
HAIBO CHEN
http://ipads.se.sjtu.edu.cn/haibo_chen

Institute of Parallel and Distributed Systems
Shanghai Jiao Tong University, China

Joint work with Rong, Xinda, Jiaxin, Yanzhe, Heng, Mingkai, etc.@IPDADS, the
wukong work is also with Fefei@Utah

In-memory Transactions
 �

A Perspective from Systems Software

Tape is Dead
Disk is Tape
Flash is Disk

RAM Locality is King

Jim Gray
Microsoft

December 2006

In memory of Jim Gray

Tape is Dead
Disk is Tape
Flash is Disk

RAM is Flash?
Cache Locality/Parallelism is King?

4 �

Transaction: Key Pillar for Many Systems

Demand Speedy Distributed transaction
Over Large Data Volumes �

$9.3 billion/day � 426 items/sec �

9.56 million
tickets/day �

 11. 6 million
payments/day �

5 �

Conventional DBMSs are Inefficient

Only 4% of wall-clock time spent on useful data
processing, while the rest is occupied with
buffer pools, locking, latching, recovery.1

-- Michael Stonebraker

1 “The Traditional RDBMS Wisdom is All Wrong”

Peak transactions per second:
175,000 new orders
120,000 payment

Business Demand – High Throughput

Business Demand – Low Latency

“To Be or Not to Be:”
It is a Matter of Time

How to Do It? Conventional Approach

504,161 TXs/second
Cost: 30,528,863 USD

Src:http://www.tpc.org/tpcc/results/tpcc_results.asp?
print=false&orderby=tpm&sortby=desc

172,770 TXs/second
Cost: 14,276,808 USD

TPCC world record

How to Do It? Today’s Approach

OceanBase MySQL Cluster

Src:http://www.webxmf.com/
insight/report/thematic/
2015%E5%B9%B4%E2%80%9D
%E5%8F
%8C11%E2%80%9C10%E5%A4%A7
%E7%94%B5%E5%95%86%E7%BD
%91%E7%AB
%99%E6%80%A7%E8%83%BD
%E6%8A%A5%E5%91%8A.pdf

Unit：
ms

A few rack-scale machines

HTM

RDMA

How to Do It? Our Approach

6 nodes connected with IB
Cost: 73,800$

NVM

101 of HTM and RDMA

Overall ideas

RDMA-friendly distributed key-value store

Fast distributed transactions using RDMA & HTM

System software support for In-memory Transactions

This Talk

12

1993 �

Herlihy & Moss �

2009 �

Sun Rock �

2010 �

AMD TX Extension �

2012 �

Massively available �

2013 �

Intel Haswell � ．．． �

Hardware Transactional Memory

Restricted Transactional Memory (RTM)
– Hardware transactional memory with limitations

Major limitations
– Working set is limited
–  System events abort TX

New instruction set
– Xbegin, Xend, Xabort

13	

RTM Usage

if _xbegin() == _XBEGIN_STARTED

do some critical work
_xend()

else
fallback routine

Handle the
abort event

Intel Restricted Transactional Memory

RTM prefer read than write
–  Asymmetric Read/Write Limits

•  L1-Cache tracks writes
•  An implementation specific structure tracks reads

RTM prefers read before write
–  Only eviction of cache lines in write set will abort TX

Transaction exec time affects TX abort
–  Timer interrupt unconditionally abort a TX (4ms on

250hz kernel)

Deconstructing RTM

A network feature that allows direct access to
the memory of a remote computer

High speed, low latency & low CPU overhead

□  Interface: SEND/RECV Verbs, and one-sided RDMA

(READ/WRITE/CAS), IPoIB, etc.

□  Bypasses OS kernels: Zero copy

□  Round-trip time: one-sided/~3µs, verb msg/~7µs,

IPoIB/~100 µs

RDMA: Remote Direct Memory Access

15 �

RDMA read, write and CAS
Life-cycle of an RDMA write

One-sided RDMA Primitives

16 � Credit: Anuj Kalia’s SIGCOMM talk

Credit: Anuj Kalia’s SIGCOMM talk

CPU NIC CPU,RAM NIC

1. Request descriptor, PIO

2. Payload, DMA read

4. Payload, DMA write

6. Completion DMA write

Requester Responder

5. RDMA ACK

3. RDMA write request

1 �

2 �
3 �

4 �

5 �

6 �

1 Mellanox ConnectX-3 MCX353A 56Gbps InfiniBand NIC �

Perf. of Random Read1

One-sided RDMA Performance

Insensitive to payload size:
High/near constant throughput/Low latency when
payload is smaller than a threshold

