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CLUSTER COMPUTING

* Multicore servers with dozens of cores
= Common for e.g., a hadoop cluster, a distributed graph analytics engine, multiple apps...

= High cost of infrastructure, high energy consumption

" Linux-based software stack
= Low (license) cost, yet high reliability

® Challenge: don’t waste cycles!
= Reduces infrastructure and energy costs

= Improves bandwidth and latency

THE OS SCHEDULER: A PERFORMANCE-CRITICAL COMPONENT IN LINUX CLUSTER ENVIRONMENTS 2



WHERE TO HUNT FOR CYCLES?
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IS THE SCHEDULER WORKING IN YOUR CLUSTER?

= It must bel 15 years ago, Linus Torvalds was already saying:

“And you have to realize that there are not very many things
that have aged as well as the scheduler. Which is just another
proof that scheduling is easy.”

= Since then, people have been running applications on their multicore machines all the time,
and they run, CPU usage is high, everything seems fine.

= But would you notice if some cores remained idle intermittently, when they shouldn’t?
" Do you keep monitoring tools (htop) running all the time?

" Even if you do, would you be able to identify faulty behavior from normal noise?

= Would you ever suspect the scheduler?
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THIS TALK

= Over the past few years of working on various projects, we sometimes saw strange, hard

to explain performance results.
Number of threads in run queue: | O . . .

Idle core (#13) Extra thread

Overloaded core (#15) IIExtre: :chree:d rl*m:uuresI across cores (Ifrlc:;lmI Ipuern::rdlc orllldle rle?alancmg) back on idle core
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THIS TALK

= This is how we found our first performance bug. Which made us investigate more...
" In the end: four Linux scheduler performance bugs that we found and analyzed

= Always the same symptom: idle cores while others are overloaded
® The bug-hunting was tough, and led us to develop our own tools

= Performance overhead of some of the bugs :
= 12-23% performance improvement on a popular database with TPC-H

= 137X performance improvement on HPC workloads

" Not always possible to provide a simple, working fix...

* Intrisic problems with the design of the scheduler?
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The Linux Scheduler: a Decade of Wasted Cores

Jean-Pierre Lozi Baptiste Lepers Justin Funston
Université Nice Sophia-Antipolis EPFL University of British Columbia
jplozi@unice.fr baptiste.lepers@epfi.ch jfunston®@ece.ubc.ca
T H I S T A |- K Fabien Gaud Vivien Quéma Alexandra Fedorova
Coho Data Grenoble INP / ENSIMAG University of British Columbia
me@fabiengaud net vivien.quema®imag,. fr sasha®@ece ubc.ca

Main takeaway of our analysis: more research must be directed

towards implementing an efficient scheduler for multicore architectures,
because contrary to what a lot of us think, this is *not* a solved problem!

Need convincing? Let’s go through it together...

...starting with a bit of background...
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THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

When a thread is done running
One runqueue where threads o . g
. for its timeslice : enqueued again
are globally sorted by runtime
Cores get their next task

from the global runqueue

Of course, cannot work with a single Some tasks have a lower niceness

runqueuve because of contention and thus have a longer timeslice

(allowed to run longer)
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CFS: IN PRACTICE

= One runqueue per core to avoid contention

= CFS periodically balances “loads’:

load(task) = weight' x % cpu use?

H
ﬂ.

"The lower the niceness, the higher the weight

2We don’t want a high-priority thread that
sleeps a lot to take a whole CPU for itself
and then mostly sleep!

= Since there can be many cores: hierarchical approach!
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CFS IN PRACTICE : HIERARCHICAL LOAD BALANCING

AVG(L)=23600 - > AVG(L)=3600

Balanced!
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CFS IN PRACTICE : HIERARCHICAL LOAD BALANCING

" Note that only the average load of groups is considered

= |f for some reason the lower-level load-balancing fails, nothing happens at a higher level:
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CFS IN PRACTICE: MORE HEURISTICS

" Load calculations are actually more complicated, use more heuristics.
"= One of them aims to increase fairness between ‘““sessions’’.

= Objective: making sure that launching lots of threads from one terminal doesn’t prevent
other processes on the machine (potentially from other users) from running.

= Otherwise, easy to use more resources than other users by spawning many threads...
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CFS IN PRACTICE: MORE HEURISTICS

" Load calculations are actually more complicated, use more heuristics.

= One of them aims to increase fairness between ‘“sessions’’.

50% ob aid "
Session (tty) 1 cpu f‘}v‘?\*

6 4

Session (tty@2

.

L=1000
L=1000

.

| L=1000

L=1000
J
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| CFS IN PRACTICE: MORE HEURISTICS

" Load calculations are actually more complicated, use more heuristics.

= Solution: divide the load of a task by the number of threads in its tty...

1=1000 100% of a

Session (tty) 1 CPU (o

g

I does that v
100% of a

Session (tty) 2 CPU (o
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 BUG 1/4: GROUP IMBALANCE

Load(thread) = %cpu X weight |/ #threads
=100 X 10 [ 1
= 1000
Session (tty) 1
Load(thread) = %cpu X weight |/ #threads
_
=100 Xx 10 /| 8
=125

Session (tty) 2
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- BUG 1/4: GROUP IMBALANCE

AVG(L)=500 - , > AVG(L)=500

A\ 4

)
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" The bug happens at two levels :
= Other core on pair of core idle

= Other cores on NUMA node less busy...
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BUG 1/4: GROUP IMBALANCE

A simple solution: balance the minimum load of groups instead of the average
NMYNN1260 <« . » MIN(LY=2868
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 BUG 1/4: GROUP IMBALANCE

= A simple solution: balance the minimum load of groups instead of the average

Number of threads in run queue: | 0 .... Load: (0] 1 1024

NUMA node #
7 6 543 210

Oms 1755  Oms 17.5s

= After the fix, make runs 13% faster, and R is not impacted

= A simple solution, but is it ideal? Minimum load more volatile than average...

" May cause lots of unnecessary rebalancing. Revamping load calculations needed?
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BUG 2/4: SCHEDULING GROUP CONSTRUCTION

= Hierarchical load balancing is based on groups of cores named scheduling domains
= Based on affinity, i.e., pairs of cores, dies, CPUs, NUMA nodes, etc.

® Each scheduling domain contains groups that are the lower-level scheduling domains

" For instance, on our 64-core AMD Bulldozer machine:

= At level 1, each pair of core (scheduling domains) contain cores (scheduling groups)
= At level 2, each CPU (s.d.) contain pairs of cores (s.g.)

= At level 3, each group of directly connected CPUs (s.d.) contain CPUs (s.g.)

= At level 4, the whole machine (s.d.) contains group of directly connected CPUs (s.g.)
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 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

| Bulldozer 64-core:
Eight CPUs, with

8 cores each,
non-complete

interconnect graph!
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 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

At the first level,
<:E’| B the first core
balances load

with the other core

on the same pair

(because they

share resources,
high affinity)
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 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

| At the 2" level,
the first pair

balances load

with other pairs
on the same CPU
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 BUG 2/4: SCHEDULING GROUP CONSTRUCTION
! |

. ] At the 3" level,
the first CPU
balances load
with directly

connected CPUS
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 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

At the 4 level,
the first group of
directly
! ; connected CPUs
«—> i f balances load
ettty with the other
| - groups of directly
e —— : connected CPUs
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 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

_____ .I_____ I Groups of CPUs

built by:

(1) picking first
CPU and looking

for all directly
connected CPUs
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 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

Groups of CPUs

built by:

(2) picking first
CPU not in a
group and

looking for all
directly

1

connected CPUs
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 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

i And then stop,

---------- I because all CPUs

! are in a group

hat work?
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 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

Suppose we

taskset an

application on
these two CPUs,

two hops apart
(16 threads)
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 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

And threads

are created
on this core
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 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

Load gets
correctly balanced
on the pair of
cores
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 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

Load gets

correctly balanced
on the CPU
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 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

No stealing

at level 3,
because nodes
not directly
connected (1 hop
apart)
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 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

At level 4,
stealing between
the red and green
groups...

Overloaded node
in both groups!
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 BUG 2/4: SCHEDULING GROUP CONSTRUCTION

m load(red) =
16 * load(thread)

:-—’ e —— ——— .l!,qu.:l(green)
lF..la@ I- ﬁ Iml !r ]IFITT(IS-‘S(U] load(th read)

~with-theveéh e"clﬁl ingpuesarchy !
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BUG 2/4: SCHEDULING GROUP CONSTRUCTION

= Fix: build the domains by creating one “directly connected’ group for every CPU
= Instead of the first CPU and the first one not “covered” by a group

® Performance improvement of NAS applications on two nodes :

Application With bug After fix Improvement
BT 99 56 1.75x
CG 42 15 2.73x
EP 73 36 2x
LU 1040 38 27x

" Very good improvement for LU because more threads than cores if can’t use 16 cores
= Solves spinlock issues (incl. potential convoys)
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BUG 3/4: MISSING SCHEDULING DOMAINS

" In addition to this, when domains re-built, levels 3 and 4 not re-buili...
= l.e., no balancing between directly connected or 1-hop CPUs (i.e. any CPU)

= Happens for instance when disabling and re-enabling a core

" Launch an application, first thread created on CPU 1
= First thread will stay on CPU 1, next threads will be created on CPU 1 (default Linux)
= All the threads will be on CPU 1 forever! Number of threads in run queve: [0 | il 21 Il

Cores considered by core 0 during failed load rebalancing events: |'"|"I
0T L L) LU LLLY LU L) LU LLLY LU L) L) LU L L) L) LLLY L L L) LLLY LU LU LY LLLY L L) LU LLLY LLLULLLY LU LLLD LLLYLLL LU LLLY LU LD LA LU LA L L L

Application With bug After fix Improvement

~N o B WM =2 O

THE 05 SCHEDULER: A PERFORMANCE-CRITICAL CO =

0.7s



 BUG 4/4: OVERLOAD-ON-WAKEUP

= Until now, we analyzed the behavior of the the periodic, (buggy) hierarchical load
balancing that uses (buggy) scheduling domains

= But there is another way load is balanced: threads get to pick on which core they get
woken up when they are done blocking (after a lock acquisition, an 1/O)...

" Here is how it works: when a thread wakes up, it looks for non-busy cores on the same
CPU in order to decide on which core it should wake up.

" Only cores that are on the same CPU, in order to improve data locality...

Wait, does that work?
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BUG 4/4: OVERLOAD-ON-WAKEUP

= Commercial DB with TPC-H, 64 threads on 64 cores, nothing else on the machine.

" With threads pinned to cores, works fine. With Linux scheduling, execution much slower,
phases with overloaded cores while there are long-term idle cores!

Number of threads in run queue: | O . . .

Idle core (#13) Extra thread

Overloaded core (#15) IIExtra: ’Ichrea:d :nowesI zilcross cores (Ii’rlcﬁlmI Iperlodlc orI |Idle rletl::alancmg) back on idle core
1 ! i

O~NOOT AWM

/ ':hm.tﬁlté”hm Le ni ng ?

Slowed down execution



. T TR TLTE 11 ey
TO0'm o, T W T

0
1 . BIEY [INl NI AR
| BUG 4/4 5 | — s W
3

NI ad IIRTE:.T I
|

TPC-H reque'st Full TPC-H

= Begin
. Ocea Bug fixes #18 benchmark red
during None 55.9s 542 .9s

« Now, Group Imbalance |48.6s(—13.1%)| 513.88 (—5.4%) |ws down
all exe Overload-on-Wakeup | 43.5s (—22.2%) | 471.1s (—13.2%) |ywhere...
" Barrig Both _43.3s —22.6%) | 465.6s (—14.2%) |op on

idle core, pecause waking up aigoritnim only considaers iocdl Lru:

= Periodic rebalancing can’t rebalance load most of the time because many idle cores
= Hard to see an imbalance between 9-thread and 7-thread CPU...

= “Solution”: wake up on core idle for the longest time (not great for energy)
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WHERE DO WE GO FROM HERE?

* Load balancing on a multicore machine usually considered a solved problem

" To recap, on Linux, load balancing works that way:
" Hierarchical rebalancing uses a metric named load,

T Found fundamental issue here
" to periodically balance threads between scheduling domains.
T Found fundamental issue here

" In addition to this, threads balance load by selecting core where to wake up.
T Found fundamental issue here

Wait, was anything working at all? ©
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WHERE DO WE GO FROM HERE?

Many major issues went unnoticed for years in the scheduler...
How can we prevent this from happening again?
= Code testing

" No clear fault (no crash, no deadlock, etc.)

= Existing tools don’t target these bugs

* Performance regression
= Usually done with 1 app on a machine to avoid interactions

" Insufficient coverage

" Model checking, formal proofs
= Complex, parallel code: so far, nobody knows how to do it...
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WHERE DO WE GO FROM HERE?

* ldea 1: short-term hack — implemented a sanity checker

Not an assertion/watchdog :
|dle core while a core is might not be a bug

overloaded?

Ye . .
= ¢l ~_situation has to last f\
100ms Monitor thread migrations, . for a long time Every
creations, destructions w

Imbalance not fixed ‘1’

Report a bug
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WHERE DO WE GO FROM HERE?

