THE OS SCHEDULER:
A PERFORMANCE-CRITICAL COMPONENT

IN LINUX CLUSTER ENVIRONMENTS

KEYNOTE FOR BPOE-9 By Jean-Pierre Lozi

THE NINTH WORKSHOP ON BIG DATA BENCHMARKS, | ~ /e 1abs
PERFORMANCE, OPTIMIZATION AND EMERGING HARDWARE

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 1

CLUSTER COMPUTING

* Multicore servers with dozens of cores
= Common for e.g., a hadoop cluster, a distributed graph analytics engine, multiple apps...

= High cost of infrastructure, high energy consumption

" Linux-based software stack
= Low (license) cost, yet high reliability

® Challenge: don’t waste cycles!
= Reduces infrastructure and energy costs

= Improves bandwidth and latency

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 2

WHERE TO HUNT FOR CYCLES?

strace ltrace

The scheduler???

Operating System netsta Hardware
Applications, libraries: - ol perf
’ . pidstat Applications | ! L}
. VAN DBs, all server types, ... Ge’n erd I Iy frUSfed!
Often main fOCUS ¥ System Librari mpstat
| perf Sys CPU NUMA bUS
dtra - VFS Sockets ¥ /I scheduler abhialoniblis !
]S5t2H §[_Fiesystems TCP/UDP ¥ wop. ps usage:
lktttan = Volume Managers P v pidstat PI .
5 ﬁb Device Interfa Ethernet Memory — acement,
\/ A evicf Drivers slabtop replication,
:Lostt perf /0 Bu \ free terl .
bllkotz? e Expander Interconn /O Bridge tcpdump clcatat Inter eCIVIng,
I ip
I/O Controller Network Controller ma ny recent
| | | Interface Trghsports | [Various: p qa p ers
Storage: optimized since | L2isk_] | _Disk | | Swap '1°" Fon ahE
. swapon ping | traceroute /
decades! E.g., many filesystems, pros
RDBMSes bypassing the OS Network stack, NICs,

reducing network usage (e.g. HDFS): common optimizations 3

IS THE SCHEDULER WORKING IN YOUR CLUSTER?

= It must bel 15 years ago, Linus Torvalds was already saying:

“And you have to realize that there are not very many things
that have aged as well as the scheduler. Which is just another
proof that scheduling is easy.”

= Since then, people have been running applications on their multicore machines all the time,
and they run, CPU usage is high, everything seems fine.

= But would you notice if some cores remained idle intermittently, when they shouldn’t?
" Do you keep monitoring tools (htop) running all the time?

" Even if you do, would you be able to identify faulty behavior from normal noise?

= Would you ever suspect the scheduler?

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 4

THIS TALK

= Over the past few years of working on various projects, we sometimes saw strange, hard

to explain performance results.
Number of threads in run queue: | O . . .

Idle core (#13) Extra thread

Overloaded core (#15) IIExtre: :chree:d rl*m:uuresI across cores (Ifrlc:;lmI Ipuern::rdlc orllldle rle?alancmg) back on idle core

1 |

Oo~NOOT BB WN

Slowed down execution

THIS TALK

= This is how we found our first performance bug. Which made us investigate more...
" In the end: four Linux scheduler performance bugs that we found and analyzed

= Always the same symptom: idle cores while others are overloaded
® The bug-hunting was tough, and led us to develop our own tools

= Performance overhead of some of the bugs :
= 12-23% performance improvement on a popular database with TPC-H

= 137X performance improvement on HPC workloads

" Not always possible to provide a simple, working fix...

* Intrisic problems with the design of the scheduler?

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

The Linux Scheduler: a Decade of Wasted Cores

Jean-Pierre Lozi Baptiste Lepers Justin Funston
Université Nice Sophia-Antipolis EPFL University of British Columbia
jplozi@unice.fr baptiste.lepers@epfi.ch jfunston®@ece.ubc.ca
T H I S T A |- K Fabien Gaud Vivien Quéma Alexandra Fedorova
Coho Data Grenoble INP / ENSIMAG University of British Columbia
me@fabiengaud net vivien.quema®imag,. fr sasha®@ece ubc.ca

Main takeaway of our analysis: more research must be directed

towards implementing an efficient scheduler for multicore architectures,
because contrary to what a lot of us think, this is *not* a solved problem!