Overall Ideas: Combining
Advanced Hardware Features for
In-memory Transactions

1
9 �

RDMA: Remote Direct Memory Access
□  Provide cross-machine accesses with high speed,

low latency and low CPU overhead

Rethink the design of low-COST
scalable in-memory transaction systems �

Opportunities: (not so) New HW Features

HTM: Hardware Transaction Memory
□  Allow a group of load & store instructions to execute

in an atomic, consistent and isolated (ACI) way

HTM: Hardware Transaction Memory

2
0 �

Opportunities with HTM & RDMA

RDMA: Remote Direct Memory Access

non-transactional code will unconditionally abort a
transaction when their accesses conflict Strong

Atomicity �

HTM: Hardware Transaction Memory

8 �

Opportunities with HTM & RDMA

RDMA: Remote Direct Memory Access

a non-transactional code will unconditionally abort
a transaction when their accesses conflict

one-sided RDMA operations are cache-coherent
with local accesses

Strong
Atomicity �

Strong
Consistency �

HTM: Hardware Transaction Memory

2
2 �

Opportunities with HTM & RDMA

RDMA: Remote Direct Memory Access

HTM Strong
Atomicity �

RDMA Strong
Consistency �

RDMA ops will abort
conflicting HTM TX �

a non-transactional code will unconditionally abort
a transaction when their accesses conflict

one-sided RDMA operations are cache-coherent
with local accesses

HTM: Hardware Transaction Memory

23 �

Opportunities with HTM & RDMA

RDMA: Remote Direct Memory Access

Basis for Distributed TM �

HTM Strong
Atomicity �

RDMA Strong
Consistency �

RDMA ops will abort
conflicting HTM TX �

a non-transactional code will unconditionally abort
a transaction when their accesses conflict

one-sided RDMA operations are cache-coherent
with local accesses

24 �

Use HTM’s ACI properties for local TX execution
□  DBX (EuroSys’14) DBX-TC (TR’15, TX chopping)
Use one-sided RDMA to glue multiple HTM TXs

In-Memory
Store

In-Memory Logging
with NVM

One-sided RDMA Ops

Use HTM’s ACI
features

Overall Idea

Distributed Key/Value Store �

Distributed TX �

Massive
#Users �

RDMA

OS/VMs �

Distributed Query �

Recent Work on In-memory TXs

Wukong:
OSDI’16

DrTM:
SOSP’15
EuroSys’16

OS/VMs �

DrTM-KV:
SOSP’15

Cocytus:
FAST’16

Single Machine TX � DBX:
EuroSys’14

Single Machine TX � IC3:
SIGMOD’16

Prwlock:
ATC’14

VPM:
SoCC’16

Eunomia:
PPoPP’17

Building Fast In-memory Transactions
using RDMA and HTM �

□  Target: OLTP workloads over large volume of data
□  Two independent components using HTM&RDMA

 Transaction layer & memory store (DrTM-KV)
□  Low COST distributed TX
−  Achieve over 5.52 million TXs/sec for TPC-C on 6 nodes

27 �

DrTM: Distributed TX with HTM & RDMA

key/value ops �

Transaction
Layer �

Memory
Store �

key/value ops �

Worker Threads �

HTM: Hardware Transaction Memory

28 �

Review: Opportunities with HTM & RDMA

RDMA: Remote Direct Memory Access

Basis for Distributed TM �

HTM Strong
Atomicity �

RDMA Strong
Consistency �

RDMA ops will abort
conflicting HTM TX �

a non-transactional code will unconditionally abort
a transaction when their accesses conflict

one-sided RDMA operations are cache-coherent
with local accesses

29 �

DrTM: Combining HTM with 2PL

Using RDMA+2PL to accumulate all remote
records prior to accesses in an HTM
transaction
□  Transform a distributed TX to a local TX
□  Concurrency control

Local TX vs. Local TX: HTM
Distributed TX vs. Distributed TX: 2PL
Local TX vs. Distributed TX: abort local TX

key/value ops � key/value ops �

Transaction
Layer �

Memory
Store �

Worker Threads �

RDMA �

2PL �

HTM �

RDMA provides three communication options
□  IPoIB, SEND/RECV and one-sided RDMA ops

30 �

Challenge: Limit of RDMA Semantics

One-sided RDMA has limited interfaces
□  READ, WRITE, CAS and XADD

Good performance (e.g. latency)
and without involving the host CPU �

How to support exclusive and shared accesses
in 2PL protocol using one-sided RDMA ops

