
HAIBO CHEN 
http://ipads.se.sjtu.edu.cn/haibo_chen  

 

Institute of Parallel and Distributed Systems 
Shanghai Jiao Tong University, China 

Joint work with Rong, Xinda, Jiaxin, Yanzhe, Heng, Mingkai, etc.@IPDADS, the 
wukong work is also with Fefei@Utah  

In-memory Transactions 
 � 

A Perspective from Systems Software 



Tape is Dead 
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Tape is Dead 
Disk is Tape 
Flash is Disk 

RAM is Flash? 
Cache Locality/Parallelism is King? 



4 � 

Transaction: Key Pillar for Many Systems 

Demand Speedy Distributed transaction  
Over Large Data Volumes  � 

$9.3 billion/day � 426 items/sec � 

9.56 million 
tickets/day � 

        11. 6 million 
payments/day  � 
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Conventional DBMSs are Inefficient 

Only 4% of wall-clock time spent on useful data 
processing, while the rest is occupied with 
buffer pools, locking, latching, recovery.1 

-- Michael Stonebraker 

1 “The Traditional RDBMS Wisdom is All Wrong” 



Peak transactions per second:  
175,000 new orders 
120,000 payment 

Business Demand – High Throughput 



Business Demand – Low Latency 

“To Be or Not to Be:”  
It is a Matter of Time 



How to Do It? Conventional Approach 

504,161 TXs/second 
Cost: 30,528,863 USD  

Src:http://www.tpc.org/tpcc/results/tpcc_results.asp?
print=false&orderby=tpm&sortby=desc 

172,770 TXs/second 
Cost: 14,276,808 USD  

TPCC world record 



How to Do It? Today’s Approach 

OceanBase MySQL Cluster 

Src:http://www.webxmf.com/
insight/report/thematic/
2015%E5%B9%B4%E2%80%9D
%E5%8F
%8C11%E2%80%9C10%E5%A4%A7
%E7%94%B5%E5%95%86%E7%BD
%91%E7%AB
%99%E6%80%A7%E8%83%BD
%E6%8A%A5%E5%91%8A.pdf 

Unit：
ms 



A few rack-scale machines 

HTM 

RDMA 

How to Do It?  Our Approach 

6 nodes connected with IB 
Cost: 73,800$ 

NVM 



101 of HTM and RDMA 
 

Overall ideas 
 

RDMA-friendly distributed key-value store 
 

Fast distributed transactions using RDMA & HTM 
 

System software support for In-memory Transactions 

This Talk 
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1993 � 

Herlihy & Moss � 

2009 � 

Sun Rock � 

2010 � 

AMD TX Extension � 

2012 � 

Massively available  � 

2013 � 

Intel Haswell � ．．． � 

Hardware Transactional Memory 



Restricted Transactional Memory (RTM) 
– Hardware transactional memory with limitations 
 

Major limitations 
– Working set is limited 
–  System events abort TX 

New instruction set 
– Xbegin, Xend, Xabort 
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RTM Usage

if _xbegin() == _XBEGIN_STARTED

do some critical work
_xend()

else
fallback routine

Handle the 
abort event 

Intel Restricted Transactional Memory 



RTM prefer read than write 
–  Asymmetric Read/Write Limits 

•  L1-Cache tracks writes 
•  An implementation specific structure tracks reads 

RTM prefers read before write 
–  Only eviction of cache lines in write set will abort TX 

Transaction exec time affects TX abort 
–  Timer interrupt unconditionally abort a TX (4ms on 

250hz kernel) 

Deconstructing RTM 



A network feature that allows direct access to 
the memory of a remote computer 

 
High speed, low latency & low CPU overhead 

□  Interface: SEND/RECV Verbs, and one-sided RDMA 

(READ/WRITE/CAS), IPoIB, etc. 