Need convincing? Let’s go through it together...

...starting with a bit of background...

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 7

THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

When a thread is done running
One runqueue where threads o . g
. for its timeslice : enqueued again
are globally sorted by runtime
Cores get their next task

from the global runqueue

Of course, cannot work with a single Some tasks have a lower niceness

runqueuve because of contention and thus have a longer timeslice

(allowed to run longer)

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

D

CFS: IN PRACTICE

= One runqueue per core to avoid contention

= CFS periodically balances “loads’:

load(task) = weight' x % cpu use?

H
ﬂ.

"The lower the niceness, the higher the weight

2We don’t want a high-priority thread that
sleeps a lot to take a whole CPU for itself
and then mostly sleep!

= Since there can be many cores: hierarchical approach!

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 9

CFS IN PRACTICE : HIERARCHICAL LOAD BALANCING

AVG(L)=23600 - > AVG(L)=3600

Balanced!

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 10

CFS IN PRACTICE : HIERARCHICAL LOAD BALANCING

" Note that only the average load of groups is considered

= |f for some reason the lower-level load-balancing fails, nothing happens at a higher level:

_______ AVG(L)=3000| ¢——==———=—=—o"—">|AVG(L)=3000}

! L=0 L=6000| Balanced! || =3000 L=3000 |
i 1 I
| |
! ! .
i Tiziooo | M |
| ! -
i 1 i
|] : | |
: (Y X) | : | 1=1000 | |
: | : |
1 1
; — ¥ — -
1 | |
I Core O Core 1 I : Core 2 Core 3 I
L I L ;

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 11

CFS IN PRACTICE: MORE HEURISTICS

" Load calculations are actually more complicated, use more heuristics.
"= One of them aims to increase fairness between ‘““sessions’’.

= Objective: making sure that launching lots of threads from one terminal doesn’t prevent
other processes on the machine (potentially from other users) from running.

= Otherwise, easy to use more resources than other users by spawning many threads...

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 12

CFS IN PRACTICE: MORE HEURISTICS

" Load calculations are actually more complicated, use more heuristics.

= One of them aims to increase fairness between ‘“sessions’’.

50% ob aid "
Session (tty) 1 cpu f‘}v‘?*

6 4

Session (tty@2

.

L=1000
L=1000

.

| L=1000

L=1000
J

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 13

| CFS IN PRACTICE: MORE HEURISTICS

" Load calculations are actually more complicated, use more heuristics.

= Solution: divide the load of a task by the number of threads in its tty...

1=1000 100% of a

Session (tty) 1 CPU (o

g

I does that v
100% of a

Session (tty) 2 CPU (o

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 14

 BUG 1/4: GROUP IMBALANCE

Load(thread) = %cpu X weight |/ #threads
=100 X 10 [1
= 1000
Session (tty) 1
Load(thread) = %cpu X weight |/ #threads
_
=100 Xx 10 /| 8
=125

Session (tty) 2
THE 0S SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 15

- BUG 1/4: GROUP IMBALANCE

AVG(L)=500 - , > AVG(L)=500

A\ 4

)
THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 16

~] O O BB W P =+ O

" The bug happens at two levels :
= Other core on pair of core idle

= Other cores on NUMA node less busy...

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

T ——7 _— - -
! I-_- -_-- — —
HIENI ' -l_ —_.
- Al L | —
—
- o’
I 2
Oms 17.5s

17

BUG 1/4: GROUP IMBALANCE

A simple solution: balance the minimum load of groups instead of the average
NMYNN1260 <« . » MIN(LY=2868

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 18

 BUG 1/4: GROUP IMBALANCE

= A simple solution: balance the minimum load of groups instead of the average

Number of threads in run queue: | 0 Load: (0] 1 1024

NUMA node #
7 6 543 210

Oms 1755 Oms 17.5s

= After the fix, make runs 13% faster, and R is not impacted

= A simple solution, but is it ideal? Minimum load more volatile than average...