* ldea 2: fine-grained tracers!
= Built a simple one, turned out to be the only way to really understand what happens
= Aggregate metrics (CPl, cache misses, etc.) not precise enough

Number of threads in run queue: [0 [ 121 |l B9 Number of threads in run queue: [0 [l 12 [l IS Load: @ 1 1024
Cores considered by core 0 during failed load rebalancing events: || Thread weke-up on a non-idie core: s— -y T —— . - e

8 0 - - ih P Ly —_— -

2 - -

3 EHELIN R 8

4 i K = - - —;

- oy : ———l
= P ; -
6 : R Eaar
=iiim = o ' -
- Slowed down execution [

Oms 0.7s Oms 500ms Oms 17 53

= Could really be improved!
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WHERE DO WE GO FROM HERE?

Idea 3: produce a dedicated profiler!

Lack of tools!

Possible to detect if slowdown comes from scheduler or application?

Would avoid a lot of wasted time!

Follow threads, and see if often on overloaded cores when shouldn’t have?

Detect if threads unnecessarily moved to core/node that leads to many cache misses?
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WHERE DO WE GO FROM HERE?

Idea 4: produce good scheduler benchmarks!

Really needed, and virtually inexistent!

Not an easy problem: insane coverage needed!

Using combination of many real applications: configuration nightmare!

Simulated workloads?
Have to do elaborate work: spinning and sleeping not efficient
Have to be representative of reality, have to cover corner cases

Use machine learning? Genetic algorithms?
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WHERE DO WE GO FROM HERE?

" ldea 5: switch to simpler schedulers, easier to reason about!

Let’s take a step back: *why* did we end up in this situation?
* Linux used for many classes of applications (big data, n-tier, cloud, interactive, DB, HPC...)
* Multicore architectures increasingly diverse and complex!

" Result: very complex monolithic scheduler supposed to work in all situations!
® Many heuristics interact in complex, unpredictable ways

= Some features greatly complexify, e.g., load balancing (tasksets, cgroups/autogroups...)

= Keeps getting worsel
= E.g., task_struct: 163 fields in Linux 3.0 (07/2011), 215 fields in 4.6 (05/2016)
= 20,000 lines of C!
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WHERE DO WE GO FROM HERE?

Idea 5: switch to simpler schedulers, easier to reason about!

# lines of code # functions # variables
BK . 300 . 100 ...
7K ,
“C '\Q\\('
ok \\\(\\"“\\S \\o‘\‘s\“\\ oY
o S 200 20
4K o S\
3K oo
100 10
2K
S
1K
0 0
2009 2011 2013 2015 2017 2009 2011 2013 2015 2017 2009 2011 2013 2015 2017
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WHERE DO WE GO FROM HERE?

Idea 5: switch to simpler schedulers, easier to reason about!

Proving the scheduler implementation correct: not doable!
Way too much code for current technology

We'd need to detect high-level abstractions from low-level C: a challenge!
Even if we managed that, how do we keep up with updates?

Code keeps evolving with new architectures and application needs...

We need another approach...
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Towards Proving Optimistic Multicore Schedulers

Baptiste Lepers, Willy Zwaenepoel Jean-Pierre Lozi Nicolas Palix
EPFL Université Nice Sophia-Antipolis Université Grenoble Alpes

first last@epfi.ch Jjplozi@unice.fr nicolas.palix@univ-grenoble-
alpes fr

? Redha Gouicem, Julien Sopena, Julia Lawall, Gilles Muller
Sorbonne Universités, Inna, LIP6
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" ldea 5: switch to simpler schedulers, easier to reason about!

= Write simple, schedulers with proven properties !
" A scheduler is tailored to a (class of) parallel application(s)

= Specific thread election criterion, load balancing criterion, state machine with events...
" Machine partitioned into sets of cores that run # schedulers

= Scheduler deployed together with (an) application(s) on a partition

* Through a DSL, for two reasons:
" Much easier, safer and less bug-prone than writing low-level C kernel code !

= Clear abstractions, possible to reason about them and prove properties

" Work conservation, load balancing live and in finite # or rounds, valid hierarchy...
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WHERE DO WE GO FROM HERE?

Idea 6: 222

Any other ideas?
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CONCLUSION

= Scheduling (as in dividing CPU cycles among theads) was thought to be a solved problem.
= Analysis: fundamental issues in the load metric, scheduling domains, scheduling choices...
" Very bug-prone implementation following years of adapting to hardware

= Can’t ensure simple “invariant”: no idle cores while overloaded cores

" Proposed fixes: not always satisfactory

* What can we do? Many things to explore!
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