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Executive	Summary

• Background: The	performance	penalty	of	page	table	walks after	
TLB	misses	is	serious	for	modern	computer	systems.
• It	is	reported	around	40% of	the	total	execution	time	is	spent	on	the	
virtual	to	physical	address	translation	while	executing	applications	that	
use	very	large	memory	with	irregular	access	patterns	
[A.Bhattacharjee+MICRO2013]

• Our	focus:	Cache	management	for	mitigating	the	overhead	of	
page	table	walks
• Caches	are	accessed	during	page	table	walks	to	fetch	Page	Table	
Entries(PTEs)	but	not	optimized	accordingly

• Our	proposal: Storing	PTEs	preferentially	on	upper	level	caches
• PTEs fundamentally	have	much	higher	locality	than	usual	data	
• PTEs are	usually	evicted from	upper	level	caches	before	re-referenced	
due	to	the	conflict	with	data	brought	by	frequent	cache	misses
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Virtual	memory	and	page	table	walk

• Virtual	memory	is	ubiquitous	in	modern	computer	systems
• Benefits:	process	isolation,	inter-process	data	sharing	and	memory	
capacity	management	

• Page	table:	used	for	virtual	to	physical	memory	translation
• In	modern	systems,	it	is	implemented	with	a	4-level	radix	tree

• A	table	access	called	page	table	walk requires	4	times	memory	references
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PTEs

PTEs

PWC

Conventional	hardware	for
accelerating	page	table	walk
• TLB:	A	cache	that	keeps	page	table	entries	(PTEs,	the	lowest	level	
entries	of	page	tables)
• Due	to	the	size	limitation,	only	few	10s	of	PTEs	are	cached	on	a	TLB

• Page	walker	cache	(PWC): A	cache	that	keeps	higher	level	entries	
of	page	tables
• Also	known	as	MMU	Cache

• In	addition,	usual	data	caches	can	also	keep	these	entries
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Performance	overhead	of	
page	table	walks
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Performance	overhead	of	page	table	walk	

[A.Bhattacharjee+MICRO2013]	

PTE	access	overhead

PWC

TLB
L1D L2

Vaddr

Miss

Hit Paddr

PTE	access

• The	overhead	of	page	table	walks	accounts	for	43% of	total	
execution	time	at	the	worst	case.	
• 28% of	the	execution	time	is	spent	on	PTE	accesses	which	
follow	after	PWC	accesses
• We	should	revisit	the	cache	management	for	PTEs to	mitigate	the	
performance	overhead	of	page	table	walks



Goal,	observation	and	proposal

• Goal:
• Mitigating	the	performance	overhead	of	page	table	walks	by	
optimizing	allocations	of	PTEs	on	caches

• Observations:
• PTEs	fundamentally	have	much	higher	locality	than	usual	data	
• PTEs	are	usually	evicted	from	upper	level	caches	before	re-
referenced	

• Proposal:
• Cache	replacement	algorithm	that	preferentially	stores	PTEs	
on	caches
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Access	locality	difference	
between	PTEs	and	data
• A	PTE	must	be	referenced	to	access	data.
• A	PTE	is	associated	with	a	page	(4KB),	thus	the	number	of	
accesses	to	it	is	the	same	as	that	to	the	page.

• So,	a	PTE	is	accessed	much	more	times	than	one	of	data	in	the	
associated	page	even	though	they	occupy	the	same	size	(8Byte).
• Thus,	PTEs	should	remain	in	upper	level	caches
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Hit	rate	of	PTE	accesses

• Although	PTE	accesses	have	higher	locality,	they	cause	
frequent	misses	on	upper	level	caches
• In	the	worst	case,	the	PTE	hit	rate	on	L1D	cache	is	only	15%
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Conflict	on	upper	level	caches
• This	is	because	PTEs	are	evicted	from	L1D	cache	due	to	
conflict	with	large	data	brought	by	frequent	misses
• APKI	of	PTEs	<	MPKI	of	data,	on	L1D	cache