" May cause lots of unnecessary rebalancing. Revamping load calculations needed?

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 19

BUG 2/4: SCHEDULING GROUP CONSTRUCTION

= Hierarchical load balancing is based on groups of cores named scheduling domains
= Based on affinity, i.e., pairs of cores, dies, CPUs, NUMA nodes, etc.

® Each scheduling domain contains groups that are the lower-level scheduling domains

" For instance, on our 64-core AMD Bulldozer machine:

= At level 1, each pair of core (scheduling domains) contain cores (scheduling groups)
= At level 2, each CPU (s.d.) contain pairs of cores (s.g.)

= At level 3, each group of directly connected CPUs (s.d.) contain CPUs (s.g.)

= At level 4, the whole machine (s.d.) contains group of directly connected CPUs (s.g.)

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 20

 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

| Bulldozer 64-core:
Eight CPUs, with

8 cores each,
non-complete

interconnect graph!

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 21

 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

At the first level,
<:E’| B the first core
balances load

with the other core

on the same pair

(because they

share resources,
high affinity)

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 22

 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

| At the 2" level,
the first pair

balances load

with other pairs
on the same CPU

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 22

 BUG 2/4: SCHEDULING GROUP CONSTRUCTION
! |

.] At the 3" level,
the first CPU
balances load
with directly

connected CPUS

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 22

 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

At the 4 level,
the first group of
directly
! ; connected CPUs
«—> i f balances load
ettty with the other
| - groups of directly
e —— : connected CPUs

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 22

 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

_____ .I_____ I Groups of CPUs

built by:

(1) picking first
CPU and looking

for all directly
connected CPUs

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 22

 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

Groups of CPUs

built by:

(2) picking first
CPU not in a
group and

looking for all
directly

1

connected CPUs

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 22

 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

i And then stop,

---------- I because all CPUs

! are in a group

hat work?

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 22

 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

Suppose we

taskset an

application on
these two CPUs,

two hops apart
(16 threads)

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 23

 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

And threads

are created
on this core

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 23

 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

Load gets
correctly balanced
on the pair of
cores

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 23

 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

Load gets

correctly balanced
on the CPU

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 23

 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

No stealing

at level 3,
because nodes
not directly
connected (1 hop
apart)

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 23

 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

At level 4,
stealing between
the red and green
groups...

Overloaded node
in both groups!

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 23

 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

m load(red) =
16 * load(thread)

:-—’ e —— ——— .l!,qu.:l(green)
lF..la@ I- ﬁ Iml !r]IFITT(IS-‘S(U] load(th read)

~with-theveéh e"clﬁl ingpuesarchy !

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 23

BUG 2/4: SCHEDULING GROUP CONSTRUCTION

= Fix: build the domains by creating one “directly connected’ group for every CPU
= Instead of the first CPU and the first one not “covered” by a group

® Performance improvement of NAS applications on two nodes :

Application With bug After fix Improvement
BT 99 56 1.75x
CG 42 15 2.73x
EP 73 36 2x
LU 1040 38 27x

" Very good improvement for LU because more threads than cores if can’t use 16 cores
= Solves spinlock issues (incl. potential convoys)

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 24

BUG 3/4: MISSING SCHEDULING DOMAINS

" In addition to this, when domains re-built, levels 3 and 4 not re-buili...
= l.e., no balancing between directly connected or 1-hop CPUs (i.e. any CPU)

= Happens for instance when disabling and re-enabling a core

" Launch an application, first thread created on CPU 1
= First thread will stay on CPU 1, next threads will be created on CPU 1 (default Linux)
= All the threads will be on CPU 1 forever! Number of threads in run queve: [0 | il 21 Il

Cores considered by core 0 during failed load rebalancing events: |'"|"I
0T L L) LU LLLY LU L) LU LLLY LU L) L) LU L L) L) LLLY L L L) LLLY LU LU LY LLLY L L) LU LLLY LLLULLLY LU LLLD LLLYLLL LU LLLY LU LD LA LU LA L L L

Application With bug After fix Improvement

~N o B WM =2 O

THE 05 SCHEDULER: A PERFORMANCE-CRITICAL CO =

0.7s

 BUG 4/4: OVERLOAD-ON-WAKEUP

= Until now, we analyzed the behavior of the the periodic, (buggy) hierarchical load
balancing that uses (buggy) scheduling domains

= But there is another way load is balanced: threads get to pick on which core they get
woken up when they are done blocking (after a lock acquisition, an 1/O)...

