
CEDAR: A Distributed Database
for Scalable OLTP

Weining Qian
wnqian@dase.ecnu.edu.cn

The Internet
economy

¨ Content/traffic
=> money

¨ O2O：
Online => Offline, or
Offline => Online

¨ O2O of
mission-critical apps:
互联网+ (Internet+)

¨ OLTP is inevitable

2

Phenomenal applications
3

¨ Phenomenal - very remarkable; extraordinary.

• 180,000 tps in year 2016

Phenomenal is common

¨ 12306 during Spring Festival

¨ Black Friday promotion/second kill, ...

¨ The pressure is on backend (transaction | payment)
systems

¨ Be inevitable and day-to-day more common

¨ All pressure will finally go to mission critical systems

¨ Essentially a High-throughput, scalable transaction
processing problem

4

A brief history of DBMS

https://maxkanaskar.files.wordpress.com/2014/04/database-platform-history.png

5

One size fits all => One size fits none!
6

DBMS

File
Systems

Data model
abstraction

Data processing
abstraction

DBMS

7

Data model
abstraction

NoSQL

Distributed
FS

Weak
consistency

NoSQL

8

NewSQL

In-memory
computing

Relational
model

Transaction
processing

NewSQLFast networking

9

OldSQL vs. NoSQL vs. NewSQL

OldSQL NoSQL NewSQL

Data model Relational --- Relational

Interface SQL Variance SQL

Consistency/Concurrency control Strong Weak Strong

Fault tolerance Strong Fine Strong

Performance Poor Good Very good

Scalability Poor Good Fine

10

Scaling-up Sharding/partitioning

Replication Caching

How to scale a database system?

https://www.cs.cmu.edu/~christos/courses/dbms.S14/slides/29scaling.pdf

11

The open-source OceanBase (0.4)
12

OceanBase 0.4 is not enough

¨ Simple transactions only

¨ Weak availability support

¨ Single-point transaction

¨ More optimization needed for query/storage

¨ Interface adaptibility

Not enough for mission
critical apps in banks with
strong-consistency, high-
availability, and high-
throughput complex
transaction processing
requirements

13

Features we need

¨ Complex transactions
¨ High-performance:

¤ High-throughput
¤ Low latency

¨ High-availability
¨ Scalability
¨ Elasticity

14

Overview (CEDAR core)

Master

Master
(backup)

Master
(backup)

T-Node

T-Node
(backup)

T-Node
(backup)

S-Node S-Node S-Node S-Node S-Node

Hybrid
storage

15

Design choices

¨ Separating read and write operations on different nodes
¨ Scalable reading on multiple nodes
¨ Writing to memory in one node only

¤ No expensive distributed concurrent control or
synchronization

¨ “Deep” optimization for transactions
¤ To optimize data transmissions, query execution plans,

and executions
¨ High-availability is guaranteed by log synchronization

16

Status = Baseline + Delta
17

Reading
18

• All readings need to access
S-Node as well as T-Node

Writings
19

• All writings need to access
S-Node as well as T-Node

Transaction management
20

• Transactions are only
processed on the T-Node

Pros and cons

¨ Pros
¤Massive storage
¤Scalable read
¤Efficient transaction

management

¨ Cons
¤Expensive data

transmission

21

Performance is affected by

¨ The lengths of locks affect
¤ Degrees of parallelization

¤ Latency

¨ Capability of S-Nodes
¤ Throughput of readings

¨ Capability of the T-Node
¤ Throughput of writings 1 5 10 50 100 500 1000

5
10
15
20
25
30
35

Ti
m

e
U

se
d

pe
r W

rit
e

(u
s)

Transaction Size in # Writes

22

• Most cost is for short/simple transactions
• They are easier to be scheduled

S-Node optimizations

Static data caching Parallel readings

23

T-Node

¨ Storage node?
¤All computation resources

are for TP

¤High communication cost

¨ Computation node?
¤Low communication cost

¤How much work should it
do?

24

• Balancing T-Node’s
computation for
queries and
transaction
processing

Transaction
compilationProcedure Order(p_itemType int, p_custId int,

 p_orderAmount int)
declare v_price, v_value double;
declare v_itemId, v_stock, v_orderAmount int;
select itemId, price, stock
 into v_itemId, v_price, v_stock
 from item where itemType = p_itemType
 order by price desc limit 1;
if(v_stock > p_orderAmount)
 update item set stock = stock - p_orderAmount
 where itemId = v_itemId;
 v_orderAmount = p_orderAmount;
else
 update item set stock = stock - v_stock
 where itemId = v_itemId;
 v_orderAmount = v_stock;
end
v_value = v_price * v_orderAmount;
update customter set balance -= v_value
 where custId = p_custId;

if(v_stock>p_orderAmount)L1

RD(itemType, ...)S1

RS(itemId, ...)

