Architecting for Big Data Analytics:
Think Dubai rather than Venice

Vijay Janapa Reddi

Visiting Research Scientist @ Google
Associate Professor @ The University of Texas at Austin

Workshop on BigData Benchmarks, Performance, Optimization and Emerging Hardware
March 24, 2018

& TRINITY

This workshop, the ninth its series, focuses on
architecture and system support for big data systems,
aiming at bringing researchers and practitioners from data management,
architecture, and systems research communities together to discuss the
research issues at the intersection of these areas.

Focus of My Talk

Workloads

Architecture

Focus of My Talk

Workloads

What is Big Data Analytics?

Big data analytics is the application of varied techniques
to very large and diverse data sets in order to uncover
hidden patterns and produce meaningful insights.

BIg data analytics deals with data sets too large,
oroblems too complex, and patterns too subtle to be
nandled by conventional relational databases.

&h

Big Data Benchmarks

There are ample big data-related benchmarks.

CloudSuite

. T S W B B Wl E N F Ewel T www

LinkBench

YCSB

DCBench HiBench

TPCx-BB BigBench

&h

TPCx-BB Origin and Features

Proposed at SIGMOD 2013, BigBench was developed with input
fromm many industry partners.

IIr

CIS5CO Lifsirs
=" Microsoft (inter) QD
oracLe [@ctan)

vimware cloudera

BigBench was standardized as TPCx-BB in 2014.

&h

TPCx-BB (BigBench) is Uniquely Realistic

It simulates a modern retailer with a

physical and online store presen%

It gathers copious
customers, and cG

mpetitors.

It uses compl
value from Its

Data size is configurable from 1 TB -
to 1 PB. Q \ o 4

&h

BigBench Queries

30 queries operate on collected data to extract useful information.

QO01: Find the top 100 products
frequently purchased together.

Q12: Find customers who viewed
certain categories online then
made an in-store purchase in the
same category.

Q27: Extract competitor product
names from online reviews.

&h

Coverage

BigBench data includes

structured (e.g. customer demographics) data,
semi-structured (e.g. web site click streams) data, and
un-structured (e.g. online product reviews) data.

BigBench operates on the data using
MapReduce,

machine learning,

user-defined functions,

query language operations,

and natural language processing.

Most queries take multiple steps, and many cover multiple data
types and operation types.

&h

10

Why Should We Study One More Benchmark?

It is essential to understand, emulate, and study industry

perspectives in order to produce believable and relevant insights.

There is a lot of heterogeneity in the applications, something
that has been oversimplified in past benchmarking efforts.

Thread-limited execution is still pervasive even in scale-out
big data analytics and demands better scale-up performance.

&h

11

Big Data Analytics is a Rich and Varied Field

Computational Method

HEE B EEEEEEEEEREEBE®R
A B EHEEEEEEENEEBR
I.I.I.IF‘I'IFI I-I._IHI'I.I.I.I.
Cm_m RO €6 - _H_H_ N
Ill.ll.lll..lllll

Data Type

Queries

Experimental Setup

1 : Kers, | '
3+1 setup: 3 workers, 1 master BigBench

384 GB RA
SSD Storage

10 Gbps Ethernet
&N

13

BigBench Stages

Data Generation
Creates the data used by the benchmark.

Load Test
Extracts/transforms/loads the data into a usable form.

Y, Y,

Jower Tes roughput Tes
Runs each query Runs multiple queries at
sequentially to minimize Sgoke once to maximize

ala (1 () AlAlAa
-

()
v

14

Characterization:
A Caution Against Oversimplification

@@ + = é?

— | | T | | | | —
CPI Front End Back End Branch L1D MPKI L2 MPKI LLC MPKI Memory 10
Bound Cycles Bound Cycles Miss Rate Bandwidth Bandwidth
(%) (%) (GB/s) (MB/s)
Compute Caches Bandwidth

Only the front and back end-bound cycles are stable across queries.

