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CLUSTER COMPUTING

▪ Multicore servers with dozens of cores

▪ Common for e.g., a hadoop cluster, a distributed graph analytics engine, multiple apps...

▪ High cost of infrastructure, high energy consumption

▪ Linux-based software stack

▪ Low (license) cost, yet high reliability

▪ Challenge: don’t waste cycles!

▪ Reduces infrastructure and energy costs

▪ Improves bandwidth and latency
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WHERE TO HUNT FOR CYCLES?
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Applications, libraries:

often main focus

Storage: optimized since

decades! E.g., many filesystems,

RDBMSes bypassing the OS Network stack, NICs,

reducing network usage (e.g. HDFS): common optimizations

NUMA, bus 

usage:

Placement, 

replication,

interleaving,

many recent 

papers



IS THE SCHEDULER WORKING IN YOUR CLUSTER?

▪ It must be! 15 years ago, Linus Torvalds was already saying: 

▪ Since then, people have been running applications on their multicore machines all the time, 
and they run, CPU usage is high, everything seems fine.

▪ But would you notice if some cores remained idle intermittently, when they shouldn’t? 

▪ Do you keep monitoring tools (htop) running all the time?

▪ Even if you do, would you be able to identify faulty behavior from normal noise?

▪ Would you ever suspect the scheduler?
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“And you have to realize that there are not very many things

that have aged as well as the scheduler. Which is just another

proof  that scheduling is easy.”
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THIS TALK

▪ Over the past few years of working on various projects, we sometimes saw strange, hard 
to explain performance results.

▪ An example: running a TPC-H benchmark on a 64-core machine, our runs much faster
when pinning threads to cores than when we let the Linux scheduler do its job.

▪ Memory locality issue? Impossible, hardware counters showed no difference in the % of remote memory 
accesses, in cache misses, etc.

▪ Contention over some resource (spinlock, etc.)? We investigated this for a long time, but couldn’t find
anything that looked off.

▪ Overhead of context switches? Threads moved a lot but we proved that the overhead was negligible.

▪ We ended up suspecting the core behavior of the scheduler.

▪ We implemented high-resolution tracing tools and saw that some cores were idle while others overloaded...
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THIS TALK

▪ This is how we found our first performance bug. Which made us investigate more...

▪ In the end: four Linux scheduler performance bugs that we found and analyzed

▪ Always the same symptom: idle cores while others are overloaded

▪ The bug-hunting was tough, and led us to develop our own tools

▪ Performance overhead of some of the bugs :

▪ 12-23% performance improvement on a popular database with TPC-H

▪ 137×performance improvement on HPC workloads

▪ Not always possible to provide a simple, working fix...

▪ Intrisic problems with the design of the scheduler?
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THIS TALK

Main takeaway of our analysis: more research must be directed
towards implementing an efficient scheduler for multicore architectures,
because contrary to what a lot of us think, this is *not* a solved problem!

Need convincing? Let’s go through it together...

...starting with a bit of background...
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THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT
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Core 0 Core 1 Core 2 Core 3

R = 103

R = 82

R = 24

R = 18

R = 12

One runqueue where threads

are globally sorted by runtime

When a thread is done running 

for its timeslice : enqueued againR = 112

Some tasks have a lower niceness

and thus have a longer timeslice

(allowed to run longer) 

Cores get their next task

from the global runqueue

Of course, cannot work with a single

runqueue because of contention
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CFS: IN PRACTICE

▪ One runqueue per core to avoid contention

▪ CFS periodically balances “loads”:

load(task) = weight1 x % cpu use2

1The lower the niceness, the higher the weight

2We don’t want a high-priority thread that
sleeps a lot to take a whole CPU for itself
and then mostly sleep!

▪ Since there can be many cores: hierarchical approach!
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W=6

Core 0 Core 1

W=1

W=1

W=1

W=1

W=1

W=1
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AVG(L)=3000 AVG(L)=3500
L=3000L=2000 L=6000 L=1000

AVG(L)=2500
L=4000 L=3000L=3000

AVG(L)=3000
CFS IN PRACTICE : HIERARCHICAL LOAD BALANCING
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L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=3000

L=1000

L=1000L=1000

Balanced! Balanced!

Balanced!
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CFS IN PRACTICE : HIERARCHICAL LOAD BALANCING

▪ Note that only the average load of groups is considered

▪ If for some reason the lower-level load-balancing fails, nothing happens at a higher level:
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L=3000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=6000 L=3000 L=3000

L=1000

L=1000

AVG(L)=3000 AVG(L)=3000

L=1000

L=1000

L=100

Balanced!

!!!
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CFS IN PRACTICE: MORE HEURISTICS 

▪ Load calculations are actually more complicated, use more heuristics.