RDMA CAS: atomic compare-and-swap
□  Similar to the semantic of normal CAS (i.e. local

CAS)

1.  DrTM’s exclusive lock
−  Always use RDMA CAS to acquire & release

2.  DrTM’s shared lock
−  Lease-based shared lock

−  Grant read right to the lock holder in a time period
−  No need to explicit release or invalidate the lock
−  Synchronized time is provided by PTP

31 �

Exclusive & Shared Lock

Performance on TPC-C

0

1

2

3

4

5

6

1 2 3 4 5 6

Th
ro

u
g

h
p

u
t

(M
 t

xn
s/

se
c

)

Machines

Calvin

DrTM

DrTM(S)

Standard-mix

32 �

0

1

2

3

4

5

6

1 2 4 6 8 10 12 14 16

Th
ro

u
g

h
p

u
t

(M
 t

xn
s/

se
c

)

Threads

Calvin

DrTM

DrTM(S)

Standard-mix

26.9x �

17.9x �

8threads �

16threads �

B+-tree is not
NUMA-friendly �

New-order TX
≈ Standard-mix x45% �

Throughput:
5.52 millions TX/s

Latency as low as 15.02us

Note: Our recent Eunomia Tree in PPoPP’17 fixes the B+Tree Scalability

33 �

Limitations of DrTM

1. Require advanced knowledge of read/write
sets of transactions

2. Preserve durability rather than availability in
case of machine failures

34 �

DrTM+R: High Available Distributed TX
(EuroSys 2016)

Inherit DrTM’s High
Performance

q  Use HTM’s ACI properties for
local TX execution

q  Use one-sided RDMA to glue
multiple HTM TXs

Overcome DrTM’s Limitations

q  Use Hybrid OCC Protocol to
probe read/write sets

q  Use Optimistic Replication to
ensure high availability

0

0.5

1

1.5

2

1 2 3 4 5 6

Th
ro

u
g

h
p

u
t

(M
 t

xn
s/

se
c

)

Machines

Calvin
DrTM
DrTM+R
DrTM+R=3

NewOrder TX

9.8% �

41% �

21.5x �

35 �

Observation
q  TX systems like DrTM-R have >3-way replication

DrTM-B: Replication-driven Reconfig.

Replication-driven reconfiguration
q  Switch to fault-tolerant replicas when possible to

minimize data transfers
 When no idle replicas, construct one on-the-fly
q  Dirty tracking: logs already contain dirtied tuples,

reuse log forwarding to sync dirty tuples

IC3: Refined Concurrency Control
(SIGMOD 2016)

•  Problem: degraded scalability under
high contention
– OCC: performance collapse
– 2PL: over-constrained interleaving

•  IC3: interleaving constrained
concurrency control
– Static analysis to get a conflict graph
– Dynamic constrain interleaving to avoid

aborts

Cocytus: Reducing Memory Usage
(FAST 2016, ToS 2017)

•  Erasure coding: high construction time
•  Replication: Low memory utilization
•  Cocytus: combines erase coding w/ replication

–  Key: primary-backup replication, Value: erasure
coding

–  Achieve better memory efficiency w/ low overhead
compared with primary-backup replication

Eunomia: Scaling Up B+Tree using
HTM (PPoPP 2017)

•  HTM-based B+tree:
–  High performance under low contention
–  Collapse under high contention due to excessive aborts

•  Eunomia: scalable HTM-B+Tree
–  Splitting large HTM transactions with opportunistic

consistency validation
–  Proactively detecting and avoiding true conflicts
–  Adopting adaptive contention control strategy

 : A distributed in-memory RDF store
1.  Flexible graph-based model and store
2.  Fast and scalable query processing engine

39 �

Distributed Query Processing (OSDI’16)

Wukong �

▶  low-latency, concurrent queries
over large datasets
−  A 6-node cluster w/ RDMA
−  LUBM-10240 (1.4B Triples)
−  Up to 185 K queries/sec

with 0.80 msec (geo-mean)
median latency

−  180-740X throughput increase
over Trinity.RDF/TriAD

1.  SQL-like API for graph query over streams
2.  Decoupled design of RDF Store for efficiently

combining streams and persistent data
3.  Native strong consistency guarantee

40 �

Wukong-S: Streaming Processing

▶  low-latency, concurrent streaming queries
over large datasets
−  148K Quieres/s for a 6-node cluster w/ RDMA
−  1.38ms medium latency for CityBench

(541ms for Spark streaming)

Rethink Systems Software

I am convinced more than ever that this type
of work is very difficult, and that every effort
to do it with other than the best people is
doomed to either failure or moderate success
at enormous cost.