□  Bypasses OS kernels: Zero copy 

□  Round-trip time: one-sided/~3µs, verb msg/~7µs, 

IPoIB/~100 µs 

RDMA: Remote Direct Memory Access 

15 � 



RDMA read, write and CAS 
Life-cycle of an RDMA write  
 
 

One-sided RDMA Primitives 

16 � Credit: Anuj Kalia’s SIGCOMM talk 

Credit: Anuj Kalia’s SIGCOMM talk 

CPU NIC CPU,RAM NIC 

1. Request descriptor, PIO 

2. Payload, DMA read  

4. Payload, DMA write 

6. Completion DMA write 

Requester Responder 

5. RDMA ACK 

3. RDMA write request 

1 � 

2 � 
3 � 

4 � 

5 � 

6 � 



1 Mellanox ConnectX-3 MCX353A 56Gbps InfiniBand NIC � 

Perf. of Random Read1 

One-sided RDMA Performance 

Insensitive to payload size: 
High/near constant throughput/Low latency when 
payload is smaller than a threshold 



Overall Ideas: Combining 
Advanced Hardware Features for 
In-memory Transactions  
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RDMA: Remote Direct Memory Access 
□  Provide cross-machine accesses with high speed,  

low latency and low CPU overhead 

Rethink the design of low-COST  
scalable in-memory transaction systems � 

Opportunities: (not so) New HW Features 

HTM: Hardware Transaction Memory 
□  Allow a group of load & store instructions to execute 

in an atomic, consistent and isolated (ACI) way 



HTM: Hardware Transaction Memory 

2
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Opportunities with HTM & RDMA 

RDMA: Remote Direct Memory Access 

non-transactional code will unconditionally abort a 
transaction when their accesses conflict Strong 

Atomicity � 



HTM: Hardware Transaction Memory 
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Opportunities with HTM & RDMA 

RDMA: Remote Direct Memory Access 

a non-transactional code will unconditionally abort 
a transaction when their accesses conflict 

one-sided RDMA operations are cache-coherent  
with local accesses 

Strong 
Atomicity � 

Strong 
Consistency � 



HTM: Hardware Transaction Memory 

2
2 � 

Opportunities with HTM & RDMA 

RDMA: Remote Direct Memory Access 

HTM Strong 
Atomicity � 

RDMA Strong 
Consistency � 

RDMA ops will abort 
conflicting HTM TX � 

a non-transactional code will unconditionally abort 
a transaction when their accesses conflict 

one-sided RDMA operations are cache-coherent  
with local accesses 



HTM: Hardware Transaction Memory 
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Opportunities with HTM & RDMA 

RDMA: Remote Direct Memory Access 

Basis for Distributed TM � 

HTM Strong 
Atomicity � 

RDMA Strong 
Consistency � 

RDMA ops will abort 
conflicting HTM TX � 

a non-transactional code will unconditionally abort 
a transaction when their accesses conflict 

one-sided RDMA operations are cache-coherent  
with local accesses 
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Use HTM’s ACI properties for local TX execution 
□  DBX (EuroSys’14) DBX-TC (TR’15, TX chopping) 
Use one-sided RDMA to glue multiple HTM TXs 

  

In-Memory 
Store 

In-Memory Logging 
with NVM 

One-sided RDMA Ops 

Use HTM’s ACI 
features 

Overall Idea 



Distributed Key/Value Store � 

Distributed TX � 

Massive 
#Users � 

RDMA 

OS/VMs � 

Distributed Query � 

Recent Work on In-memory TXs 

Wukong: 
OSDI’16 

DrTM: 
SOSP’15 
EuroSys’16 

OS/VMs � 

DrTM-KV:  
SOSP’15 

Cocytus:  
FAST’16  

Single Machine TX � DBX:  
EuroSys’14 

Single Machine TX �  IC3:  
SIGMOD’16 

Prwlock:  
ATC’14 

VPM:  
SoCC’16 

Eunomia:  
PPoPP’17 



Building Fast In-memory Transactions 
using RDMA and HTM � 



□  Target: OLTP workloads over large volume of data 
□  Two independent components using HTM&RDMA 

 Transaction layer & memory store (DrTM-KV) 
□  Low COST distributed TX 
−  Achieve over 5.52 million TXs/sec for TPC-C on 6 nodes 
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DrTM: Distributed TX with HTM & RDMA 

key/value ops � 

Transaction 
Layer � 

Memory 
Store � 

key/value ops � 

Worker Threads � 



HTM: Hardware Transaction Memory 
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Review: Opportunities with HTM & RDMA 

RDMA: Remote Direct Memory Access 

Basis for Distributed TM � 

HTM Strong 
Atomicity � 

RDMA Strong 
Consistency � 

RDMA ops will abort 
conflicting HTM TX � 

a non-transactional code will unconditionally abort 
a transaction when their accesses conflict 

one-sided RDMA operations are cache-coherent  
with local accesses 
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DrTM: Combining HTM with 2PL 

Using RDMA+2PL to accumulate all remote 
records prior to accesses in an HTM 
transaction  
□  Transform a distributed TX to a local TX 
□  Concurrency control 

