Page Table Walk Aware Cache
Management for Efficient
Big Data Processing

Eishi Arima*™ and Hiroshi Nakamura®

TThe University of Tokyo
fLawrence Livermore National Laboratory

Executive Summary

* Background: The performance penalty of page table walks after
TLB misses is serious for modern computer systems.

* Itis reported around 40% of the total execution time is spent on the
virtual to physical address translation while executing applications that
use very large memory with irreqular access patterns
[A.Bhattacharjee+MICRO2013]

* QOur focus: Cache management for mitigating the overhead of
page table walks

e Caches are accessed during pa§e table walks to fetch Page Table
Entries(PTEs) but not optimized accordingly

* Our proposal: Storing PTEs preferentially on upper level caches
* PTEs fundamentally have much higher locality than usual data

* PTEs are usually evicted from upper level caches before re-referenced
due to the conflict with data brought by frequent cache misses

4/9/17 BPOE-8

Virtual memory and page table walk

* Virtual memory is ubiquitous in modern computer systems
» Benefits: process isolation, inter-process data sharing and memory
capacity management
e Page table: used for virtual to physical memory translation

* In modern systems, it is implemented with a 4-level radix tree
* A table access called page table walk requires 4 times memory references

| £

7 I~ 1 Physical address

\
\
N 1
\ |
\
N
N
N
N
\
N
\
N
\
N
N
\
N
.
N
\
N
N
\

Page Table

Virtual address 1

Page table walk

Conventional hardware for
accelerating page table walk

* TLB: A cache that keeps page table entries (PTEs, the lowest level
entries of page tables)

* Due to the size limitation, only few 10s of PTEs are cached on a TLB

* Page walker cache (PWC): A cache that keeps higher level entries
of page tables

e Also known as MMU Cache
* In addition, usual data caches can also keep these entries

!' Page Table Walk
— PWCTRK ==
Vaddr i
:‘ iss L1ID > L2
——>> LB [~ paddr
Hit
Page Table Hardware implementation

4/9/17

Performance overhead of
page table walks

* The overhead of page table walks accounts for 43% of total
execution time at the worst case.

* 28% of the execution time is spent on PTE accesses which
follow after PWC accesses

» We should revisit the cache management for PTEs to mitigate the
performance overhead of page table walks

W Measured page walk overhead
7 ldeal MMU caches overhead 29 234328

20
g ,/7PTE access overhead
£16 -t -R- R -1 -
IS
S 12 g~ B 71 7F Em maeeeEe
%
3 ; " 7 7 %
‘ 7 A 7 7 A7
s 2 AAA A7
27w A 7 2 I I I A v Z a2 A7
///’ "20—?? 7?’V.qéé%¢ éééé
—
pwc | PTEaccess s S 533 SLELLLR S »olg=5gLEE
. o oot @503 CF ES2s a5
R a S35 x 8 9 v E ¢ s o5 = << QT 28
©| O c w cuv
Miss T L1D > L2 32 £52es8d 3|2 EEs
(] 5 0 O X
g 35 o
—> TLB —> & = |
Vaddr Hit Paddr
Parsec Server Bio Spec

Performance overhead of page table walk
4/9/17 ' [A.Bhattacharjee+MICR0O2013]

Goal, observation and proposal

* Goal:

* Mitigating the performance overhead of page table walks by
optimizing allocations of PTEs on caches

e Observations:
* PTEs fundamentally have much higher locality than usual data

* PTEs are usually evicted from upper level caches before re-
referenced

* Proposal:

e Cache replacement algorithm that preferentially stores PTEs
on caches

Goal, observation and proposal

* Goal:

* Mitigating the performance overhead of page table walks by
optimizing allocations of PTEs on caches

e Observations:
* PTEs fundamentally have much higher locality than usual data

* PTEs are usually evicted from upper level caches before re-
referenced

* Proposal:

e Cache replacement algorithm that preferentially stores PTEs
on caches

Access locality difference
between PTEs and data

e A PTE must be referenced to access data.

A PTE is associated with a page (4KB), thus the number of
accesses to it is the same as that to the page.

* So, a PTE is accessed much more times than one of data in the
associated page even though they occupy the same size (8Byte).

* Thus, PTEs should remain in upper level caches

1.PTE access

PTEs /h-kByte
2.data access ,//' ‘\\\

Data / ' \f

Associated 4KB page

Physical Memory

Hit rate of PTE accesses

* Although PTE accesses have higher locality, they cause
frequent misses on upper level caches
* In the worst case, the PTE hit rate on L1D cache is only 15%

Low L1D hit rate HLIDmL2 ™3
100%

80%
60%
40%
20%

0%

Hit rate(PTE)