▪ One of them aims to increase fairness between “sessions”.

▪ Objective: making sure that launching lots of threads from one terminal doesn’t prevent
other processes on the machine (potentially from other users) from running.

▪ Otherwise, easy to use more resources than other users by spawning many threads...
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CFS IN PRACTICE: MORE HEURISTICS 

▪ Load calculations are actually more complicated, use more heuristics.

▪ One of them aims to increase fairness between “sessions”.
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L=1000

L=1000

L=1000

L=1000

L=1000

Session (tty) 2

Session (tty) 1

L=1000L=1000

L=1000 L=1000

L=1000

50% of a 

CPU      

150% 
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CFS IN PRACTICE: MORE HEURISTICS 

▪ Load calculations are actually more complicated, use more heuristics.

▪ Solution: divide the load of a task by the number of threads in its tty...
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L=1000

L=250L=250

Session (tty) 2

Session (tty) 1

L=1000

L=250

L=250

100% of a 

CPU      

100% of a 

CPU      

L=250 L=250

L=250

L=250
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BUG 1/4: GROUP IMBALANCE
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Session (tty) 2

Session (tty) 1

Load(thread) = %cpu × weight / #threads

= 100 × 10 / 1

= 1000

Load(thread) = %cpu × weight / #threads

= 100 × 10 / 8

= 125

L=1000

L=125

L=125

L=125

L=125

L=125

L=125

L=125

L=125
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BUG 1/4: GROUP IMBALANCE
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L=1000

L=125

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

AVG(L)=500 AVG(L)=500
Balanced!

L=125

L=125

L=125

L=125

L=125

L=125

L=125

Balanced! Balanced!

!!!
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BUG 1/4: GROUP IMBALANCE

▪ Another example, on a 64-core machine, with load balancing:

▪ First between pairs of cores (Bulldozer architecture, a bit like hyperthreading)

▪ Then between NUMA nodes

▪ User 1 launches :
ssh <machine> R & 

ssh <machine> R &

▪ User 2 launches :
ssh <machine> make –j 64 kernel

▪ The bug happens at two levels :

▪ Other core on pair of core idle

▪ Other cores on NUMA node less busy...
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BUG 1/4: GROUP IMBALANCE

▪ A simple solution: balance the minimum load of groups instead of the average
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L =

1000

L=125

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

MIN(L)=0 MIN(L)=500

L=125

L=125

L=125

L=125

L=125

L=125

L=125

Balanced! Balanced!

L=125

L=125

MIN(L)=250 MIN(L)=250
L=250 L=250Balanced! L=325 L=325

MIN(L)=325
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BUG 1/4: GROUP IMBALANCE

▪ A simple solution: balance the minimum load of groups instead of the average

▪

▪ After the fix, make runs 13% faster, and R is not impacted

▪ A simple solution, but is it ideal? Minimum load more volatile than average...

▪ May cause lots of unnecessary rebalancing. Revamping load calculations needed?
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BUG 2/4: SCHEDULING GROUP CONSTRUCTION

▪ Hierarchical load balancing is based on groups of cores named scheduling domains

▪ Based on affinity, i.e., pairs of cores, dies, CPUs, NUMA nodes, etc.

▪ Each scheduling domain contains groups that are the lower-level scheduling domains

▪ For instance, on our 64-core AMD Bulldozer machine:

▪ At level 1, each pair of core (scheduling domains) contain cores (scheduling groups)

▪ At level 2, each CPU (s.d.) contain pairs of cores (s.g.)

▪ At level 3, each group of directly connected CPUs (s.d.) contain CPUs (s.g.)

▪ At level 4, the whole machine (s.d.) contains group of directly connected CPUs (s.g.)
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BUG 2/4: SCHEDULING GROUP CONSTRUCTION
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Bulldozer 64-core:

Eight CPUs, with

8 cores each,

non-complete 

interconnect graph!
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BUG 2/4: SCHEDULING GROUP CONSTRUCTION
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At the first level, 

the first core 

balances load 

with the other core 

on the same pair 

(because they 

share resources, 

high affinity)
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BUG 2/4: SCHEDULING GROUP CONSTRUCTION
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At the 2nd level, 

the first pair

balances load 

with other pairs 

on the same CPU
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BUG 2/4: SCHEDULING GROUP CONSTRUCTION

22

At the 3rd level, 

the first CPU

balances load 

with directly 

connected CPUS
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BUG 2/4: SCHEDULING GROUP CONSTRUCTION
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At the 4th level, 

the first group of 

directly 

connected CPUs

balances load 

with the other 

groups of directly 

connected CPUs
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BUG 2/4: SCHEDULING GROUP CONSTRUCTION

