
THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 1

THE OS SCHEDULER:
A PERFORMANCE-CRITICAL COMPONENT

IN LINUX CLUSTER ENVIRONMENTS

By Jean-Pierre Lozi

Oracle Labs

KEYNOTE FOR BPOE-9 @ASPLOS2018
THE NINTH WORKSHOP ON BIG DATA BENCHMARKS,

PERFORMANCE, OPTIMIZATION AND EMERGING HARDWARE

CLUSTER COMPUTING

▪ Multicore servers with dozens of cores

▪ Common for e.g., a hadoop cluster, a distributed graph analytics engine, multiple apps...

▪ High cost of infrastructure, high energy consumption

▪ Linux-based software stack

▪ Low (license) cost, yet high reliability

▪ Challenge: don’t waste cycles!

▪ Reduces infrastructure and energy costs

▪ Improves bandwidth and latency

2THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

WHERE TO HUNT FOR CYCLES?

3

Applications, libraries:

often main focus

Storage: optimized since

decades! E.g., many filesystems,

RDBMSes bypassing the OS Network stack, NICs,

reducing network usage (e.g. HDFS): common optimizations

NUMA, bus

usage:

Placement,

replication,

interleaving,

many recent

papers

IS THE SCHEDULER WORKING IN YOUR CLUSTER?

▪ It must be! 15 years ago, Linus Torvalds was already saying:

▪ Since then, people have been running applications on their multicore machines all the time,
and they run, CPU usage is high, everything seems fine.

▪ But would you notice if some cores remained idle intermittently, when they shouldn’t?

▪ Do you keep monitoring tools (htop) running all the time?

▪ Even if you do, would you be able to identify faulty behavior from normal noise?

▪ Would you ever suspect the scheduler?

4

“And you have to realize that there are not very many things

that have aged as well as the scheduler. Which is just another

proof that scheduling is easy.”

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

THIS TALK

▪ Over the past few years of working on various projects, we sometimes saw strange, hard
to explain performance results.

▪ An example: running a TPC-H benchmark on a 64-core machine, our runs much faster
when pinning threads to cores than when we let the Linux scheduler do its job.

▪ Memory locality issue? Impossible, hardware counters showed no difference in the % of remote memory
accesses, in cache misses, etc.

▪ Contention over some resource (spinlock, etc.)? We investigated this for a long time, but couldn’t find
anything that looked off.

▪ Overhead of context switches? Threads moved a lot but we proved that the overhead was negligible.

▪ We ended up suspecting the core behavior of the scheduler.

▪ We implemented high-resolution tracing tools and saw that some cores were idle while others overloaded...

5

THIS TALK

▪ This is how we found our first performance bug. Which made us investigate more...

▪ In the end: four Linux scheduler performance bugs that we found and analyzed

▪ Always the same symptom: idle cores while others are overloaded

▪ The bug-hunting was tough, and led us to develop our own tools

▪ Performance overhead of some of the bugs :

▪ 12-23% performance improvement on a popular database with TPC-H

▪ 137×performance improvement on HPC workloads

▪ Not always possible to provide a simple, working fix...

▪ Intrisic problems with the design of the scheduler?

6THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

THIS TALK

Main takeaway of our analysis: more research must be directed
towards implementing an efficient scheduler for multicore architectures,
because contrary to what a lot of us think, this is *not* a solved problem!

Need convincing? Let’s go through it together...

...starting with a bit of background...

7THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

8

Core 0 Core 1 Core 2 Core 3

R = 103

R = 82

R = 24

R = 18

R = 12

One runqueue where threads

are globally sorted by runtime

When a thread is done running

for its timeslice : enqueued againR = 112

Some tasks have a lower niceness

and thus have a longer timeslice

(allowed to run longer)

Cores get their next task

from the global runqueue

Of course, cannot work with a single

runqueue because of contention

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

CFS: IN PRACTICE

▪ One runqueue per core to avoid contention

▪ CFS periodically balances “loads”:

load(task) = weight1 x % cpu use2

1The lower the niceness, the higher the weight

2We don’t want a high-priority thread that
sleeps a lot to take a whole CPU for itself
and then mostly sleep!

▪ Since there can be many cores: hierarchical approach!

9

W=6

Core 0 Core 1

W=1

W=1

W=1

W=1

W=1

W=1

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

AVG(L)=3000 AVG(L)=3500
L=3000L=2000 L=6000 L=1000

AVG(L)=2500
L=4000 L=3000L=3000

AVG(L)=3000
CFS IN PRACTICE : HIERARCHICAL LOAD BALANCING

10

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=3000

L=1000

L=1000L=1000

Balanced! Balanced!

Balanced!