4/9/17 BPOE-8

Conflict on upper level caches

* This is because PTEs are evicted from L1D cache due to
conflict with large data brought by frequent misses
e APKI of PTEs < MPKI of data, on L1D cache
e APKI: Access Per Kilo Instruction
* MPKI: Miss Per Kilo Instruction

evicted miss
o €|pTEs |€m| data
* We need to prevent PTEs from eviction!
cache
¥ APKI(PTE) ™ MPKI(data)
o 20
— 3416 58 .4
::: 15
S 10
S s
S 5 | |
Q,>9Q & Q@q} Q\@L &é @3} S o,\o o & &
& & 5 TS T &

4/9/17 BPOE-8

10

Goal, observation and proposal

* Goal:

* Mitigating the performance overhead of page table walks by
optimizing allocations of PTEs on caches

e Observations:
* PTEs fundamentally have much higher locality than usual data

* PTEs are usually evicted from upper level caches before re-
referenced

* Proposal:

e Cache replacement algorithm that preferentially stores PTEs
on caches

Concept

* Classifying cache lines as follows
 PTEs, Hot data and Cold data

* Hot data: intensively accessed data
* Cold data: non-reused dead data or reused very far future

* Goal: keeping PTEs on caches without evicting hot data

from them
imcoming
hot cold
‘PTES data data

evicted

cache contents

PTE

: cold
data

4/9/17

cache contents

Conventional

BPOE-8

evicted

‘PTE

S

imcoming
hot cold
data data

cache contents

cold
data

& ‘PTE

s «— hot data

cache contents

Goal

12

Basic replacement algorithm

* Our algorithm has a stack to define eviction priority like LRU

e Our algorithm consists of insertion/promotion policies
which use the stack like LRU

* insertion: defining the eviction order of incoming line
* promotion: updating the eviction order for reused line

* The figure below shows the example of LRU

Incoming Line

to MRU to MRU
Reused Line
Victim
oll1]---. ... |N oll1]--. ... |N
Eviction > >
Priority lower . _ higher lower higher
Insertion Policy Promotion Policy

Example of LRU

Proposed replacement algorithm

* Our algorithm considers the classification of PTEs, hot data
and cold data in Insertion/Promotion policies unlike LRU

* Insertion: The eviction priority of incoming PTE line is set to O,
but a data line is set to /

* Most of the data lines keep only non-reused cold data
* Promotion: The eviction priority of reused line is setto 0
* We regard re-referenced data in the cache as hot data (or PTEs)

Incoming Line

PTE 'Data Reused Line
(mostly cold} (regarded as hot)
\ \ Victim \
oll1!l .- 71| ---.|N oll1]... ... | N
Eviction > S
Priority lower higher lower higher
Insertion Policy Promotion Policy

4/9/17 BPOE-8 14

Evaluation setup

* We evaluated our method with full system simulator Gem5

* We selected several applications from SPEC2006, Biobench

and Parsec, which require quite large memory with irregular
access patterns

* The Insertion Position I is optimized for each cache so that
the geometric mean of performance is maximized

* So, I is set the same value for all applications

| Name | Remarks |
CPU Icore, 2GHz, x86, 000, 4-way fetch/decode/issue
OS Linux 2.6.28, 4KB page
L1 D/I cache 32KB, 1-cycle latency, 8-way set assoc., 64B line
L1 D/ITLB 64-entry, 1-cycle latency, full assoc.,
page walk cache 256-entry, 2-cycle latency, 8-way set assoc
(L4/L3/L2 unified) T ' T

(private) L2 cache
(D/1 unified)
(shared) L3 cache 2MB, 30-cycle latency 16-way set assoc., 64B line

Main memory 200-cycle latency
4/9/17 15

256KB, 12-cycle latency 8-way set assoc., 64B line

Performance comparison

* Proposed method improves performance few %
compared to the conventional LRU

* Proposed method outperform LRU for all applications
* But, it still has room for improvement as shown in later slides

1.025

1.02
O
&1.015
C2) 1.01
51.005
& 1
0.995
0.99
5
Q‘}QQ ‘;@
& & é*

4/9/17

®LRU proposal

BPOE-8

16

PTE hit rate on L1d cache

e Because L1D cache hit rate is the most important, we focus
on its result in this presentation

* Our proposal improves PTE hit rate on L1d cache about 10%
on average and 40% at the best

e But, there is still large room for improvement
* So, more aggressive method is necessary (future work)

Room for improvement

100%
80%
60%
40%
20%

0%

PTE Hit rate(L1D)

'LRU proposal

Data hit rate on L1d cache

* Our proposal does not decrease the data hit rate on
L1D cache

* Proposed method can successfully keep intensively
accessed hot data on L1d cache, and only non-reused
cold data are replaced by PTEs

W LRU " proposal

4/9/17 BPOE-8 18

Conclusion and future direction

 Conclusion:

* To mitigate the overhead of page table walks, we proposed
and evaluated a cache management scheme that optimize
the allocation of PTEs on caches.

e Future direction:

* Developing more sophisticated method that can more
aggressively store PTEs on upper level caches

* The insertion positions I of should be dynamically
optimized during program execution time

» Software-side approach may necessary

* Evaluating our methods with well-known big data workloads
like BigDataBench[L. Wang+HPCA2014]