Local TX vs. Local TX: HTM 
Distributed TX vs. Distributed TX: 2PL 
Local TX vs. Distributed TX: abort local TX 

key/value ops � key/value ops � 

Transaction 
Layer � 

Memory 
Store � 

Worker Threads � 

RDMA � 

2PL � 

HTM � 



RDMA provides three communication options 
□  IPoIB, SEND/RECV and one-sided RDMA ops 

30 � 

Challenge: Limit of RDMA Semantics 

One-sided RDMA has limited interfaces 
□  READ, WRITE, CAS and XADD 

Good performance (e.g. latency) 
and without involving the host CPU � 

How to support exclusive and shared accesses 
in 2PL protocol using one-sided RDMA ops  



RDMA CAS: atomic compare-and-swap 
□  Similar to the semantic of normal CAS (i.e. local 

CAS) 
 

1.  DrTM’s exclusive lock 
−  Always use RDMA CAS to acquire & release 

2.  DrTM’s shared lock 
−  Lease-based shared lock 

−  Grant read right to the lock holder in a time period 
−  No need to explicit release or invalidate the lock 
−  Synchronized time is provided by PTP 

31 � 

Exclusive & Shared Lock 



Performance on TPC-C 
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26.9x � 

17.9x � 

8threads � 

16threads � 

B+-tree is not 
NUMA-friendly � 

New-order TX 
≈ Standard-mix x45% � 

Throughput:  
5.52 millions TX/s 

Latency as low as 15.02us 

Note: Our recent Eunomia Tree in PPoPP’17 fixes the B+Tree Scalability 
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Limitations of DrTM 

1. Require advanced knowledge of read/write  
sets of transactions 
 
2. Preserve durability rather than availability in 
case of machine failures 
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DrTM+R: High Available Distributed TX 
(EuroSys 2016) 

Inherit DrTM’s High 
Performance 

q  Use HTM’s ACI properties for 
local TX execution 

q  Use one-sided RDMA to glue 
multiple HTM TXs 

 
Overcome DrTM’s Limitations 

q  Use Hybrid OCC Protocol to 
probe read/write sets 

q  Use Optimistic Replication to 
ensure high availability 
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Observation 
q  TX systems like DrTM-R have >3-way replication 

DrTM-B: Replication-driven Reconfig. 

Replication-driven reconfiguration 
q  Switch to fault-tolerant replicas when possible to 

minimize data transfers 
      When no idle replicas, construct one on-the-fly  
q  Dirty tracking: logs already contain dirtied tuples, 

reuse log forwarding to sync dirty tuples 



IC3: Refined Concurrency Control 
(SIGMOD 2016) 

•  Problem: degraded scalability under 
high contention 
– OCC: performance collapse 
– 2PL: over-constrained interleaving 

•  IC3: interleaving constrained 
concurrency control 
– Static analysis to get a conflict graph 
– Dynamic constrain interleaving to avoid 

aborts 



Cocytus: Reducing Memory Usage 
(FAST 2016, ToS 2017) 

•  Erasure coding: high construction time 
•  Replication: Low memory utilization  
•  Cocytus: combines erase coding w/ replication 

–  Key: primary-backup replication, Value: erasure 
coding 

–  Achieve better memory efficiency w/ low overhead 
compared with primary-backup replication 



Eunomia: Scaling Up B+Tree using 
HTM (PPoPP 2017) 

•  HTM-based B+tree:  
–  High performance under low contention 
–  Collapse under high contention due to excessive aborts 

•  Eunomia: scalable HTM-B+Tree 
–  Splitting large HTM transactions with opportunistic 

consistency validation 
–  Proactively detecting and avoiding true conflicts 
–  Adopting adaptive contention control strategy 



                  : A distributed in-memory RDF store 
1.  Flexible graph-based model and store 
2.  Fast and scalable query processing engine 
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Distributed Query Processing (OSDI’16) 

Wukong � 

▶  low-latency, concurrent queries 
over large datasets 
−  A 6-node cluster w/ RDMA 
−  LUBM-10240 (1.4B Triples)  
−  Up to 185 K queries/sec  

with 0.80 msec (geo-mean) 
median latency 

−  180-740X throughput increase 
over Trinity.RDF/TriAD 



1.  SQL-like API for graph query over streams 
2.  Decoupled design of RDF Store for efficiently 

combining streams and persistent data 
3.  Native strong consistency guarantee 
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Wukong-S: Streaming Processing 

▶  low-latency, concurrent streaming queries 
over large datasets 
−  148K Quieres/s for a 6-node cluster w/ RDMA 
−  1.38ms medium latency for CityBench 

(541ms for Spark streaming) 



Rethink Systems Software 



I am convinced more than ever that this type 
of work is very difficult, and that every effort 
to do it with other than the best people is 
doomed to either failure or moderate success 
at enormous cost. 