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

CFS IN PRACTICE : HIERARCHICAL LOAD BALANCING

▪ Note that only the average load of groups is considered

▪ If for some reason the lower-level load-balancing fails, nothing happens at a higher level:

11

L=3000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=6000 L=3000 L=3000

L=1000

L=1000

AVG(L)=3000 AVG(L)=3000

L=1000

L=1000

L=100

Balanced!

!!!

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

CFS IN PRACTICE: MORE HEURISTICS

▪ Load calculations are actually more complicated, use more heuristics.

▪ One of them aims to increase fairness between “sessions”.

▪ Objective: making sure that launching lots of threads from one terminal doesn’t prevent
other processes on the machine (potentially from other users) from running.

▪ Otherwise, easy to use more resources than other users by spawning many threads...

12THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

CFS IN PRACTICE: MORE HEURISTICS

▪ Load calculations are actually more complicated, use more heuristics.

▪ One of them aims to increase fairness between “sessions”.

13

L=1000

L=1000

L=1000

L=1000

L=1000

Session (tty) 2

Session (tty) 1

L=1000L=1000

L=1000 L=1000

L=1000

50% of a

CPU

150%

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

CFS IN PRACTICE: MORE HEURISTICS

▪ Load calculations are actually more complicated, use more heuristics.

▪ Solution: divide the load of a task by the number of threads in its tty...

14

L=1000

L=250L=250

Session (tty) 2

Session (tty) 1

L=1000

L=250

L=250

100% of a

CPU

100% of a

CPU

L=250 L=250

L=250

L=250

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 1/4: GROUP IMBALANCE

15

Session (tty) 2

Session (tty) 1

Load(thread) = %cpu × weight / #threads

= 100 × 10 / 1

= 1000

Load(thread) = %cpu × weight / #threads

= 100 × 10 / 8

= 125

L=1000

L=125

L=125

L=125

L=125

L=125

L=125

L=125

L=125

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 1/4: GROUP IMBALANCE

16

L=1000

L=125

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

AVG(L)=500 AVG(L)=500
Balanced!

L=125

L=125

L=125

L=125

L=125

L=125

L=125

Balanced! Balanced!

!!!

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 1/4: GROUP IMBALANCE

▪ Another example, on a 64-core machine, with load balancing:

▪ First between pairs of cores (Bulldozer architecture, a bit like hyperthreading)

▪ Then between NUMA nodes

▪ User 1 launches :
ssh <machine> R &

ssh <machine> R &

▪ User 2 launches :
ssh <machine> make –j 64 kernel

▪ The bug happens at two levels :

▪ Other core on pair of core idle

▪ Other cores on NUMA node less busy...

17THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 1/4: GROUP IMBALANCE

▪ A simple solution: balance the minimum load of groups instead of the average

18

L =

1000

L=125

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

MIN(L)=0 MIN(L)=500

L=125

L=125

L=125

L=125

L=125

L=125

L=125

Balanced! Balanced!

L=125

L=125

MIN(L)=250 MIN(L)=250
L=250 L=250Balanced! L=325 L=325

MIN(L)=325

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 1/4: GROUP IMBALANCE

▪ A simple solution: balance the minimum load of groups instead of the average

▪

▪ After the fix, make runs 13% faster, and R is not impacted

▪ A simple solution, but is it ideal? Minimum load more volatile than average...

▪ May cause lots of unnecessary rebalancing. Revamping load calculations needed?

19THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 2/4: SCHEDULING GROUP CONSTRUCTION

▪ Hierarchical load balancing is based on groups of cores named scheduling domains

▪ Based on affinity, i.e., pairs of cores, dies, CPUs, NUMA nodes, etc.

▪ Each scheduling domain contains groups that are the lower-level scheduling domains

▪ For instance, on our 64-core AMD Bulldozer machine:

▪ At level 1, each pair of core (scheduling domains) contain cores (scheduling groups)

▪ At level 2, each CPU (s.d.) contain pairs of cores (s.g.)

▪ At level 3, each group of directly connected CPUs (s.d.) contain CPUs (s.g.)

▪ At level 4, the whole machine (s.d.) contains group of directly connected CPUs (s.g.)

20THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 2/4: SCHEDULING GROUP CONSTRUCTION

21

Bulldozer 64-core:

Eight CPUs, with

8 cores each,

non-complete

interconnect graph!