" Here is how it works: when a thread wakes up, it looks for non-busy cores on the same
CPU in order to decide on which core it should wake up.

" Only cores that are on the same CPU, in order to improve data locality...

Wait, does that work?

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 26

BUG 4/4: OVERLOAD-ON-WAKEUP

= Commercial DB with TPC-H, 64 threads on 64 cores, nothing else on the machine.

" With threads pinned to cores, works fine. With Linux scheduling, execution much slower,
phases with overloaded cores while there are long-term idle cores!

Number of threads in run queue: | O . . .

Idle core (#13) Extra thread

Overloaded core (#15) IIExtra: ’Ichrea:d :nowesI zilcross cores (Ii’rlcﬁlmI Iperlodlc orI |Idle rletl::alancmg) back on idle core
1 ! i

O~NOOT AWM

/ ':hm.tﬁlté”hm Le ni ng ?

Slowed down execution

. T TR TLTE 11 ey
TO0'm o, T W T

0
1 . BIEY [INl NI AR
| BUG 4/4 5 | — s W
3

NI ad IIRTE:.T I
|

TPC-H reque'st Full TPC-H

= Begin
. Ocea Bug fixes #18 benchmark red
during None 55.9s 542 .9s

« Now, Group Imbalance |48.6s(—13.1%)| 513.88 (—5.4%) |ws down
all exe Overload-on-Wakeup | 43.5s (—22.2%) | 471.1s (—13.2%) |ywhere...
" Barrig Both _43.3s —22.6%) | 465.6s (—14.2%) |op on

idle core, pecause waking up aigoritnim only considaers iocdl Lru:

= Periodic rebalancing can’t rebalance load most of the time because many idle cores
= Hard to see an imbalance between 9-thread and 7-thread CPU...

= “Solution”: wake up on core idle for the longest time (not great for energy)

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS ~ 28

WHERE DO WE GO FROM HERE?

* Load balancing on a multicore machine usually considered a solved problem

" To recap, on Linux, load balancing works that way:
" Hierarchical rebalancing uses a metric named load,

T Found fundamental issue here
" to periodically balance threads between scheduling domains.
T Found fundamental issue here

" In addition to this, threads balance load by selecting core where to wake up.
T Found fundamental issue here

Wait, was anything working at all? ©

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 29

WHERE DO WE GO FROM HERE?

Many major issues went unnoticed for years in the scheduler...
How can we prevent this from happening again?
= Code testing

" No clear fault (no crash, no deadlock, etc.)

= Existing tools don’t target these bugs

* Performance regression
= Usually done with 1 app on a machine to avoid interactions

" Insufficient coverage

" Model checking, formal proofs
= Complex, parallel code: so far, nobody knows how to do it...

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 30

WHERE DO WE GO FROM HERE?

* ldea 1: short-term hack — implemented a sanity checker

Not an assertion/watchdog :
|dle core while a core is might not be a bug

overloaded?

Ye . .
= ¢l ~_situation has to last f\
100ms Monitor thread migrations, . for a long time Every
creations, destructions w

Imbalance not fixed ‘1’

Report a bug

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 31

~N O 0 B~ W NN =0

WHERE DO WE GO FROM HERE?

* ldea 2: fine-grained tracers!
= Built a simple one, turned out to be the only way to really understand what happens
= Aggregate metrics (CPl, cache misses, etc.) not precise enough

Number of threads in run queue: [0 [121 |l B9 Number of threads in run queue: [0 [l 12 [l IS Load: @ 1 1024
Cores considered by core 0 during failed load rebalancing events: || Thread weke-up on a non-idie core: s— -y T —— . - e

8 0 - - ih P Ly —_— -

2 - -

3 EHELIN R 8

4 i K = - - —;

- oy : ———l
= P ; -
6 : R Eaar
=iiim = o ' -
- Slowed down execution [

Oms 0.7s Oms 500ms Oms 17 53

= Could really be improved!

