
The Case for
Labeled von Neumann Architecture

（LvNA）

Yungang Bao
April, 2017

Institute of Computing Technology (ICT),
Chinese Academy of Sciences (CAS)

• Background

• Challenges

• Opportunities

• Our Efforts

• Summary

AgendaAgenda

User Perceived LatencyUser Perceived Latency

[1] L. Ravindranath et al., Timecard: Controlling User-Perceived Delays in Server-Based Mobile Applications, SOSP, 2013.

Datacenter processing
accounts for 50~60%

Datacenter processing
accounts for 50~60%

We are in the Cloud Era

Datacenters: The Giant Game

• I claim there really are almost no companies in the
world, just a handful, that are really investing in scaled
public cloud infrastructure.

• We have something over a million servers in our data
center infrastructure. Google is bigger than we are.
Amazon is a little bit smaller. ... So the number of
companies that really understand the network
topology, the data center construction, the server
requirements to build this public cloud infrastructure
is very, very small.

—Steve Ballmer，Microsoft’s former CEO，2013

Microsoft’s 15B USD Bet

[1] L. Albert Greenberg, SDN for the Cloud, SIGCOMM Keynote, 2015.

Alibaba’s 3B USD Datacenter

[1] “阿里绿色智能数据中心落户张北 将成北方数据心脏”, 阿里云资讯, 2016.

Utilization is LOW

• Survey of Gartner/McKinsey[1,2]: 6%~12%

• Amazon AWS Average CPU Utilization[3]：7%~17%

[1] http://www.gartner.com/newsroom/id/1472714.
[2] J. M. Kaplan, W. Forrest, and N. Kindler. Revolutionizing data center energy efficiency. McKinsey & Company, 2008.
[3] Huan Liu, A Measurement Study of Server Utilization in Public Clouds, 2011.

Sharing improves utilizations

Hardware
CPU/Mem/Disk/Network

Google’s Solutions

• Batch-Workload Data Center
– Highly shared

Software Optimization
Borg, cgroup,

backup request
LXC, priority,

sync-backup-tasks

+

Online
Service

Batch
Workload

v.s.

[1] L. Barrosa, J. Clidaras, U. Holzle, The Datacenter as a Computer (2nd Edition), July, 2013.

Google Datacenters Utilization: (Jan-Mar, 2013)[1]

Why not increase to 75%?

An example: Memcached
• CPU: 30%  70%
• Response time >10X，user experience 

Challenges

• A Tradeoff between

v.s.

Resource
Utilization

User
Experience

Response Time is Money

• Search
Response time
0.4s0.9s

• Ad revenue
reduces by 20%

Borg,
Linux Container,

Cgroups,
Backup Requests,

Priority,
Sync-back-tasks,

……

Google’s Efforts in Software Stack

[1] J. Dean, L. Barroso, “The tail at scale”, Communication of the ACM, Feb. 2013.
[2] J. Dean, “Achieving Rapid Response Times in Large Online Services”, talk at Berkeley, 2012.
[3] Abhishek Verma et al., Large-scale cluster management at Google with Borg, EuroSys, 2015.

Long Tail Latency
• Average latency of most requests is 60-70ms,

but the tail latency can be 1800ms (~30X)

D. Sites, “Datacenter Computers modern challenges in CPU design”, Google Inc, Feb. 2015.
14

More Hardware Support Needed

John
von Neumann

John Backus

Von Neumann
Bottleneck

von Neumann Bottleneck

CPU-Memory Gap
• Memory Wall
• Increase memory hierarchy

L1

L2

L3

CPU: 50%

DRMA: 7%

L1

L1

L2

Memory Hierarchy

• On-Core vs. Un-Core

L1

L2

L3

Memory

I/O (Disk, Network)

L1

L2

L1

L2

Unmanaged
Sharing

L1

L2

Sharing -> Interference

Christine Wang. Intel® Xeon® Processor E5-2600 v3 Product Family Performance & Platform Solutions. 2014.