22

Groups of CPUs 

built by: 

(1) picking first 

CPU and looking 

for all directly 

connected CPUs
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BUG 2/4: SCHEDULING GROUP CONSTRUCTION

22

Groups of CPUs 

built by: 

(2) picking first 

CPU not in a 

group and 

looking for all 

directly 

connected CPUs
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BUG 2/4: SCHEDULING GROUP CONSTRUCTION
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And then stop,

because all CPUs

are in a group
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BUG 2/4: SCHEDULING GROUP CONSTRUCTION
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Suppose we

taskset an 

application on 

these two CPUs,

two hops apart

(16 threads)
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BUG 2/4: SCHEDULING GROUP CONSTRUCTION

23

And threads

are created 

on this core
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BUG 2/4: SCHEDULING GROUP CONSTRUCTION

23

Load gets 

correctly balanced 

on the pair of 

cores
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BUG 2/4: SCHEDULING GROUP CONSTRUCTION

23

Load gets 

correctly balanced 

on the CPU

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS



BUG 2/4: SCHEDULING GROUP CONSTRUCTION

23

No stealing

at level 3, 

because nodes

not directly 

connected (1 hop 

apart)
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BUG 2/4: SCHEDULING GROUP CONSTRUCTION

23

At level 4,

stealing between 

the red and green

groups...

Overloaded node

in both groups!
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BUG 2/4: SCHEDULING GROUP CONSTRUCTION

23

load(red) =

16 * load(thread)

load(green) =

16 * load(thread)

!!!
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BUG 2/4: SCHEDULING GROUP CONSTRUCTION

▪ Fix: build the domains by creating one “directly connected” group for every CPU

▪ Instead of the first CPU and the first one not “covered” by a group

▪ Performance improvement of NAS applications on two nodes :

▪ Very good improvement for LU because more threads than cores if can’t use 16 cores

▪ Solves spinlock issues (incl. potential convoys)
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Application With bug After fix Improvement

BT 99 56 1.75x

CG 42 15 2.73x

EP 73 36 2x

LU 1040 38 27x
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BUG 3/4: MISSING SCHEDULING DOMAINS

▪ In addition to this, when domains re-built, levels 3 and 4 not re-built...

▪ I.e., no balancing between directly connected or 1-hop CPUs (i.e. any CPU)

▪ Happens for instance when disabling and re-enabling a core

▪ Launch an application, first thread created on CPU 1

▪ First thread will stay on CPU 1, next threads will be created on CPU 1 (default Linux)

▪ All the threads will be on CPU 1 forever!
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Application With bug After fix Improvement

BT 122 23 5.2x

CG 134 5.4 25x

EP 72 18 4x

LU 2196 16 137x



BUG 4/4: OVERLOAD-ON-WAKEUP

▪ Until now, we analyzed the behavior of the the periodic, (buggy) hierarchical load
balancing that uses (buggy) scheduling domains

▪ But there is another way load is balanced: threads get to pick on which core they get
woken up when they are done blocking (after a lock acquisition, an I/O)...

▪ Here is how it works: when a thread wakes up, it looks for non-busy cores on the same
CPU in order to decide on which core it should wake up.

▪ Only cores that are on the same CPU, in order to improve data locality...
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BUG 4/4: OVERLOAD-ON-WAKEUP

▪ Commercial DB with TPC-H, 64 threads on 64 cores, nothing else on the machine.

▪ With threads pinned to cores, works fine. With Linux scheduling, execution much slower, 
phases with overloaded cores while there are long-term idle cores!
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BUG 4/4

▪ Beginning: 8 threads / CPU, cores busy

▪ Occasionally, 1 DB thread migrated to other CPU because transient thread appeared
during rebalancing which looked like imbalance (only instant loads considered)

▪ Now, 9 threads on one CPU, and 7 on another one. CPU with 9 threads slow, slows down 
all execution because all threads wait for each other (barriers), i.e. idle cores everywhere...

▪ Barriers: threads keep sleeping and waking up, but extra thread never wakes up on 
idle core, because waking up algorithm only considers local CPU!

▪ Periodic rebalancing can’t rebalance load most of the time because many idle cores
⇒ Hard to see an imbalance between 9-thread and 7-thread CPU...

▪ “Solution”: wake up on core idle for the longest time (not great for energy)
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9 threads

7 threads Idle (long)

Slowed down execution
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WHERE DO WE GO FROM HERE?

▪ Load balancing on a multicore machine usually considered a solved problem

▪ To recap, on Linux, load balancing works that way:

▪ Hierarchical rebalancing uses a metric named load,

↑ Found fundamental issue here

▪ to periodically balance threads between scheduling domains.