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 32

WHERE DO WE GO FROM HERE?

Idea 3: produce a dedicated profiler!

Lack of tools!

Possible to detect if slowdown comes from scheduler or application?

Would avoid a lot of wasted time!

Follow threads, and see if often on overloaded cores when shouldn’t have?

Detect if threads unnecessarily moved to core/node that leads to many cache misses?

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 33

WHERE DO WE GO FROM HERE?

Idea 4: produce good scheduler benchmarks!

Really needed, and virtually inexistent!

Not an easy problem: insane coverage needed!

Using combination of many real applications: configuration nightmare!

Simulated workloads?
Have to do elaborate work: spinning and sleeping not efficient
Have to be representative of reality, have to cover corner cases

Use machine learning? Genetic algorithms?

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 34

WHERE DO WE GO FROM HERE?

" ldea 5: switch to simpler schedulers, easier to reason about!

Let’s take a step back: *why* did we end up in this situation?
* Linux used for many classes of applications (big data, n-tier, cloud, interactive, DB, HPC...)
* Multicore architectures increasingly diverse and complex!

" Result: very complex monolithic scheduler supposed to work in all situations!
® Many heuristics interact in complex, unpredictable ways

= Some features greatly complexify, e.g., load balancing (tasksets, cgroups/autogroups...)

= Keeps getting worsel
= E.g., task_struct: 163 fields in Linux 3.0 (07/2011), 215 fields in 4.6 (05/2016)
= 20,000 lines of C!

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 35

WHERE DO WE GO FROM HERE?

Idea 5: switch to simpler schedulers, easier to reason about!

lines of code # functions # variables
BK . 300 . 100 ...
7K ,
“C '\Q\\('
ok \\\(\\"“\\S \\o‘\‘s\“\\ oY
o S 200 20
4K o S\
3K oo
100 10
2K
S
1K
0 0
2009 2011 2013 2015 2017 2009 2011 2013 2015 2017 2009 2011 2013 2015 2017

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 36

WHERE DO WE GO FROM HERE?

Idea 5: switch to simpler schedulers, easier to reason about!

Proving the scheduler implementation correct: not doable!
Way too much code for current technology

We'd need to detect high-level abstractions from low-level C: a challenge!
Even if we managed that, how do we keep up with updates?

Code keeps evolving with new architectures and application needs...

We need another approach...

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 37

Towards Proving Optimistic Multicore Schedulers

Baptiste Lepers, Willy Zwaenepoel Jean-Pierre Lozi Nicolas Palix
EPFL Université Nice Sophia-Antipolis Université Grenoble Alpes

first last@epfi.ch Jjplozi@unice.fr nicolas.palix@univ-grenoble-
alpes fr

? Redha Gouicem, Julien Sopena, Julia Lawall, Gilles Muller
Sorbonne Universités, Inna, LIP6
° first.last@lip6.fr W L I
P!

" ldea 5: switch to simpler schedulers, easier to reason about!

= Write simple, schedulers with proven properties !
" A scheduler is tailored to a (class of) parallel application(s)

= Specific thread election criterion, load balancing criterion, state machine with events...
" Machine partitioned into sets of cores that run # schedulers

= Scheduler deployed together with (an) application(s) on a partition

* Through a DSL, for two reasons:
" Much easier, safer and less bug-prone than writing low-level C kernel code !

= Clear abstractions, possible to reason about them and prove properties

" Work conservation, load balancing live and in finite # or rounds, valid hierarchy...

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 38

WHERE DO WE GO FROM HERE?

Idea 6: 222

Any other ideas?

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 39

CONCLUSION

= Scheduling (as in dividing CPU cycles among theads) was thought to be a solved problem.
= Analysis: fundamental issues in the load metric, scheduling domains, scheduling choices...
" Very bug-prone implementation following years of adapting to hardware

= Can’t ensure simple “invariant”: no idle cores while overloaded cores

" Proposed fixes: not always satisfactory

* What can we do? Many things to explore!

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 40