• Cache sharing causes performance degradation

+ 

The sharing problem in Google

[Yang et.al. ISCA ’13] Bubble-Flux: Precise Online QoS
Management for Increased Utilization in Warehouse Scale Computer

[Kambadur et.al SC’12] Measuring Interference Between Live
Datacenter Applications

• Dynamicity: Different mixtures cause different
performance degradation

• Poor QoS: Latency-critical workloads suffer
from longer response time

• Unpredictable short
jobs
– Test-and-debug

C. Reiss et al. Heterogeneity and Dynamicity of Clouds at Scale:
Google Trace Analysis, SOCC, 2012.

Hard to Predict

6min

Tens of millions of jobs co-run 12,000 servers in a month

• B’s one-second burst cause
A’s five-min degradation

S.Yang et al. Split-Level I/O Scheduling, SOSP, 2015.

5min

• Background

• Challenges

• Opportunities

• Our Work

• Summary

AgendaAgenda

Intel Resource Director Technology

• In April 2016, Intel released Resource Director
Technology （RDT） that support QoS
– Cache Monitoring Technology (CMT)

– Cache Allocation Technology (CAT) [HPCA’16]

– Memory Bandwidth Monitoring(MBM)

NFV w/o CAT
• UC Berkeley’s Experimental results of CAT for

network function virtualization (NFV)
• w/o CAT：throughput degrades by 51%

NFV w/ CAT

• w/ CAT：Throughput degrades by <2% when
dedicating two ways to a specific NF.

Contention is Everywhere
• HyperThread、LLC、DRAM、Network etc.

Lo et al. Heracles: Improving Resource Efficiency at Scale, ISCA, 2015.

Data Center Era
2010s

Internet Era
1990s

2
7

Applications
sharing

infrastructure
Search, On-line shopping,
Cloud computing,…

HTTP, FTP, VoIP, Stream
Media, Game, …

Priority, Throughput,
Latency, …

QoS v.s. Utilization

VoIP, Game, …: Latency-critical
FTP, VoD,…: Bandwidth-sensitive
Email: Best Effort

Separate
Online/Offline

Service

QoS Problem

Different
Requirements

QoS

1994, Integrated services
1998, Differentiated Services
2001, MPLS

Fine-grain solution
Labeling each packet

Labeled Networking
• Fine-grain：every packet has a label
• Semantic Gap：correlate labels with users’ demand
• Propagation：propagate labels in a whole network
• DiffServ：process packets differentiately based on

labels

MPLS is widely used for VPN and QoS

Arch requires new interfaces

New, high-level interfaces are
required to convey programmer
and compiler knowledge to the
hardware.

21st Century Computer Architecture

Labeled
Architecture?

The Computer as a Network
• Hardware components communicate via internal

packets, e.g., PCIe packets, NoC packets, QPI packets

• Background

• Challenges

• Opportunities

• Our Work

• Summary

AgendaAgenda

Labeled von Neumann Architecture（LvNA）

• Fine-grain：attach a label to each memory and I/O request

• Semantic-Gap：correlate labels with VM/Proc/Thread/Var

• Propagation：propagate labels in a whole machine

• Programmable label control logic (CL):：provide
differentiated services based on different label-indexed rules

4. Programmable
Label logic

1. Fine-grain

P0

2. Semantic-Gap

3. Propagation

Bao and Wang, Labeled von Neumann Architecture for Software-Defined Cloud,
Journal of Computer Science and Technology, 2017 Vol. 32 (2): 219-223.

Goal

M/M/1

High
Priority

High
Priority

M/M/1/PR

ρ1 + ρ2 + ρ3 ……

Low-priority loads Low-priority loads
cannot affect W1

Labeling + CP  Priority Queues
• PriQ can achieve both utilization and QoS

Programmable Architecture for Resourcing-on-Demand

CL CL CL CL

CL

CLCL

Ma et. al, Supporting Differentiated Services in Computers via Programmable
Architecture for Resourcing-on-Demand (PARD), ASPLOS, 2015

Challenges in Reconstruction

1. How to enforce labeling mechanism?
2. How to design control logics?
3. How to design programming interface?

Challenge #1
How to enable computer hardware to

distinguish different applications?

37

Core

Shared Last Level Cache

I/O
Chipset

Memory
Ctrl

Core Core

Disk NIC

… Core

APP0

Shared Last Level Cache

I/O
Chipset

Memory
Ctrl

Core

APP1

Core

APPn

Disk NIC

Hypervisor

…

…

Single ApplicationSingle Application

reality expect

Label Sources

38

Core

Shared Last Level Cache

I/O
Chipset

Memory
Controller

Core Core

Disk NICDisk Disk

…
VM0 VM1 VMn

DS-id DS-id DS-id

DS-id DS-id

DS-id

DS-id

DS-id DS-id

Add label
registers

Propagate Labels in Datapath

39

Core

Shared Last Level Cache

I/O
Chipset

Memory
Controller

Core Core

Disk NICDisk Disk

…
VM0 VM1 VMn

DS-id DS-id DS-id

DS-id DS-id

DS-id

DS-id

DS-id DS-id

Labeled Request

Core -> …

Propagate Labels in Datapath

40

Core

Shared Last Level Cache

I/O
Chipset

Memory
Controller

Core Core

Disk NICDisk Disk

…
VM0 VM1 VMn

DS-id DS-id DS-id

DS-id DS-id

DS-id

DS-id

DS-id DS-id

Labeled Response
& DMA

Dev -> …

How to User Labels

Core

Shared Last Level Cache

I/O
Chipset

Memory
Controller

Core Core

Disk NICDisk Disk

…

VM0 VM1 VMn

DS-id DS-id DS-id

DS-id DS-id

DS-id

DS-id

DS-id DS-id

Cache
Partition

Priority-based
Scheduling

CLCL

CLCL CLCL

• Rate Limit
• Encryption
• Compress
• …

Challenge #2
How to design control logics for a diversity

of hardware?

Control Logic (CL)

42

CL Design Choices

43

Table-based

• Simple to implement, Fast
• Inflexible

• Support advanced
functionalities

• Complicated, slow

Processor-based

v.s.

Table-based CL Design

Parameter Table

DS-id1 Param1 Param2 …

DS-id2 Param1 Param2 …

DS-id3 …
…

Statistics Table

DS-id1 Stat1 Stat2 …

DS-id2 Stat1 Stat2 …

DS-id3 …
…

Trigger Table

DS-id1 Cond-1 Action-1

DS-id1 Cond-2 Action-2

DS-id2 Cond-3 Action-3

…

Programming
Interface

Programming
Interface

Control Plane
CompareCompare

44

• Three Control Table: Parameter / Statistics / Trigger

• A Programming Interface: Control Tables R/W

• A Interrupt Logic: Send Interrupt when trigger condition
meet

Three Tables + Programming Interface + Interrupt Line

Integrate into HW Components

45

Cache Controller Memory Controller

Common Control Logic Structure

Challenge #3
How to define/program resourcing-on-

demand policy into hardware

46

Parameter Table

DS-id1 Param1 Param2 …

DS-id2 Param1 Param2 …

DS-id3 …
…

Statistics Table

DS-id1 Stat1 Stat2 …

DS-id2 Stat1 Stat2 …

DS-id3 …
…

Trigger Table

DS-id1 Cond-1 Action-1

DS-id1 Cond-2 Action-2

DS-id2 Cond-3 Action-3

…

Programming
Interface

Programming
Interface

Control Plane
CompareCompare

• Augmented IPMI
• Connect all control logics (CLs)
• Run linux-based firmware
• Abstract CLs as files

Platform Resource Manager (PRM)

