal:
• Cache	replacement	algorithm	that	preferentially	stores	PTEs	
on	caches

4/9/17 BPOE-8 6



Goal,	observation	and	proposal

• Goal:
• Mitigating	the	performance	overhead	of	page	table	walks	by	
optimizing	allocations	of	PTEs	on	caches

• Observations:
• PTEs	fundamentally	have	much	higher	locality	than	usual	data	
• PTEs	are	usually	evicted	from	upper	level	caches	before	re-
referenced	

• Proposal:
• Cache	replacement	algorithm	that	preferentially	stores	PTEs	
on	caches

4/9/17 BPOE-8 7



Access	locality	difference	
between	PTEs	and	data
• A	PTE	must	be	referenced	to	access	data.
• A	PTE	is	associated	with	a	page	(4KB),	thus	the	number	of	
accesses	to	it	is	the	same	as	that	to	the	page.

• So,	a	PTE	is	accessed	much	more	times	than	one	of	data	in	the	
associated	page	even	though	they	occupy	the	same	size	(8Byte).
• Thus,	PTEs	should	remain	in	upper	level	caches

4/9/17 BPOE-8 8Physical	Memory

PTEs

Data

1.PTE	access

2.data	access

Associated	4KB	page

8Byte



Hit	rate	of	PTE	accesses

• Although	PTE	accesses	have	higher	locality,	they	cause	
frequent	misses	on	upper	level	caches
• In	the	worst	case,	the	PTE	hit	rate	on	L1D	cache	is	only	15%

4/9/17 BPOE-8 9



Conflict	on	upper	level	caches
• This	is	because	PTEs	are	evicted	from	L1D	cache	due	to	
conflict	with	large	data	brought	by	frequent	misses
• APKI	of	PTEs	<	MPKI	of	data,	on	L1D	cache

• APKI:	Access	Per	Kilo	Instruction
• MPKI:	Miss	Per	Kilo	Instruction

• We	need	to	prevent	PTEs	from	eviction!

4/9/17 BPOE-8 10

cache

data
miss

PTEs
evicted



Goal,	observation	and	proposal

• Goal:
• Mitigating	the	performance	overhead	of	page	table	walks	by	
optimizing	allocations	of	PTEs	on	caches

• Observations:
• PTEs	fundamentally	have	much	higher	locality	than	usual	data	
• PTEs	are	usually	evicted	from	upper	level	caches	before	re-
referenced	

• Proposal:
• Cache	replacement	algorithm	that	preferentially	stores	PTEs	
on	caches

4/9/17 BPOE-8 11



Concept
• Classifying	cache	lines	as	follows

• PTEs, Hot	data and	Cold	data
• Hot	data: intensively	accessed	data
• Cold	data: non-reused	dead	data	or	reused	very	far	future

• Goal:	keeping	PTEs on	caches	without	evicting	hot	data	
from	them

4/9/17 BPOE-8 12
GoalConventional

cold
data

cache	contents

cold
data

imcoming

PTEs

cache	contents

PTEs
evicted

hot
data

hot
data

cold
data

cache	contents

cold
data

imcoming

PTEs

cache	contents

PTEs
evicted

hot
data

hot	data

later later



Basic	replacement	algorithm
• Our	algorithm	has	a	stack	to	define	eviction	priority	like	LRU
• Our	algorithm	consists	of	insertion/promotion policies	
which	use	the	stack	like	LRU
• insertion:	defining	the	eviction	order	of	incoming	line
• promotion:	updating	the	eviction	order	for	reused	line

• The	figure	below	shows	the	example	of	LRU

4/9/17 BPOE-8 13

Eviction
Priority lower higher

Incoming	Line

0 1 N.	.	. .	.	.	.
Victim

to	MRU

Insertion	Policy
lower higher

Reused	Line

0 1 N.	.	. .	.	.	.

to	MRU

Promotion	Policy
Example	of	LRU



Proposed	replacement	algorithm
• Our	algorithm	considers	the	classification	of	PTEs, hot	data
and	cold	data in Insertion/Promotion policies	unlike	LRU
• Insertion:	The	eviction	priority	of	incoming	PTE	line is	set	to	0,	
but	a	data	line is	set	to	I
• Most	of	the	data	lines	keep	only	non-reused	cold	data	

• Promotion:	The	eviction	priority	of	reused	line	is	set	to	0
• We	regard	re-referenced	data	in	the	cache	as	hot	data	(or	PTEs)

4/9/17 BPOE-8 14

Eviction
Priority lower higher

Incoming	Line

0 1 I N.	.	. .	.	.	.
Victim

PTE

Insertion	Policy
lower higher

Reused	Line

0 1 N.	.	. .	.	.	.

Promotion	Policy

Data
(mostly	cold) (regarded	as	hot)



Evaluation	setup
• We	evaluated	our	method	with	full	system	simulator	Gem5
• We	selected	several	applications	from	SPEC2006,	Biobench
and	Parsec,	which	require	quite	large	memory	with	irregular	
access	patterns
• The	Insertion	Position	I is	optimized	for	each	cache	so	that	
the	geometric	mean	of	performance	is	maximized
• So,	I is	set	the	same	value	for	all	applications

4/9/17 BPOE-8 15



Performance	comparison

• Proposed	method	improves	performance	few	%	
compared	to	the	conventional	LRU	
• Proposed	method	outperform	LRU	for	all	applications
• But,	it	still	has	room	for	improvement	as	shown	in	later	slides

4/9/17 BPOE-8 16



PTE	hit	rate	on	L1d	cache

• Because	L1D	cache	hit	rate	is	the	most	important,	we	focus	
on	its	result	in	this	presentation
• Our	proposal	improves	PTE	hit	rate	on	L1d	cache	about	10%
on	average	and	40% at	the	best
• But,	there	is	still	large	room	for	improvement

• So,	more	aggressive	method	is	necessary	(future	work)

4/9/17 BPOE-8 17

Room	for	improvement

40% 10%



Data	hit	rate	on	L1d	cache

• Our	proposal	does	not	decrease	the	data	hit	rate	on	
L1D	cache
• Proposed	method	can	successfully	keep	intensively	
accessed	hot	data	on	L1d	cache,	and	only	non-reused	
cold	data	are	replaced	by	PTEs

4/9/17 BPOE-8 18



Conclusion	and	future	direction

• Conclusion:
• To	mitigate	the	overhead	of	page	table	walks,	we proposed	
and	evaluated	a	cache	management	scheme	that	optimize	
the	allocation	of	PTEs	on	caches.

• Future	direction:
• Developing	more	sophisticated	method	that	can	more	
aggressively	store	PTEs	on	upper	level	caches
• The	insertion	positions I of	should	be	dynamically	
optimized	during	program	execution	time

• Software-side	approach	may	necessary
• Evaluating	our	methods	with	well-known	big	data	workloads	
like	BigDataBench[L.	Wang+HPCA2014]

4/9/17 BPOE-8 19