UP(itemId, ...)

v_orderAmount=...

RS(custId, balance)S4

UP(custId, balance)T4

v_value=v_price*...L4

S2

T2

L2

S3

T3

L3

RD: read, UP: update,
RS: read static data

S1

L1

T4

T2 T3L4 S4

L2S2 L3 S3

control dep.
data dep.

25

Transactions

Execution plan

Dependency graph

T-Node optimization

Re-order T-Node ops Postpone conflict ops

ReadStatic(A)S

ReadDelta(A)T

ReadStatic(B)S

ReadStatic(A)S

RWDelta(A)T

RWDelta(A)T

RWDelta(B)T

RWDelta(C)T

RWDelta(D)T

26

0 4 8 12 16

0

5

10

15

20

25

30

35

N
or

m
.C

SD
 (C

SD
/V

D
)

Cross-Warehouse Transaction Ratio (%)

 Payment-24 NewOrder-24 Payment-8 NewOrder-8

0 4 8 12 16
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
om

r.V
D

 (V
D

/C
SD

)
Cross-Warehouse Transaction Ratio (%)

TPC-C, Smallbank, TATP Benchmarks

PG VD SD CSD
0.0

5.0k

10.0k

15.0k

20.0k

Th
ro

ug
hp

ut
 (t

ps
)

System

 NewOrder-8
 NewOrder-24

PG VD SD CSD
0.0

10.0k

20.0k

30.0k

Th
ro

ug
hp

ut
 (t

ps
)

System

 Payment-8
 Payment-24

8 16 24 32 40 48

20.0k

40.0k

60.0k

80.0k

100.0k

Th
ro

ug
hp

ut
 (t

ps
)

Partitions (#)

 PG VD CSD

8 16 24 32 40 48
0

100k

200k

300k

400k

500k

Th
ro

ug
hp

ut
 (t

ps
)

Partitions (#)

 PG VD CSD

27

• Better than PG
• Better than VoltDB under

complex workload
• With significant

advantage when data
cannot be naturally
partitioned

Indexing

l Index is organized as a table.
l No distributed transactions.
l Taking advantage of the load balancing,

availability of system.

28

Indexing overview

l Initialization: Preparing for the start of index construction.
l Bulk Loading

l Local processing: collecting statistical information
l Global processing: achieving load balancing based on an equi-

depth histogram
l Termination: Scheduling the task for replication of the index for

high availability.

29

Experimental results
30

Other works on the CEDAR

¨ Scalable range optimistic concurrency control
¨ Global snapshot isolation with Paxos

replication
¨ Scalable commit log recording/synchronization
¨ Data transmission optimization
¨ Distributed statistics monitoring
¨ Rule-based and cost-based query optimization

31

Release

2010
OceanBase

project
started

2012.11
v0.4

with SQL
(limited

transaction
support)

2015.3
v0.4.2
open

source
(GPLv2)

v0.5 with HA v1 for Aliyun (cloud)

2016.1
CEDAR 0.1

HA
support

2016.9
CEDAR 0.2

new
Transaction

Engine

2017.8
CEDAR 0.3

new
Query
Engine

Homepage: https://github.com/daseECNU/CEDAR
Email: cedar.tp@gmail.com

32

Homepage:
https://github.com/daseECNU/CEDAR

33

0 4 8 12 16

0

5

10

15

20

25

30

35

N
or

m
.C

SD
 (C

SD
/V

D
)

Cross-Warehouse Transaction Ratio (%)

 Payment-24 NewOrder-24 Payment-8 NewOrder-8

0 4 8 12 16
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
om

r.V
D

 (V
D

/C
SD

)
Cross-Warehouse Transaction Ratio (%)

TPC-C, Smallbank, TATP Benchmarks

PG VD SD CSD
0.0

5.0k

10.0k

15.0k

20.0k

Th
ro

ug
hp

ut
 (t

ps
)

System

 NewOrder-8
 NewOrder-24

PG VD SD CSD
0.0

10.0k

20.0k

30.0k

Th
ro

ug
hp

ut
 (t

ps
)

System

 Payment-8
 Payment-24

8 16 24 32 40 48

20.0k

40.0k

60.0k

80.0k

100.0k

Th
ro

ug
hp

ut
 (t

ps
)

Partitions (#)

 PG VD CSD

8 16 24 32 40 48
0

100k

200k

300k

400k

500k

Th
ro

ug
hp

ut
 (t

ps
)

Partitions (#)

 PG VD CSD

34

• Better than PG
• Better than VoltDB under

complex workload
• With significant

advantage when data
cannot be naturally
partitioned

Application

¨ One of the largest banks in China

¤ To use local/open-source DBMS for transactional

applications (to replace DB2)

¤ Three stages: historical DB => Hybrid DB =>

transactional DB

¤ 2013 – present (in stage 2)

¤ Code name: CBase within the bank

35

Stage 1 => Stage 2
36

2016
Transactional workload
Multi-clusters

2014
Complex query
2-clusters

2013
Simple query
Single cluster

Supplier-chain app.