47

parameter

ident

type

ldoms

cpa0

/sys/cpa

statistics
trigger

ldom0

ldom1

cpa1

cpa2

ldom2

param1

param2

Core
DS-id

Shared Last Level Cache

I/O
Chipset

Memory
Controller

Core

VM1

DS-id

Core

VMn

DS-id

Disk NIC
DS-id

DS-id

DS-id
Disk

DS-id

Disk
DS-id

…
VM0

Centralized
PRM

Programming

Monitoring & Interrupts

CLCL

CLCL CLCL CLCL CLCL

CLCL

CLCL

parameter

Access Control Logics

ident
type
ldoms

cpa0
/sys/cpa

statistics
trigger

ldom0

ldom1

cpa1
cpa2

ldom2

param1
param2

Query Parameters
cat /sys/cpa/cpa0/…/parameter/param1

Setting Parameters
echo 10 > /sys/cpa/cpa0/…/parameter/param2

Query Control Logic Info
cat /sys/cpa/cpa0/ident
cat /sys/cpa/cpa0/type

48

Trigger->Action

1. Register trigger
pardtrigger /dev/cpa0

-ldom=0 -action=0
-stats=miss_rate -cond=gt,30

echo “/cpa0_ldom0_t0.sh” >
/sys/cpa/cpa0/ldoms/ldom0/triggers/0

3. Install trigger action script

49

2. Prepare action scripts

Implementation

* available at http://github.com/fsg-ict/PARD-gem5
+ check http://github.com/fsg-ict/PARD-fpga

•• Full-system cycle-accurate simulator
• FPGA prototype on Xilinx VC709 evaluation board
• Microblaze version
• RISC-V version

Open Sourced *Open Sourced *

Deprecated Deprecated

Coming soon + Coming soon +

Xilinx VC709 Evaluation Board

Core Control Logic

Core0 Core1 Core2 Core3

Cache / XBar

Cache Control Logic

Memory Controller
(MIG7)

Control Logic PRM
(MicroBlaze

SoC)

I/O CL

Eth0

Eth1

Eth2

UART*4

SFP+

CPN Switch

UART

PC
IP: 192.168.1.1

(dhcp, tftp, httpd)

AXI4 Memory Bus AXI4 I/O Bus Labeled Intr. CPN Bus (I2C-based)

LDom
#1

LDom
#2

LDom
#3

LDom
#4

Case 1: Add address mapping into CLs

• The whole server is partitioned into several sub-macines

Bare Metal Virtualization w/o Hypervisor

. by
Bare-metal
beats virt. by
up to 40%

Address Mapping in DRAM CL

AXIAXI App
UI

App
UI

DDR
Controller

DDR
Controller

Cache
Backend

Cache
Backend

Control
Tables

DSid

params

ControlPlane DataPlane

Trigger Table
Statistics Table

DSid base limit priority

1 0x00000000 0x80000000 High

2 0x80000000 0xC0000000 Medium

… …… …… …

stats

ar/aw_addr

ar/aw_user
(DSid)

base | (addr & ~limit)

AXI Slave

AXI Master

Other
Signals

MMU

I2C

Local Memory
PROM

Timer

Core Control Signal: Reset/Startup/Shutdown

DSid Tagged Interrupts

I2C Interface

AXI4 I/O Bus w/ DSid

AXI4 Memory Bus w/DSid

Intr Cntrl

Core CP

Intr Routing

AXI
Tagging

Core Control

IC DC DP
I/O

 control plane

DSID Offset

... ...
3 0x4000

... ...

Phy. intr DSID Vir. intr

...
5 2 3

... ...

AXI4 request from CPU

AXI4.aruser = 3

AXI4.araddr = 0x60000000

AXI4.araddr = 0x60004000 Phy intr NO. = 5

Device Device interrupt

(DSID =2, Intr = 3)
Interrupt to CPUI/O Control Plane Design

CPU核与I/O控制平面设计

LDom#1 w/ Ethernet
IP: 192.168.1.124

LDom#2 w/ Ethernet, ip: 192.168.1.125
download file from server

LDom#3 w/o Ethernet
check cpu&memory&kernel

PRM startup LDom#1

Bare-Metal Virtualization
without Hypervisor

512MB memory, Linux-3.14.2

Case 2: Cache Partitioning
• 4 Ldoms: 1 X 429.mcf + 3 X Attacker

• Allocate different LLC capacities

• Perf. degradation: 7% vs. 48%

solo attacker Attacker + “T->A”

Improve Utilization w/o Loss of QoS

 Memcached：Tail Latency <1.5ms

CPU Utilization 4X

0

10

20

30

10 12.5 15 17.5 20 22.5 25

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

)

Kilo Requests Per Seconds (KRPS)