↑ Found fundamental issue here

▪ In addition to this, threads balance load by selecting core where to wake up.

↑ Found fundamental issue here

Wait, was anything working at all? ☺
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WHERE DO WE GO FROM HERE?

Many major issues went unnoticed for years in the scheduler...
How can we prevent this from happening again?

▪ Code testing

▪ No clear fault (no crash, no deadlock, etc.)

▪ Existing tools don’t target these bugs

▪ Performance regression

▪ Usually done with 1 app on a machine to avoid interactions

▪ Insufficient coverage

▪ Model checking, formal proofs

▪ Complex, parallel code: so far, nobody knows how to do it...
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WHERE DO WE GO FROM HERE?
▪ Idea 1: short-term hack — implemented a sanity checker
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Idle core while a core is 

overloaded?

Monitor thread migrations, 

creations, destructions

Yes

Every

second
100ms

Report a bug

Imbalance not fixed

Not an assertion/watchdog :

might not be a bug

situation has to last

for a long time



WHERE DO WE GO FROM HERE?
▪ Idea 2: fine-grained tracers!

▪ Built a simple one, turned out to be the only way to really understand what happens

▪ Aggregate metrics (CPI, cache misses, etc.) not precise enough

▪ Could really be improved!
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WHERE DO WE GO FROM HERE?
▪ Idea 3: produce a dedicated profiler!

▪ Lack of tools!

▪ Possible to detect if slowdown comes from scheduler or application?

▪ Would avoid a lot of wasted time!

▪ Follow threads, and see if often on overloaded cores when shouldn’t have?

▪ Detect if threads unnecessarily moved to core/node that leads to many cache misses?
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WHERE DO WE GO FROM HERE?
▪ Idea 4: produce good scheduler benchmarks!

▪ Really needed, and virtually inexistent!

▪ Not an easy problem: insane coverage needed!

▪ Using combination of many real applications: configuration nightmare!

▪ Simulated workloads?

▪ Have to do elaborate work: spinning and sleeping not efficient

▪ Have to be representative of reality, have to cover corner cases

▪ Use machine learning? Genetic algorithms?
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WHERE DO WE GO FROM HERE?
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▪ Idea 5: switch to simpler schedulers, easier to reason about!

Let’s take a step back: *why* did we end up in this situation?

▪ Linux used for many classes of applications (big data, n-tier, cloud, interactive, DB, HPC...)

▪ Multicore architectures increasingly diverse and complex!

▪ Result: very complex monolithic scheduler supposed to work in all situations!

▪ Many heuristics interact in complex, unpredictable ways

▪ Some features greatly complexify, e.g., load balancing (tasksets, cgroups/autogroups...)

▪ Keeps getting worse!

▪ E.g., task_struct: 163 fields in Linux 3.0 (07/2011), 215 fields in 4.6 (05/2016)

▪ 20,000 lines of C!



WHERE DO WE GO FROM HERE?
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▪ Idea 5: switch to simpler schedulers, easier to reason about!
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WHERE DO WE GO FROM HERE?
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▪ Idea 5: switch to simpler schedulers, easier to reason about!

▪ Proving the scheduler implementation correct: not doable!

▪ Way too much code for current technology

▪ We’d need to detect high-level abstractions from low-level C: a challenge!

▪ Even if we managed that, how do we keep up with updates?

▪ Code keeps evolving with new architectures and application needs...

▪ We need another approach...



WHERE DO WE GO FROM HERE?
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▪ Idea 5: switch to simpler schedulers, easier to reason about!

▪ Write simple, schedulers with proven properties !

▪ A scheduler is tailored to a (class of) parallel application(s)

▪ Specific thread election criterion, load balancing criterion, state machine with events...

▪ Machine partitioned into sets of cores that run ≠ schedulers

▪ Scheduler deployed together with (an) application(s) on a partition

▪ Through a DSL, for two reasons:

▪ Much easier, safer and less bug-prone than writing low-level C kernel code !

▪ Clear abstractions, possible to reason about them and prove properties

▪ Work conservation, load balancing live and in finite # or rounds, valid hierarchy... 



WHERE DO WE GO FROM HERE?
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▪ Idea 6: ???

▪ Any other ideas?



CONCLUSION

▪ Scheduling (as in dividing CPU cycles among theads) was thought to be a solved problem.

▪ Analysis: fundamental issues in the load metric, scheduling domains, scheduling choices...

▪ Very bug-prone implementation following years of adapting to hardware

▪ Can’t ensure simple “invariant”: no idle cores while overloaded cores

▪ Proposed fixes: not always satisfactory

▪ What can we do? Many things to explore!

▪ Our takeaway: more research must be directed towards implementing efficient and
reliable schedulers for multicore architectures!
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