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 2/4: SCHEDULING GROUP CONSTRUCTION

22

At the first level,

the first core

balances load

with the other core

on the same pair

(because they

share resources,

high affinity)

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 2/4: SCHEDULING GROUP CONSTRUCTION

22

At the 2nd level,

the first pair

balances load

with other pairs

on the same CPU

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 2/4: SCHEDULING GROUP CONSTRUCTION

22

At the 3rd level,

the first CPU

balances load

with directly

connected CPUS

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 2/4: SCHEDULING GROUP CONSTRUCTION

22

At the 4th level,

the first group of

directly

connected CPUs

balances load

with the other

groups of directly

connected CPUs

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 2/4: SCHEDULING GROUP CONSTRUCTION

22

Groups of CPUs

built by:

(1) picking first

CPU and looking

for all directly

connected CPUs

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 2/4: SCHEDULING GROUP CONSTRUCTION

22

Groups of CPUs

built by:

(2) picking first

CPU not in a

group and

looking for all

directly

connected CPUs

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 2/4: SCHEDULING GROUP CONSTRUCTION

22

And then stop,

because all CPUs

are in a group

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 2/4: SCHEDULING GROUP CONSTRUCTION

23

Suppose we

taskset an

application on

these two CPUs,

two hops apart

(16 threads)

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 2/4: SCHEDULING GROUP CONSTRUCTION

23

And threads

are created

on this core

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 2/4: SCHEDULING GROUP CONSTRUCTION

23

Load gets

correctly balanced

on the pair of

cores

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 2/4: SCHEDULING GROUP CONSTRUCTION

23

Load gets

correctly balanced

on the CPU

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 2/4: SCHEDULING GROUP CONSTRUCTION

23

No stealing

at level 3,

because nodes

not directly

connected (1 hop

apart)

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 2/4: SCHEDULING GROUP CONSTRUCTION

23

At level 4,

stealing between

the red and green

groups...

Overloaded node

in both groups!

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 2/4: SCHEDULING GROUP CONSTRUCTION

23

load(red) =

16 * load(thread)

load(green) =

16 * load(thread)

!!!

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 2/4: SCHEDULING GROUP CONSTRUCTION

▪ Fix: build the domains by creating one “directly connected” group for every CPU

▪ Instead of the first CPU and the first one not “covered” by a group

▪ Performance improvement of NAS applications on two nodes :

▪ Very good improvement for LU because more threads than cores if can’t use 16 cores

▪ Solves spinlock issues (incl. potential convoys)

24

Application With bug After fix Improvement

BT 99 56 1.75x

CG 42 15 2.73x

EP 73 36 2x

LU 1040 38 27x

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 3/4: MISSING SCHEDULING DOMAINS

▪ In addition to this, when domains re-built, levels 3 and 4 not re-built...

▪ I.e., no balancing between directly connected or 1-hop CPUs (i.e. any CPU)

▪ Happens for instance when disabling and re-enabling a core

▪ Launch an application, first thread created on CPU 1

▪ First thread will stay on CPU 1, next threads will be created on CPU 1 (default Linux)

▪ All the threads will be on CPU 1 forever!

25

Application With bug After fix Improvement

BT 122 23 5.2x

CG 134 5.4 25x

EP 72 18 4x

LU 2196 16 137x

BUG 4/4: OVERLOAD-ON-WAKEUP

▪ Until now, we analyzed the behavior of the the periodic, (buggy) hierarchical load
balancing that uses (buggy) scheduling domains

▪ But there is another way load is balanced: threads get to pick on which core they get
woken up when they are done blocking (after a lock acquisition, an I/O)...

▪ Here is how it works: when a thread wakes up, it looks for non-busy cores on the same
CPU in order to decide on which core it should wake up.

▪ Only cores that are on the same CPU, in order to improve data locality...

26THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

BUG 4/4: OVERLOAD-ON-WAKEUP

▪ Commercial DB with TPC-H, 64 threads on 64 cores, nothing else on the machine.

▪ With threads pinned to cores, works fine. With Linux scheduling, execution much slower,
phases with overloaded cores while there are long-term idle cores!

27

BUG 4/4

▪ Beginning: 8 threads / CPU, cores busy

▪ Occasionally, 1 DB thread migrated to other CPU because transient thread appeared
during rebalancing which looked like imbalance (only instant loads considered)

▪ Now, 9 threads on one CPU, and 7 on another one. CPU with 9 threads slow, slows down
all execution because all threads wait for each other (barriers), i.e. idle cores everywhere...

▪ Barriers: threads keep sleeping and waking up, but extra thread never wakes up on
idle core, because waking up algorithm only considers local CPU!

▪ Periodic rebalancing can’t rebalance load most of the time because many idle cores
⇒ Hard to see an imbalance between 9-thread and 7-thread CPU...

▪ “Solution”: wake up on core idle for the longest time (not great for energy)

28

9 threads

7 threads Idle (long)

Slowed down execution

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

WHERE DO WE GO FROM HERE?

▪ Load balancing on a multicore machine usually considered a solved problem

▪ To recap, on Linux, load balancing works that way:

▪ Hierarchical rebalancing uses a metric named load,

↑ Found fundamental issue here

▪ to periodically balance threads between scheduling domains.

↑ Found fundamental issue here

▪ In addition to this, threads balance load by selecting core where to wake up.

↑ Found fundamental issue here

Wait, was anything working at all? ☺

29THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

WHERE DO WE GO FROM HERE?