& .

Focus of My Talk

Workloads

Architecture

With the Promises of what Big Data Can Do,
We Forget About What it Cannot Do

- = LiI~AAA~AA~AN~ mAalAa rAlinlklA AAAlIAKIA At i FAA AAHARTLIFIRA ~RAAATIRTA

((Apache Hadoop Is a highly scalable storage platform designed to
process very large data sets across hundreds to thousands of

*® because Hadoop spreads it out...You've got all of these

processors, working in parallel, harnessed together. V4 4

Cloudera Co-Founder Mike Olson

A :

Amdahl’s Law is Alive and Kicking

Per-Query TLP

100
90
80 7
§OU __________________________
o 40
=
30
20
10
0)
S & & &SSP

18

How Do We Design For This?

Big data analytics already scales out. How can we get the
performance to scale up?

19

Contrasting Scale-Out and Scale-Up

We measure the change in runtime as we scale resources:
- Number of cores
- Operating frequency

We report the efficiency of resource scaling.

Expected change

20

Scaling Efficiency

1.0

> 0.8

c
06
O
:.-I 0'4

w 0.2
0.0-

1.0

> 0.8
z
Q 0.6‘

k"]
= 0.4

w 0.2 -
0.0-

Core Scaling Efficiency (9-core baseline)

-

-

Frequency Scaling (1.2-GHz baseline)

-

21

What About Turbo Boost?

Turbo Boost uses slack in thermal and current margins to
increase the operating frequency of CPUs.

The Turbo Boost celling is a function of the number of
active cores. The fewer the cores, the higher the ceiling.

With so many halted cycles, Turbo Boost should be
perfect for BigBench, right?

Not quite...

&h 22

A Deeper Problem

Turbo Boost Ceiling

—e— E5-2628L v4
~u— E5-2695 v4
—=— E5-2630 v4

10 12 14
Cores

--=-- E5-2683 v4

--e-- E5-2658 v4

—+— E5-2698 v4

oy

sadfas

16 18

E5-2699 v4
E5-2687W v4

20

22

23

A Deeper Problem

Turbo Boost Ceiling

3.75 =
3 3.50 A “« Prior Turbo Boost studies have
LD : ¢ "".“\‘~. L]] 1
2325 I , focused on CPUs in this region
% 3.00 1 i S b e
o ~
82‘75 ‘. : . ‘
8 o= = » ol - -» -
92501 0 wreneaTuggeneig g -
5
= 2.25
. 2 . 4 @
2.00 . ; . , . : : ! J : ,
10 12 14 16 18 20 22
Cores
—eo— E5-2628L v4 --m-- ES5-2683v4 ow- E5-2699 v4
w E5-2695 v4 e« ES5-2658Vv4 --w- E5-2687W v4

—=— E5-2630 v4 —+— E5-2698 v4

The Turbo Boost celling does not increase until most
cores have been disabled.

&h

A Deeper Problem...Compounded By Software

30

lism

Q10: TLP and Core Busyness

JJWV WWA/—W'WWV VVy V\/V’V V_V_V_\NW—W_V'\NVV_WVLW_W\

U 17

50

100 150 200 250 300 350
Time (seconds)

—— Core Busyness Compute Time

400

25

A Deeper Problem...Compounded By Software

Q10: TLP and Core Busyness

w
o

N
u

VI e v

— — N
o (9] o

Thread-Level Parallelism

(o)

o

0 50 100 150 200 250 300 350 400
Time (seconds)

——— Core Busyness Compute Time

Despite having very little TLP, nearly all the cores are kept
busy most of the time.

&h

Double Whammy

Hardware: Slack in thermal and current margins does not
translate to a higher Turbo Boost ceiling until most cores

Software: The abundant software threads are being

scheduled onto virtually all available cores, whether they
are actually needed or not.

&h 27

Core Packing

Core packing Is a
Turbo Boost thr

oroposal for proactive enhancement of

Core Packing

Increase
» Frequenc

Force Drop in

Drop In
Busyness

Busyness

28

Core Packing—Hardware Proposal

Allow for linear increase in Turbo Boost celling with the
number of deactivated cores.

Turbo Boost Ceiling

w
I

.....
b LEP.

w
N

N
P (o)) Q0 o
PR PR PR PR P T

w

Turbo Boost Ceiling (GHz)
N

N

2 4 6 8 10 12 14 16 18 20 22
Cores

C/>W> —e— [E5-2699 v4 --e-- Core Packing

29

Core Packing

Proactively restrict the number of active cores to just meet
the workload.
Q10: TLP and Core Busyness

30

N

(92}
=
=

N
o

ot
9
-

-
o
’r

Thread-Level Parallelism

0 50 100 150 200 250 300 350 400
Time (seconds)

C@,Q —— Active Cores Compute Time

Core Packing — Simple Approximation

Q10 has such consistently low TLP, we can use it to
approximate core packing behavior.

2

Core Frequency (GHz)

N
(9

Q10 Operating Frequency and Finish Time

"N
o

et
U

-
o

O
n

O
o

S v\/\ — 22C finish

4C finish
100 200 300 400 500 600
Time (s)
—— 4C —— 8C —— 22C

31

Core Packing — Better Approximation

TLP (% of Max)

TLP (% of Max)

[
o
o

U
o

o

Q10 22 Cores

f
3.3
30s _ . 'w‘—\x__\
0 100 200 300 400
Time (s)
_ Q10 4 Cores
W o
13.7 kJ \
386 s \\
0 100 200 300 400 500 600
Time (s)

Query 10 could finish in 416 seconds: a 13.5% speedup.

Furthermore, energy consumption decreases by 30%.

&h

32

Core Packing — Complexity

Most queries are far too complex to enable such simple
core packing approximation.

Q30 Thread-Level Parallelism

100 1;

o 50‘ .

-

|_
0 : , Y |
0 1000 2000 3000 4000

Time (s)
100 Q12 Thread-Level Parallelism

S

-

|_
O ' - L r
0 200 400 600 800

Time (s)

Analytical Model—Turbo Boost Frequency

Assuming a linear increase in Turbo Boost celling for each
deactivated core, at what frequency can each query run”

freq g = freqq

freqq

Base (current) frequency

34

Analytical Model—Packed Cores

Given a potentially higher operating frequency, how much
speedup can we expect”?

speedup — 14 7}1:,6; £ - efficiency o,
0

freqrg — freqq
frer

_ Efficiency of frequency scaling

&h 35

Fractional increase in frequency

Analytical Model—Evaluation

— N N
@) @) @)

Predicted Speedup (%)
o

Notably, Q10’s modeled speedup of 15.1% is remarkably
close to our predicted speedup of 13.5%.
@3 36

Takeaways

TPCx-BB (BigBench) is a new benchmark that strives to
capture the realism and diversity of industry workloads.

Thread-level parallelism is not abundant in big data
workloads as common wisdom would have us believe.

Need to explore new, more proactive solutions like
Core Packing by digging deep into the individual queries.

&h

37

Scale-out

e e e :JT -

\ 2 oy o
AN d I

Amdahl’s Law in Big Data Analytics:
Alive and Kicking in TPCx-BB (BigBench)

