CEDAR: A Distributed Database
for Scalable OLTP

Weining Qian
wngian@dase.ecnu.edu.cn

2RI AL

The Internet

eCOnOmz 30 e ' -
10000 | 209
o Content/traffic R J e

=> money : 2010.12 20116 |

m— Y PR —— R

1 020

20 2010.12-2011.6 M &M A P #RERE

O N | | ne => Ofﬂ | ne, or 2014.12-2015.6 RLER/FHREIY
. . AFIRRERR
Offl Ine = > O N | Ine 67(?($0 55-‘7% 56;096 60%

] 020 Of 40000 S u"'42.4% m o 40%
mission-critical apps:

HELP)+ (Internet+) :

. . . e LRI P e L R0 B P AR
[] O LTP IS | neV|ta b I e —— RS (SRR —— FHREMEAE (HFHRRELH)

5 CINNNIC +1EEEREEEBRASIHEE 20156

23609
20%

0%

Phenomenal applications

o Phenomenal - very remarkable; extraordinary.

Wj [4141] mmn:l
, SRENRRE / TR / Stras / SRl ST / (16 / B / iR SINDR TS u' /

201541181108 00:57 FrEkls & & - ()

FMEREGOR 11B11HER |, FEN+—WH 1o 127032 28085102 , 1295
28FLAz ZENHE1001Z , B EIRIE TR =IEH r8.59 /MK ZIEE , X
FXW+—IEE3.85 5% /FR92.2315.

|+ 180,000 tps in year 2016 |
- 1 |

Phenomenal is common
I e

O

O

12306 during Spring Festival
Black Friday promotion/second kill, ...

The pressure is on backend (transaction | payment)
systems

Be inevitable and day-to-day more common

All pressure will finally go to mission critical systems

Essentially a High-throughput, scalable transaction
processing problem

A brief history of DBMS

T I ————

Specialization and
Scaling and Extension

Post Relational DBMS
1980s
Relational DBMS :
+ Shared everything/SMP management solutions with non-
l 9603 EMRM + Major commercialization of architectures emerzgd as relational data models
RDBMS solutions took place techniques to increase database emerged
Flat File Based + I1SVs marketed DBMS systems - : M“"‘ a:on performance + Specialized databases and
) and modules for database . "m'dc relaﬁon?lpl e + Distributed "-‘.higmum appliances start emerging (in-
* Mainframe based file management, report writing, and pocil models (such as clustering) became memory, column-oriented)
management systems were querying enginesring) were invented distributed * Very large scale distributed
used for mostly rransactional * Tape storage was common but * RDBMS solutions were s data processing platforms
matured through various computing became widely pr
data processing; storage was disk based direct storage S i adopted emerged
tape based started becoming popular . :Pﬁ'“:;:"" o "'q:‘?th pe
* Batch reporting of daw for * Databases were mostly based on ﬂ:'::hed atabases for the
managers was provided through navigational model; in mid- Y
report generators late 1970's relational DBMS ‘ ‘
(RDBMS) solutions emerged ‘
* Internet based applications
‘ « Parallelization of datok with dato variety and volume
kloods is developed requirements emerge
* Relatonal model is developed * Scale-out architectures start
and refined ' lm% comp'min becarming more economical
-Mogmtk.dlskm.@gt * Querying languoges such as « Datat hines — * Specialized databases start
benc;lu"m vigble providing SQL are invented . ing proprietary sof emerging (in-rmemory, column-
ra occess « Earliest commercicl RDBMS y oriented)
~ CODASYL' lon and he sokutions are knched S50 o e dioe < - $SD and flash disk drive
“database «PCisi ion i
concept of . PC is invented technology is perfected technology odoption increases
management system * The first SSD and flash * Database as a Service
(DBMS) comes into being memory devices are models start emerging
* Independent software introduced
industry tokes birth
* The relational model is
invented
https://maxkanaskar.files.wordpress.com/2014/04/database-platform-history.png

One size fits all => One size fits nonel
"6

2015 - One Size Fits None!!

« Data Warehouse market
e OLTP market

« NoSQL market

« Complex Analytics

« Streaming market

« Graph analytics market

S IEEE

."-n/'..."
... - -

OUL KOREA, 2015

Data model
abstraction]

File DBMS
Systems ‘

Data processing
abstraction

Da del
abstraction]

Distributed ‘ NoSQL
FS

Weak
consistency

Relational

In-memory
model

Fast networking ‘ NewSQL

Transaction
processing

OIdSQL vs. NoSQL vs. NewSQL

—
Data model Relational Relational
Interface SQL Variance SQL
Consistency/Concurrency control Strong Weak Strong
Fault tolerance Strong Fine Strong
Performance Poor Good Very good
Scalability Poor Good Fine

How to scale a database system?

Application Server Database Server

Scaling-up

> Moredisks.
’(L > More RAM.
i > Faster (PUs.
> Use SSDs.

B0
LELE
HH-E

Logical
Partitions

Application Server Database Cluster

Sharding/partitioning

Application Server Database Server
Replication

Replicas

£ .
i
Update Cache memcache

|Query Request|

Application Server Database Server

Caching

eplicas

https://www.cs.cmu.edu/~christos/courses/dbms.S14/slides/29scaling.pdf

The open-source OceanBase (0.4)

@Iibaba.com

Updates
(Memory)

MergeServer MergeServer
ChunkServer ChunkServer Baseline

Updates
i

)
MergeServer MergeServer
Control ChunkServer ChunkServer
Interface
MergeServer
ChunkServer

OceanBase 0.4 is not enough
EE T

o Simple transactions only
0 Weak availability support

0 Single-point transaction

—

T

=

Not enough for mission
critical apps in banks with
strong-consistency, high-
availability, and high-
throughput complex
transaction processing
requirements

- More optimization needed for query/storage

1 Interface adaptibility

Features we need
N
- Complex transactions

o High-performance:
® High-throughput
® Low latency

7 High-availability

o Scalability

o Elasticity

Overview (CEDAR core)

Master
(backup)

Master

T-Node
(backup)

Master ,
(backup)
/l \ Hyb r|d
storage
Do
S-Node S-Node S-Node | | S-Node | ======-
i E-S»> -

-

Design choices

‘64
o Separating read and write operations on different nodes
o Scalable reading on multiple nodes
o Writing to memory in one node only

® No expensive distributed concurrent control or
synchronization

o "Deep” optimization for transactions

® To optimize data transmissions, query execution plans,
and executions

o High-availability is guaranteed by log synchronization

Status = Baseline + Delta

P id price [quantity Item
1 1.0 10 1 id price |quantity
2 2.0 20 [1 | et quantity=5 [nuLL] 1 1.0 5
3 3.0 30 -
+ 3 | ot % quantity=15[nocd] : ;': i:
P id price |quantity a 4.9 40
n I %0 6 | o quantity=30 |NULL| : s.o -
5 5.0 50 :
6 6.0 60 > 2.2 2

®) reading delta data
® responding to S-Node
@ merging
responding to users

(1 sending a read request

2) creating a execute plan ® @
(3 reading static data
@ responding to S-Node

» All readings need to access

S-Node as well as T-Node

Writings

In-memory

/

¢ D

@ — N e

Extra read

A A

@ A

@
Log ©
/

C
N
F GB

(D sending a write reques
(2) reading static data
3 responding to S-Node

@ sending a execute plan
and expression

» All writings need to access
S-Node as well as T-Node

) writing delta data

®) flushing log

(@) returning ok to S-Node
responding to users

Transaction management

| Locklist (2] K1+ [3) K3 «—> NULL
Tl Tokenl
T3 Token3 \bo 1 *"“l g=5 |[NULL
4@, UCdatalist
N 3[T *q=15|NULL
G A
/)é§9 Token1 T2 Context ‘flush
Token2
———
T2 Token2 oKen Log
TransTable 44//