-- Edsger Dijkstra

Exploiting Parallelism is Hard!
Quote from Dijkstra �

“The Structure of the ‘THE’ “, Multiprogramming System 1968

In the era of many-core systems, programs can’t
be written by only “the best people”.

Chuck Thacker

Quote from Thacker

“Improving the future by examining the past”
Turing Lecture Series, 2010.

Credit:
Erlang@Sina

Weibo �

Ideal Multicore Scalability

Multicore Scalability in Reality

Credit:
Erlang@Sina

Weibo �

0"

100"

200"

300"

400"

500"

600"

700"

800"

900"

1000"

1" 2" 4" 8" 16" 32" 64"

Ti
m
e%
(s
ec
on

ds
)�

#Cores�

Kyoto%Carbinet%In6memory%DB%Scalability�

Actual" Ideal"

Database Scalability Issue
Ti

m
e

(S
ec

on
d)
 �

number of cores �

Actual � Ideal �

Kyoto Carbinet
In-memory DB Scalability �

8 socket * 8 cores, AMD
Operon �

Sync Constructs Matter

Sync constructs meet multicore
→  Parallelism: need to unleash more parallelism
→ Critical section efficiency: reduce cache traffics

 One small atomic instruction can collapse
whole application performance for many-cores

No
Atomic

instructio
n

No
memory
barrier

Scalabilit
y �

Insights from prior work
- Kaashoek, APSys’12 Keynote

Synchronization Evolution

Exclusive
Lock �

Traditional
Reader-Writer Lock �

Big Reader
Lock �

RCU �

S
em

an
tic

 G
ua

ra
nt

ee
 �

More Parallelism �

Impossible � MCS,
etc.. �

Prwlock �

No Barrier �

HTM �

Bounded Staleness:
Hardware’s Habit

Shared memory write becomes
globally visible in a short time
→ Most memory write are visible to others within

400 cycles without memory barrier
→ Memory barrier is not necessary to observe

newest state in time

Passive Reader-Writer Lock
(Usenix ATC 2014)

Principle: common case fast, rare case correct

No memory barrier in common case
→  Leverage bounded staleness to wait until a reader

see a writer’s version

Bounded lock acquisition latency through IPIs
→ Voluntarily sending IPIs to straggling readers to

query its status

Results
→ Similar performance characteristics with RCU
→ Same semantic guarantee with rwlock

0
100
200
300
400
500
600
700
800
900

1000

1 2 4 8 16 32 64

Ti
m

e
(s

ec
on

ds
)

Num. of Cores

Kyoto Carbinet
In-memory DB Scalability

rwlock prwlock

8 socket * 8 cores,
AMD Operon �

Performance on In-memory DB

Scalable Consensus for
Read-copy Update (TPDS 2016)

Read-copy update is widely used for kernel sync
→ Readers require no memory barrier
→ Concurrent execution of readers and a single writer
→ Reclaimer detect if an object is safe to be reclaimed

→  Usually requires at least a scheduler tick

Fast reclamation with fast consensus
→ Use versions to detect liveness
→ No memory barrier in readers
→ Very fast on common case

Result
→  Faster consensus for RCU
→ Better update performance

Fence-free Synchronization
(TPDS 2017)

Fence causes high cost
→ Serialize processor pipelines
→ Drain store buffers
→ Existing fence are pessimistic: overall constrained

Sync-order: fence-free synchronization
→ Detect/prevent dangerous inter-processor

dependencies
→ Using sync-Vars to reducing Detection Overhead

Result
→ Eliminate almost all unnecessary stalls
→ Better multicore performance

Architecture Support for IMC
(IEEE CAL 2015)

Example: what a transaction needs?
ACID: Atomicity, Consistency, Isolation and
Durability

What current hardware provides?
Transactional memory: ACI, missing “durability”
Data loss/inconsistency during a machine crash

Persistent transactional memory
Adding persistency support for TM to support ACID
Combining NVM with TM
Simplify the writing of transaction code

Summary

RDMA: helps bridge the gap from incommensurate
scaling for in-memory transactions

Achieving orders-of-magnitude lower latency
& higher throughput than prior state-of-the-art
centralized and distributed systems

55 �

In-memory transactions demands
high throughput and low latency �

Thanks

Institute of Parallel and Distributed Systems
(IPADS)

http://ipads.se.sjtu.edu.cn

 �

Questions? �

Backup

Comparison with FaRM
DrTM-OCC follows the distributed OCC

scheme of FaRM