• APKI:	Access	Per	Kilo	Instruction
• MPKI:	Miss	Per	Kilo	Instruction

• We	need	to	prevent	PTEs	from	eviction!
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Goal,	observation	and	proposal

• Goal:
• Mitigating	the	performance	overhead	of	page	table	walks	by	
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• PTEs	are	usually	evicted	from	upper	level	caches	before	re-
referenced	

• Proposal:
• Cache	replacement	algorithm	that	preferentially	stores	PTEs	
on	caches
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Concept
• Classifying	cache	lines	as	follows

• PTEs, Hot	data and	Cold	data
• Hot	data: intensively	accessed	data
• Cold	data: non-reused	dead	data	or	reused	very	far	future

• Goal:	keeping	PTEs on	caches	without	evicting	hot	data	
from	them
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Basic	replacement	algorithm
• Our	algorithm	has	a	stack	to	define	eviction	priority	like	LRU
• Our	algorithm	consists	of	insertion/promotion policies	
which	use	the	stack	like	LRU
• insertion:	defining	the	eviction	order	of	incoming	line
• promotion:	updating	the	eviction	order	for	reused	line

• The	figure	below	shows	the	example	of	LRU
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Proposed	replacement	algorithm
• Our	algorithm	considers	the	classification	of	PTEs, hot	data
and	cold	data in Insertion/Promotion policies	unlike	LRU
• Insertion:	The	eviction	priority	of	incoming	PTE	line is	set	to	0,	
but	a	data	line is	set	to	I
• Most	of	the	data	lines	keep	only	non-reused	cold	data	

• Promotion:	The	eviction	priority	of	reused	line	is	set	to	0
• We	regard	re-referenced	data	in	the	cache	as	hot	data	(or	PTEs)
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Evaluation	setup
• We	evaluated	our	method	with	full	system	simulator	Gem5
• We	selected	several	applications	from	SPEC2006,	Biobench
and	Parsec,	which	require	quite	large	memory	with	irregular	
access	patterns
• The	Insertion	Position	I is	optimized	for	each	cache	so	that	
the	geometric	mean	of	performance	is	maximized
• So,	I is	set	the	same	value	for	all	applications
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Performance	comparison

• Proposed	method	improves	performance	few	%	
compared	to	the	conventional	LRU	
• Proposed	method	outperform	LRU	for	all	applications
• But,	it	still	has	room	for	improvement	as	shown	in	later	slides
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PTE	hit	rate	on	L1d	cache

• Because	L1D	cache	hit	rate	is	the	most	important,	we	focus	
on	its	result	in	this	presentation
• Our	proposal	improves	PTE	hit	rate	on	L1d	cache	about	10%
on	average	and	40% at	the	best
• But,	there	is	still	large	room	for	improvement

• So,	more	aggressive	method	is	necessary	(future	work)
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Data	hit	rate	on	L1d	cache

• Our	proposal	does	not	decrease	the	data	hit	rate	on	
L1D	cache
• Proposed	method	can	successfully	keep	intensively	
accessed	hot	data	on	L1d	cache,	and	only	non-reused	
cold	data	are	replaced	by	PTEs
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Conclusion	and	future	direction

• Conclusion:
• To	mitigate	the	overhead	of	page	table	walks,	we proposed	
and	evaluated	a	cache	management	scheme	that	optimize	
the	allocation	of	PTEs	on	caches.

• Future	direction:
• Developing	more	sophisticated	method	that	can	more	
aggressively	store	PTEs	on	upper	level	caches
• The	insertion	positions I of	should	be	dynamically	
optimized	during	program	execution	time

• Software-side	approach	may	necessary
• Evaluating	our	methods	with	well-known	big	data	workloads	
like	BigDataBench[L.	Wang+HPCA2014]
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