Memcached Response Time

solo
w/ LLC Trigger
shared

memcached
alone

co-run with interference

w/ LLC Trigger

utilization
25%->100%

Labeled RISC-V
• Hardware – more exploration

• Software – better ecosystem

• Goal – establish the labeled RISC-V branch

Hardware - LvNA

Hardware

Hypervisor

Operating System

Runtime Library

Compiler

Schedule Framework

Application

60

• Labeled von Neumann Architecture
• Extend PARD to all resources

60

4. Software-
defined

control logic

1. Fine-
grained object

P0P0

2. Sematic
association

3. Propagation

Hardware - LvNA

Hardware

Hypervisor

Operating System

Runtime Library

Compiler

Schedule Framework

Application

boom
+ SMT

boom
+ SMT

boom
+ SMT

boom
+ SMT

L2

MEMPCI-E

CL CLCLCL

CL

CLCL

PRM
(rocket)

...

ROB

61

• Labeled von Neumann Architecture
• Extend PARD to all resources

Hypervisor - NoHype

Hardware

Hypervisor

Operating System

Runtime Library

Compiler

Schedule Framework

Application

62

• Push the software hypervisor down to LvNA

• Remove run-time overhead

LvNA

VM1 VM2 VM3 software VMM

VM4 VMn
…

Isolated by NoHype

Finished Finished

NoHype Example

63

Partition #3

Partition #2

Partition #4

Partition #1

Linux-3.14.2

Operating System - Fine-grained labeling

Hardware

Hypervisor

Operating System

Runtime Library

Compiler

Schedule Framework

Application

64

• Add fine-grained label as context resource
• Process

• Process/container-level

• Thread-level

• Address space
• Function-level

• Object-level

• Provide libraries
• pthread_create_with_dsid()

• malloc_with_dsid()

Process
relative
labeling Core

VM0

P0 P1

dsid start end

1 0x8000 0xffff

3 0x2000 0x27ff

Address space
relative labeling

Finished Finished

Compiler - collect QoS info. from prog

Hardware

Hypervisor

Operating System

Runtime Library

Compiler

Schedule Framework

Application

65

• Express QoS info. from source files

• Additional compilation results
• Address space relative labeling info

• Extra ELF sections for loader

• Resource requirement
• QoS desc. file for schedule framework

#progma qos(10s)
sort();
#progma qos(10s)
sort();

SLA = 10s
working set
= 64KB
…

QoS Desc.

dsid start end

1 0x8000 0xffff

3 0x2000 0x27ff

…
call sort
…

Binary

Sche. Framework - QoS resource schedule

Hardware

Hypervisor

Operating System

Runtime Library

Compiler

Schedule Framework

Application

66

• Expose QoS resources to schedule frameworks
• Integrate QoS resources into OpenStack Finished Finished

Open Problems
• Theory：How does LvNA impact on RAM, PRAM, LogP models?

• Hardware/Arch: How to implement LvNA at in CPU, memory, storage,
networking?

• Programing Model and Compilers：How to express users’ requirements and
propagate to the hardware via labels? How to make compilers support
labels?

• OS/Hypervisor：How to correlate labels with VMs, containers, processors,
threads? How to abstract programming interfaces for labels?

• Distributed systems:：How to correlate labels with distributed resources?
How to manage distributed systems with label mechanisms?

• Measurement/Audit：How to leverage labels to gauge and audit resource
usages?

Summary

• QoS: extremely important for improving utilization

• LvNA: a model of software-defined architecture

• PARD: a proof of concept of LvNA

68

4. Software-
defined

control logic

1. Fine-
grained object

P0P0

2. Sematic
association

3. Propagation

Thanks

Overhead of Control Logic

Memory Controller: 10.1% LLC: 3.5%

Extra Delay Analysis

• Cache: CL’s logic can be
hidden in the pipeline of
caches.

• Memory Controller: CL
significantly reduces
queuing delay of high-
priority requests by 5.6X

Cache CL: No Extra delay

72

• CL operations are hidden in the pipeline of
a write Request

Lookup Parameter Table Update Statistics Table

Receive
Write

Request

Access
TagArray

Access
LRU-

History

Send
Memory
Request

Access DataArray

Access
MSHR

Update
TagArray

Enhanced LRU
with Way-Partition

Check Trigger Table