« Transactions are only

processed on the T-Node

Pros and cons
21

o Pros - Cons
® Massive storage ® Expensive data
® Scalable read transmission
® Efficient transaction

management w

€ — -R(q) where i=1—-——
—————— q. 0—————’

e — — —start trans— — —)»
€ — — — ~Token2= — — — —

— = =W(q,5) where i=1-—)
€ — — —write ok —— — —

|t-5‘3

€ — -R(q) where i=3-——
_____ Q=30 — — — — P

<« time~ —

— -W(qg,t) where i=3; end M
€ — — —commit ok— —— —

Performance is affected by

I I ——
o The lengths of locks affect

© Degrees of parallelization 31
® Latency g -
g 291
o Capability of S-Nodes = 20]
® Throughput of readings g 15°
2 10+
o Capability of the T-Node £ I %
|) 9 7w

® Throughput of writings 1 50 100 500 1000

Transaction Size in # Writes

* Most cost is for short/simple transactions
* They are easier to be scheduled

S-Node optimizations

Static data caching Parallel readings

R(q)

hit‘> (i:l, q=10)

‘ Cache
miss updat

(1) sending a subquery plan
2) reading delta data

T-Node
7
1 Storage node?
» Balancing T-Node's

® All computation resources |
computation for
are for TP queries and

transaction

® High communication cost processing

1 Computation node?
® Low communication cost

® How much work should it
do?

IIIII ll: [J
Procedure Order(p_itemType int, p_custId int, (] (]
p_orderAmount int)
declare v_price, v_value double;

declare v_itemId, v_stock, v_orderAmount int;
l select itemId, price, stock
into v_itemId, v_price, v_stock
from item where itemType = p_itemType
order by price desc limit 1;
if(v_stock > p_orderAmount)
update item set stock = stock - p_orderAmount
where itemId = v_itemId;
v_orderAmount = p_orderAmount;
else

Execution plan ‘ ‘
update item set stock = stock - v_stock

where itemId = v_itemId;
v_orderAmount = v_stock; @XRD(It emType, ...)

end

-] * . .
v_value = v_price * v_orderAmount; @Xﬁ(v_stock>p_or‘der‘Amount))
-~ S

update customter set balance -= v_value

where custId = p_custId;
y <
@XRS(itemId, ..)) @
Fansactions
@UP(itemId, col)) @
@Xv_or‘der‘Amount; .) @
v_va lue=v_price*...

RS(custId, balance)
UP(custId, balance)

RD: read, UP: update,
RS: read static data

----- » control dep.
— data dep.

Dependency graph

S\

T-Node optimization

Re-order T-Node ops Postpone conflict ops
(7 XRwpelta(a))
CSXReadStatic(A)) II
(TXReadDelta(A)) (TXRWDelta(B)

)

CSXReadStatic(B)) ﬁ
S XReadstatic(A)) (7 XRupelta(c))
)

(7 XRwpelta(a)) U

(7 X Rwbelta(D)

TPC-C, Smallbank, TATP Benchmarks

Throughput (tps)
=
o
n

30.0k

20.0k+

=
o
o
il

Throughput (tps)

0.0+

PG

PG

| NewOrder-8

I NewOrder-24
VD SD CSD
System
. Payment-8
I Payment-24
VD SD CSD
System

Throughput (tps)

100.0k1 =~ pG —e—VD —a—CsD| Better than PG
80.0k{ , . . Better than VoltDB under
60.0k complex workload
40,0k, With significant
20.0k. advantage when data
| L L L L |
cannot be naturally
8 16 24 32 40 48 o
Partitions (#) partitioned
—&— Payment-24 —y— NewOrder-24 Payment-8 —@— NewOrder-8
35- 3.5
.30 A 3.0
D —_
225 / 9) 254
o o
920 g 2.04 _
Prad g
@ 1° 0 15/
Q 10 —
£ E1.0
o 4
z° “05
0)

O 4 8 12 16
Cross-Warehouse Transaction Ratio (%)

0 4 8 12 16
Cross-Warehouse Transaction Ratio (%)

Indexing
22 4

Item Id| Sale | Stock |Indexon| Sale |Item Id
3014 | 480 150 Sale 180 | 3016

3015 320 180 320 3015
3016 180 190 480 2014
Table Item Table Index_Sale

» Index s organized as a table.
o No distributed transactions.

» Taking advantage of the load balancing,
availability of system.