-- Edsger Dijkstra 

Exploiting Parallelism is Hard! 
Quote from Dijkstra � 

“The Structure of the ‘THE’ “, Multiprogramming System 1968 



In the era of many-core systems, programs can’t 
be written by only “the best people”. 

 

Chuck Thacker 

Quote from Thacker 

“Improving the future by examining the past”   
Turing Lecture Series, 2010. 



Credit: 
Erlang@Sina 

Weibo � 

Ideal Multicore Scalability 



Multicore Scalability in Reality 

Credit: 
Erlang@Sina 

Weibo � 
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Sync Constructs Matter 

Sync constructs meet multicore 
→  Parallelism: need to unleash more parallelism 
→ Critical section efficiency: reduce cache traffics 

 One small atomic instruction can collapse 
whole application performance for many-cores 

No 
Atomic 

instructio
n 

No 
memory 
barrier  

Scalabilit
y � 

Insights from prior work 
- Kaashoek, APSys’12 Keynote 



Synchronization Evolution 

Exclusive 
Lock � 

Traditional 
Reader-Writer Lock � 

Big Reader 
Lock � 

RCU � 

S
em

an
tic

 G
ua

ra
nt

ee
 � 

More Parallelism � 

Impossible � MCS, 
etc.. � 

Prwlock � 

No Barrier � 

HTM � 



Bounded Staleness:  
Hardware’s Habit 

Shared memory write becomes 
globally visible in a short time 
→ Most memory write are visible to others within  

400 cycles without memory barrier 
→ Memory barrier is not necessary to observe  

newest state in time 

 



Passive Reader-Writer Lock 
(Usenix ATC 2014) 

Principle: common case fast, rare case correct 
 

No memory barrier in common case 
→  Leverage bounded staleness to wait until a reader  

see a writer’s version 
 

Bounded lock acquisition latency through IPIs 
→ Voluntarily sending IPIs to straggling readers to  

query its status 
 

Results 
→ Similar performance characteristics with RCU 
→ Same semantic guarantee with rwlock 
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Scalable Consensus for  
Read-copy Update (TPDS 2016) 

Read-copy update is widely used for kernel sync 
→ Readers require no memory barrier 
→ Concurrent execution of readers and a single writer 
→ Reclaimer detect if an object is safe to be reclaimed 

→  Usually requires at least a scheduler tick 
 

Fast reclamation with fast consensus 
→ Use versions to detect liveness 
→ No memory barrier in readers 
→ Very fast on common case 
 

Result 
→  Faster consensus for RCU 
→ Better update performance 



Fence-free Synchronization 
(TPDS 2017) 

Fence causes high cost 
→ Serialize processor pipelines 
→ Drain store buffers 
→ Existing fence are pessimistic: overall constrained  
 

Sync-order: fence-free synchronization 
→ Detect/prevent dangerous inter-processor 

dependencies 
→ Using sync-Vars to reducing Detection Overhead 
 

Result 
→ Eliminate almost all unnecessary stalls 
→ Better multicore performance 



Architecture Support for IMC 
(IEEE CAL 2015) 

Example: what a transaction needs? 
ACID: Atomicity, Consistency, Isolation and 
Durability 
 

What current hardware provides? 
Transactional memory: ACI, missing “durability” 
Data loss/inconsistency during a machine crash 
 

Persistent transactional memory 
Adding persistency support for TM to support ACID 
Combining NVM with TM 
Simplify the writing of transaction code 



Summary 

RDMA: helps bridge the gap from incommensurate 
scaling for in-memory transactions 

 

Achieving orders-of-magnitude lower latency  
& higher throughput than prior state-of-the-art 
centralized and distributed systems 
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In-memory transactions demands 
high throughput and low latency � 



Thanks 

Institute of Parallel and Distributed Systems 
(IPADS) 

http://ipads.se.sjtu.edu.cn  

 � 

Questions? � 



Backup 



Comparison with FaRM 
DrTM-OCC follows the distributed OCC 

scheme of FaRM  