Many major issues went unnoticed for years in the scheduler...
How can we prevent this from happening again?

▪ Code testing

▪ No clear fault (no crash, no deadlock, etc.)

▪ Existing tools don’t target these bugs

▪ Performance regression

▪ Usually done with 1 app on a machine to avoid interactions

▪ Insufficient coverage

▪ Model checking, formal proofs

▪ Complex, parallel code: so far, nobody knows how to do it...

30THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

WHERE DO WE GO FROM HERE?
▪ Idea 1: short-term hack — implemented a sanity checker

31THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

Idle core while a core is

overloaded?

Monitor thread migrations,

creations, destructions

Yes

Every

second
100ms

Report a bug

Imbalance not fixed

Not an assertion/watchdog :

might not be a bug

situation has to last

for a long time

WHERE DO WE GO FROM HERE?
▪ Idea 2: fine-grained tracers!

▪ Built a simple one, turned out to be the only way to really understand what happens

▪ Aggregate metrics (CPI, cache misses, etc.) not precise enough

▪ Could really be improved!

32THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

WHERE DO WE GO FROM HERE?
▪ Idea 3: produce a dedicated profiler!

▪ Lack of tools!

▪ Possible to detect if slowdown comes from scheduler or application?

▪ Would avoid a lot of wasted time!

▪ Follow threads, and see if often on overloaded cores when shouldn’t have?

▪ Detect if threads unnecessarily moved to core/node that leads to many cache misses?

33THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

WHERE DO WE GO FROM HERE?
▪ Idea 4: produce good scheduler benchmarks!

▪ Really needed, and virtually inexistent!

▪ Not an easy problem: insane coverage needed!

▪ Using combination of many real applications: configuration nightmare!

▪ Simulated workloads?

▪ Have to do elaborate work: spinning and sleeping not efficient

▪ Have to be representative of reality, have to cover corner cases

▪ Use machine learning? Genetic algorithms?

34THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

WHERE DO WE GO FROM HERE?

35THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

▪ Idea 5: switch to simpler schedulers, easier to reason about!

Let’s take a step back: *why* did we end up in this situation?

▪ Linux used for many classes of applications (big data, n-tier, cloud, interactive, DB, HPC...)

▪ Multicore architectures increasingly diverse and complex!

▪ Result: very complex monolithic scheduler supposed to work in all situations!

▪ Many heuristics interact in complex, unpredictable ways

▪ Some features greatly complexify, e.g., load balancing (tasksets, cgroups/autogroups...)

▪ Keeps getting worse!

▪ E.g., task_struct: 163 fields in Linux 3.0 (07/2011), 215 fields in 4.6 (05/2016)

▪ 20,000 lines of C!

WHERE DO WE GO FROM HERE?

36THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

▪ Idea 5: switch to simpler schedulers, easier to reason about!

lines of code # functions # variables

1K

2K

3K

4K

5K

6K

7K

8K

0

100

200

300

0

10

20

100

0
2009 2011 2013 2015 2017 2009 2011 2013 2015 2017 2009 2011 2013 2015 2017

WHERE DO WE GO FROM HERE?

37THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

▪ Idea 5: switch to simpler schedulers, easier to reason about!

▪ Proving the scheduler implementation correct: not doable!

▪ Way too much code for current technology

▪ We’d need to detect high-level abstractions from low-level C: a challenge!

▪ Even if we managed that, how do we keep up with updates?

▪ Code keeps evolving with new architectures and application needs...

▪ We need another approach...

WHERE DO WE GO FROM HERE?

38THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

▪ Idea 5: switch to simpler schedulers, easier to reason about!

▪ Write simple, schedulers with proven properties !

▪ A scheduler is tailored to a (class of) parallel application(s)

▪ Specific thread election criterion, load balancing criterion, state machine with events...

▪ Machine partitioned into sets of cores that run ≠ schedulers

▪ Scheduler deployed together with (an) application(s) on a partition

▪ Through a DSL, for two reasons:

▪ Much easier, safer and less bug-prone than writing low-level C kernel code !

▪ Clear abstractions, possible to reason about them and prove properties

▪ Work conservation, load balancing live and in finite # or rounds, valid hierarchy...

WHERE DO WE GO FROM HERE?

39THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

▪ Idea 6: ???

▪ Any other ideas?

CONCLUSION

▪ Scheduling (as in dividing CPU cycles among theads) was thought to be a solved problem.

▪ Analysis: fundamental issues in the load metric, scheduling domains, scheduling choices...

▪ Very bug-prone implementation following years of adapting to hardware

▪ Can’t ensure simple “invariant”: no idle cores while overloaded cores

▪ Proposed fixes: not always satisfactory

▪ What can we do? Many things to explore!

▪ Our takeaway: more research must be directed towards implementing efficient and
reliable schedulers for multicore architectures!

40THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS

