

Nusrat Sharmin Islam, Md. Wasi-ur-Rahman, Xiaoyi Lu,

Dhabaleswar K. (DK) Panda

{islamn, rahmanmd, luxi, panda}@cse.ohio-state.edu

Department of Computer Science and Engineering The Ohio State University

- Introduction
- Contributions
- Design
- Experimental Results
- Conclusion and Future Work

Introduction

- Big Data provides groundbreaking opportunities for information management and decision making
- The amount of data is exploding; production of data in diverse fields is increasing at an astonishing rate
- IDC claims, digital universe is doubling in size every two years; will multiply 10-fold between 2013 and 2020 [*]
- Not only in internet services, scientific applications in diverse domains like Bioinformatics, Astrophysics, etc. are also dealing with Big Data problems

http://sppider.cchmc.org/sppider_doc.html https://nodexlgraphgallery.org/Pages/Graph.aspx? graphID=1266

Internet Services

Bioinformatics

http://innovation.talan.fr/en/2015/02/05/trends-allfinance-will-soon-be-big-data-finance-2/ http://complex.elte.hu/astro.html

Astrophysics

] http://www.csc. com/insights/flxwd/78931-big data universe beginning to explode

Big Data and Distributed File System

- Hadoop MapReduce and Spark are two popular processing frameworks for Big Data
- Hadoop Distributed File System (HDFS) is the underlying file system of Hadoop, Spark, and Hadoop database HBase
- Adopted by many reputed organizations, e.g. Facebook, Yahoo!
- HDFS, along with the upper-level middleware are being extensively used on HPC clusters
 - Enterprise is also adopting HPC technologies e.g. Oracle [*], Pivotal [#]

[*] https://www.oracle.com/networking/edr-infiniband-fabric/index.html [#] http://www.gopivotal.com/solutions/analytics-workbench

BPOE-8

Drivers of Modern HPC Cluster Architectures

High Performance Interconnects -InfiniBand

Multi-core Processors

<1usec latency, 100Gbps Bandwidth>

- Multi-core/many-core technologies
- Accelerators (NVIDIA GPGPUs and Intel Xeon Phi)
- Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)
- Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), Parallel File Systems

BPOE-8

Accelerators / Coprocessors

high compute density, high

performance/watt

>1 TFlop DP on a chip

SSD, NVMe-SSD, NVRAM

Gordon

Prior Work

NETWORK-BASED COMPUTING LABORATORY

- In [1], an RDMA-based design for HDFS has been proposed
- In [2], a hybrid design (Triple-H) to accelerate HDFS I/O performance with heterogeneous storage and advanced placement policies has been proposed
- In [3], design to accelerate Spark and iterative applications over RDMA-Enhanced HDFS with in-memory and heterogeneous storage has been proposed

[1] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H.Wang, H. Subramoni, C. Murthy and D. K. Panda, High Performance RDMA-Based Design of HDFS over InfiniBand, SC '12, November 2012

[2] N. S. Islam, X. Lu, M. W. Rahman, D. Shankar, and D. K. Panda, Triple-H: A Hybrid Approach to Accelerate HDFS on HPC Clusters with Heterogeneous Storage Architecture, CCGrid '15, May 2015

[3] N. S. Islam, M. W. Rahman, X. Lu, D. Shankar, and D. K. Panda, Performance Characterization and Acceleration of In-Memory File Systems for Hadoop and Spark Applications on HPC Clusters, IEEE BigData '15, October 2015

Overview of the HiBD Project and Releases

- RDMA for Apache Spark (RDMA-Spark)
- RDMA for Apache HBase (RDMA-HBase)
- RDMA for Apache Hadoop 2.x (RDMA-Hadoop-2.x)
 - Plugins for Apache, Hortonworks (HDP) and Cloudera (CDH) Hadoop distributions
- RDMA for Apache Hadoop 1.x (RDMA-Hadoop)
- RDMA for Memcached (RDMA-Memcached)
- OSU HiBD-Benchmarks (OHB)
- <u>http://hibd.cse.ohio-state.edu</u>
- Users Base: 215 organizations from 29 countries
- More than 21,100 downloads from project site

STATE

Installed and available on SDSC Comet

File System level designs support running Spark and HBase

Burst buffer Design

THE OHIO STATE UNIVERSITY

7

Motivation

- Data in HDFS is static; does not support random write or update operation
- Storage engines for fast analytics such as Kudu supports low-latency random access and in-place update
 - Closes the gap between fast sequential write of HDFS and random write of HBase
 - Brings the best of the two storage systems into a single platform
 - Batch as well as OLAP applications can benefit from Kudu

Motivation

- Like HDFS, Kudu replicates data across multiple Tablet servers
 - Data transfer over the network
 - Can high-performance interconnects help?
- Data stored in the local storage devices on the Table servers
 - In Tables, each Table divided into multiple Tablets
 - Can high-performance storage devices help?
- No micro-benchmarks to evaluate the impact of network and storage on Kudu operations

- Introduction
- Contributions
- Design
- Experimental Results
- Conclusion and Future Work

Contributions

- A complete methodology to evaluate Kudu on HPC clusters
- A micro-benchmark for evaluating Kudu (standalone) insert, update, and read operations for both single and multiple clients

The impact of high-performance network and storage devices on different Kudu operations

- Introduction
- Contributions
- Design
- Experimental Results
- Conclusion and Future Work

Kudu

- Storage engine for structured data
- Master manages cluster configuration and coordination; stores metadata
- The Tablet serves store the actual data and logs
- Uses RAFT consensus algorithm for data replication

Evaluation Methodology

BPOE-8

- Different High-Performance Interconnects

 40GigE Ethernet, 100Gbps InfiniBand
- Different types of Storage Devices
 SSD, HDD
- Performance Critical Data
 - Table data and/or Write Ahead Log (WAL)
- Different Kudu operations
 - Insert, Update, and Read

NETWORK-BASED COMPUTING LABORATORY

Micro-benchmark

Supported Operations	Performance Metrics
Insert	Latency, Throughput
Update	Latency, Throughput
Read	Latency, Throughput

- The benchmark supports both single and multi-client modes
- The number of records can be passed as a parameter to the benchmark

NETWORK-BASED COMPUTING LABORATORY

- Introduction
- Problem Statement
- Design
- Experimental Results
- Conclusion and Future Work

Experimental Setup

Hardware:

OSU RI2

5 nodes (408 cores)
Intel Xeon E5-2680 dual 14-core v4 2.4GHz processors
40GigE and InfiniBand-EDR (100Gbps)
512GB RAM, 380GB NVMe-SSD, two 1TB HDDs

Software: Kudu 1.0.1

Basic Performance of Interconnects

- Peak Bandwidth
 - The performance of IPoIB (100Gbps) is 25% higher than 40GigE Ethernet

18

Kudu Insert Operation Performance

- Insert Latency
 - IPoIB (100Gbps) is **21%** better than 40GigE Ethernet
- Insert Throughput
 - IPoIB (100Gbps) is **21%** better than 40GigE Ethernet

NETWORK-BASED

Kudu Insert Operation Performance

- Insert Latency
 - SSD reduces the latency by 16% over IPoIB (100Gbps), 14% over 40GigE Ethernet
 - Storing all data to SSD is as good as storing the WALS (only) to SSD

NETWORK-BASED

Kudu Update Operation Performance

BPOE-8

- Update Latency (WALS on SSD)
 - IPoIB (100Gbps) is 24% better than 40GigE Ethernet
- Update Throughput
 - IPoIB (100Gbps) is 27% better than 40GigE Ethernet

NETWORK-BASED COMPUTING LABORATORY

Kudu Read Operation Performance

- Read Latency
 - Local reads; not much difference over different interconnects
 - In-memory data read; not much difference for SSD

SED

- Introduction
- Contributions
- Design
- Experimental Results
- Conclusion and Future Work

Conclusion and Future Work

- Proposed an evaluation methodology and a micro-benchmark to evaluate Kudu on HPC platforms
 - High-performance interconnects and storage impact Kudu performance
- RDMA-based design of Kudu
- NVM-aware Kudu

Thank You!

{islamn, rahmanmd, luxi, panda}@cse.ohio-state.edu

High-Performance Big Data

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

The High-Performance Big Data Project <u>http://hibd.cse.ohio-state.edu/</u>