Indexing overview
2204

Creating Index Loading Phase

Initialization Termination
Phase Global Data Phase Finish Index
Version V Construction

» Initialization: Preparing for the start of index construction.
o Bulk Loading
e Local processing: collecting statistical information

e Global processing: achieving load balancing based on an equi-
depth histogram

» Termination: Scheduling the task for replication of the index for
high availability.

Experimental results
-4

1600 1 pgRead-Insert 30 -
1400 - 28
1200 1 M Bulk Loading 26 A
24 A
sl R 22
5 800 820 -
£ 600 roo 18 -
[| 16 -
400 14
200 - 12 4
0 4 10 4

10GB 15GB 20GB 25GB

Data Size

Buniform Mzipflaw @guassian [Nolndex

100000 10000

10000) 1000
5 £1997
Q 1000 A >
< e 100 A
S 100 - o
= G
e 10 - — 10 -
-

1 -

Clients

==
'

SERVER1 B SERVER2 BSERVER3 [ISERVER4

T
I

T

uniform guassion zipflaw

Data Distribution

B uniform B zipflaw

150 175 200 225
Clients

Other works on the CEDAR

T I ————

7 Sca

1 Glo
rep

1 Sca

able range optimistic concurrency control

nal snapshot isolation with Paxos
Ication

able commit log recording/synchronization

n Data transmission optimization
o Distributed statistics monitoring
o Rule-based and cost-based query optimization

Release

Homepage: https.//github.com/daseECNU/CEDAR
Email: cedar.tp@gmail.com _>‘

v0.5 with HA v1 for Aliyun (cloud)

2010 2012.11 2015.3
OceanBase v0.4 v0.4.2
project with SQL open
started (limited source 2016.1 2016.9 2017.8
transaction (GPLv2) CEDARO0O.1 CEDARO0.2 CEDARO0.3
support) HA new new

support Transaction Query
Engine Engine

Homepage:

https://qithub.com/daseECNU/CEDAR
sl —

CEDAREEFHIMBAFEIIBRIFZ S TIEHM (BFR"DaSE”) ETF OceanBase 0.4.2 RN AT RUXREUEE., 20164
281H, CEDARIIEE5EAL T CEDAR 0.1 R AB9FF & S, 20165E9H26H, CEDAR 0.2 lRA &7,

R4 1%

CEDAR7£OceanBase 0.4.2 FIEH_EFi& T I TN IHEERER :
CEDAR 0.1 iRASFI8EIIHEES :

o SHAN=HEHEN (KHEEE. KEAEENIR. BERED RIREFH)
o ZERIEMBKZIOLIEIEZELibonev

o HFAR

o FiEEEE

o “HRFR5|

o FERBITERN

o FIE

CEDAR 0.2 fRAFTIZAIIHEER

e SNAPSHOT ISOLATION & %&3
o X

o ETMEIRRNER

o HERBSMMA

TPC-C, Smallbank, TATP Benchmarks

Throughput (tps)
=
o
n

30.0k

20.0k+

=
o
o
il

Throughput (tps)

0.0+

PG

PG

| NewOrder-8

I NewOrder-24
VD SD CSD
System
. Payment-8
I Payment-24
VD SD CSD
System

Throughput (tps)

100.0k1 =~ pG —e—VD —a—CsD| Better than PG
80.0k{ , . . Better than VoltDB under
60.0k complex workload
40,0k, With significant
20.0k. advantage when data
| L L L L |
cannot be naturally
8 16 24 32 40 48 o
Partitions (#) partitioned
—&— Payment-24 —y— NewOrder-24 Payment-8 —@— NewOrder-8
35- 3.5
.30 A 3.0
D —_
225 / 9) 254
o o
920 g 2.04 _
Prad g
@ 1° 0 15/
Q 10 —
£ E1.0
o 4
z° “05
0)

O 4 8 12 16
Cross-Warehouse Transaction Ratio (%)

0 4 8 12 16
Cross-Warehouse Transaction Ratio (%)

Application
234

o One of the largest banks in China

® To use local/open-source DBMS for transactional

applications (to replace DB2)

® Three stages: historical DB => Hybrid DB =>

transactional DB
® 2013 — present (in stage 2)

® Code name: CBase within the bank

Stage 1 => Stage 2

I I ————

2016
Transactional workload /
Multi-clusters /

Supplier-chain app.