Historical DB

Banknote serial number tracing

Banknote serial number tracing

¨ All records of banknote
serial numbers are
stored for 90 days in the
CBase

¨ More than 10TB data
totally

¨ For counterfeit money
detection etc.

37

Status

¨ Went online in 2013-12
¨ Single cluster with 9 servers
¨ Features

¤ Batch load with about 100GB data/day
¤ Latency in several milliseconds over TBs of data
¤ Linear scalability with respect to number of

servers

38

Historical DB

¨ Move historical data to historical DB so that
the online system is lightweighted

¨ 283 kinds of query services are supported by
CBase

39

源系统

GEMS

CWAP

ECI F

。。。

ELI F

数

据
交
换

平

台

新一代历史库

归档数据区 近线数据区

查

询

前

置

作业调度

作业监控

异常处理

ETL加载区 数据整合区

应用接口层

数据结果层

数据加载层

EGSP

接入系统

柜面

网银

。。。

呼叫中心

TCP

报文校验

查询服务

系统监控

Status

¨ Went online in 2014-09
¨ 2-clusters, with 21 servers each
¨ Features

¤ About 400GB data/day
¤ Latency in several milliseconds for most queries
¤ Active/active high-availability

¨ Has become the single-point sign-in gateway
of nearly all business logic

40

Supplier-chain applications

¨ Hybrid workload
¤ Complex transactions

with tens or even
hundreds of SQL
operations

¤ Complex analytical
queries with many joins
of large tables

¤ High-availability
requirements

41

CS/MS CS/MS CS/MS CS/MS

HA

备UPS 主UPS

备RS 主RS

CBase集群
• 全量备份

• 增量备份

备份服务器

数据备份写入

磁盘或磁带

从磁盘或磁带

读取数据备份

恢复集群

Status

¨ Went online in 2017-03
¨ Multi-clusters, each with 12 servers
¨ Features

¤ Scale-out like most NoSQL systems
¤ 5000tps for complex workload
¤ 5ms latency for key-search
¤ Complex queries are answered within 3s
¤ Multi-clusters are synchronized with Paxos-like

protocol to provide high-availability

42

More applications this year

¨ Network Alliance (网联) e-payment
clearinghouse
¤ 2017-03 to 2017-04

¨ Loaning
¤ 2017-09 to 2017-12

43

POC: O2O task assignment/taking
44

A bigger picture
45

A bigger picture

CEDAR

Ginkgo

46

Summary

CEDAR: 雪松

¨ C: Cluster-oriented
¨ E: for Enterprise applications
¨ D: scalable Dbms
¨ AR: non-traditional ARchitecture

47

Summary

¨ SQL support: ODBC/API interfaces

¨ Transaction support: ad-hoc transactions and store-procedures

¨ Efficient query optimization/execution: various distributed join

implementation + indexing schemes

¨ Deployment with High-Availability support

¨ Highly Scalable:

¤ Read/write separation

¤ Hot/cold separation

¨ Management/maintenance-friendly: Import/export toolkit and

monitoring/diagnose toolkit

48

Summary

¨ Full-fledged DBMS

¤ with SQL and Transaction Processing support

¨ Scable architecture

¤ cluster-oriented: commodity PC server with large
memory, SSD drive, and high-speed network

¨ Mission-critical-app.-oriented

¤ apps in enterprises, banks, communications, etc.

¨ GPLv2

49

Thanks!

2010
OceanBase

project
started

2012.11
v0.4

with SQL
(limited

transaction
support)

2015.3
v0.4.2
open

source
(GPLv2)

v0.5 with HA v1 for Aliyun (cloud)

2016.1
CEDAR 0.1

HA
support

2016.9
CEDAR 0.2

new
Transaction

Engine

2017.8
CEDAR 0.3

new
Query
Engine

Homepage: https://github.com/daseECNU/CEDAR
Email: cedar.tp@gmail.com

50

Acknowledgement

51

52

Thanks!

52