12014
Complex query
2-clusters

v Historical DB

2013
Simple query
Single cluster

Banknote serial number tracing

Banknote serial number tracing

- All records of banknote @ 75~ =%ege
serial numbers are 100 ¢ :
stored for 90 days in the B STD 3

AA00000000 5

CBase

o More than 10TB data
totally

o For counterfeit money BNATS
detection etc. | RREHMUS

Status

38 f
71 Went online in 2013-12

o Single cluster with 9 servers

o Features
® Batch load with about 100GB data/day
® Latency in several milliseconds over TBs of data

® Linear scalability with respect to number of
servers

Historical DB

3 f
- Move historical data to historical DB so that
the online system is lightweighted

n 283 kinds of query services are supported by
CBase :

BT —H— A R N HEARG

ETLANE X Bl A X RSOk
Oﬂkiﬁaxg} (ﬁjﬂﬂ%u E} RS

= (e) | | (e) =
@Fma@ G&}Ebu%ﬁ) .

S ST SR - <3

QO000

Status

40
7 Went online in 2014-09

- 2-clusters, with 21 servers each

o Features
® About 400GB data/day
© Latency in several milliseconds for most queries
® Active/active high-availability

0 Has become the single-point sign-in gateway
of nearly all business logic

Supplier-chain applications

QQ A
"'T“jr*?' BT

= Hybrid workload

® Complex transactions
with tens or even

hundreds of SQL
operations

® Complex analytical
queries with many joins
of large tables

® High-availability
requirements

#O RS
e 2EEH

e mEEG —

: WSTERE

[

HiREHEN TSt R
REAIRBEN CERUE &

CS/MS CS/MS CS/MS CS/MS

L

Status

a2
71 Went online in 2017-03

- Multi-clusters, each with 12 servers

o Features
® Scale-out like most NoSQL systems
® 5000tps for complex workload
® 5ms latency for key-search
® Complex queries are answered within 3s

® Multi-clusters are synchronized with Paxos-like
protocol to provide high-availability

More applications this year

N
- Network Alliance (WEX) e-payment
clearinghouse
® 2017-03 t0 2017-04

n Loaning
® 2017-09 to 2017-12

POC: 020 task assignment/taking

] i)
[EETER|EE
REE| T
TR

EBiERL

HRIEEERRIBANT SRR
TEAENTIIBRRS

PP OB TR

BirRA

@g)

BiFRAGESRATES
 IRIBBIES TRiERs
RSB TSN (RS)

#i=

¥

I35 TIEImIe e
, ROt EIRS

EH%%M@W%i“{r-A;m

A bigger picture

A bigger picture

Summary

CEDAR: i

- C: Cluster-oriented
o E: for Enterprise applications
- D: scalable Dbms

7 AR: non-traditional ARchitecture

Summary
I

d

d

SQL support: ODBC/API interfaces

Transaction support: ad-hoc transactions and store-procedures
Efficient query optimization/execution: various distributed join
implementation + indexing schemes

Deployment with High-Availability support

Highly Scalable:

© Read/write separation

® Hot/cold separation

Management/maintenance-friendly: Import/export toolkit and

monitoring/diagnose toolkit

Summary

I =
o Full-fledged DBMS
® with SQL and Transaction Processing support

- Scable architecture

® cluster-oriented: commodity PC server with large
memory, SSD drive, and high-speed network

o Mission-critical-app.-oriented
® apps In enterprises, banks, communications, etc.
o GPLv2

Thanks!

Homepage: https.//github.com/daseECNU/CEDAR
Email: cedar.tp@gmail.com _>‘

v0.5 with HA v1 for Aliyun (cloud)

2010 2012.11 2015.3
OceanBase v0.4 v0.4.2
project with SQL open
started (limited source 2016.1 2016.9 2017.8
transaction (GPLv2) CEDARO0O.1 CEDARO0.2 CEDARO0.3
support) HA new new

support Transaction Query
Engine Engine

Acknowledgement
0

C Alibaba.com

oceanBase/ ERMARAG TANRKE HIFEN

. B b2 006 4 2 0 &

ECNU-RUC-Infosys Data Science Joint Lab

Thanks!