Daniel Richins’ Tahrina Ahmed®

Russell Clapp* Vijay Janapa Reddi’*

"The University of Texas at Austin.~ *Stanford University “Intel "Google

ABSTRACT

Big data, specifically data analytics, is respoasible for driving
many of consumers’ most common online activities, includ-
ing shopping, web searches, and interactions on social media.
In this paper, we present the first (micro)architectural investi-
gation of a new industry-standard, open source benchmark
suite directed at big data analytics applications—TPCx-BB
(BigBench). Where previous work has usually studied bench-
marks which oversimplify big data analytics, our study of
BigBench reveals that there is immense diversity among ap-
plications, owing to their varied data types; computational
paradigms, and analyses. In our analysis, we also make anim-
portant discovery generally restricting processor performance
in big data. Contrary to coaventional wisdom that big data
applications lend themselves naturally to parallelism, we dis-
cover that they lack sufficient theead-level parallelism (TLP)
to fully utilize &l cores. In other words, they are constrained
by Amdahl's law. While TLP may be limited by various
factors, ultimately we find that single-thread performance is
as relevant in scale-out workloads as it is in more classical
applications. To this end we present core packing: a software
and hardware solution that could provide as much as 20%
execution speedup for some big data analytics applications.

1. INTRODUCTION

Big data analytics is the application of advanced analytic
technigues to large, diverse structured and un-structured data.
It empowers users with a granular perspective of complex
business operations and customer habits that rarely find their
way into traditional data warchouses or standardized reports.
Using technigues such as predictive analytics, data mining,
statistics, machine learning, and natural language processing,
big data analytics enables its users to understand the current
state of the business and track complex and continuously
evolving behavior such as end-user customer traits.

From an industry perspective, big data analytics has been
oversimplified. Much previous research has been conducted
into big data [1,2,3,4.5,6,7), but this has often taken a broad
approach, covering not only data analytics but also media
streaming, social networking, real-time services, etc. Often,
data analytics is reduced to simple, sample applicatioas in-
tended as demonstrations rather than benchmarks. While not
wholly without value, these micro-benchmarks are ultimately
not represeatative of industry. To merit serious study, an
analytics benchmark should be characterized by (1) realism,
the use of applications that are representative of real-world

applications, including complexity and size: (2) comprehen-
siveness, or a thorough exercise of functionalities; and (3)
usability, which ensures reproducibility of studies.

In this work, we study TPCx-BB, which distinguishes
itself &s a comprehensive data analytics benchmark, repre-
sentative of industry workloads, designed to be eminently
wsable. TPCx-BB (hercafier “BigBench") is a recent industry-
standard workload developed through collaboration from mul-
tiple industry partners. BigBench is especially attractive be-
cause it simulates a real-woeeld scenario: a modem retailer
with both an online and physical store peesence which col-
lects a wealth of data about its customers, Competitors, stores,
and online reputation. It seeks, through 30 datz analytics
“queries,” 10 use this data for economic gain. Each query
operates on & subset of the datz in a unique way: QOL, for
example, identifies the top products sold together in given
stores (structured data), while G28 classifies product review
sentiment (positive of pegative) based on the textual customer
reviews (un-structured data) that are logged into the database.

We perform the first compreheasive characterization of
BigBench. We analyze BigBench from two key perspectives.
First, we undemake a (micro)architectural study of its execu-
tion on an eaterpeise-level cluster. Compared to prior work,
which often tead to use only a handful of (micro) bench-
marks, the 30 component queries show diverse behavior that
is masked when they are considered in aggregate. This di-
versity arises from exercising different Hadoop and Spark
capabilitics such as MapReduce, machine leaming, natural
language processing, pure query language queries, and others
in various combinations on structured, semi-structured, and
un-structured data. Each BigBench query is a complete appli-
cation, executing multiple operations on various sources of
data to produce unique and insightful takeaways. As a result,
we see that some queries show great compatational diversity
(Q02, QUS, and 028), while others show great memory (Q06
and G19) or DO diversity (G005 and G16). It is impossible to
capture these extremes with only a handful of benchmarks.

Second, we analyze the parallelism charactenistics of Big-
Bench to reveal a startling dearth of thread-level parallelism
(TLP), in stark contrast to widely held assumptions regarding
big data’s scale-out potential. The lack of TLP arises from
various sources, but its effect is always the same: cores are
being left unused by big data. This suggests that relying
solely on scale-out resources is insufficient; systems must
also be designed to actively monitor TLP and take proactive
measures to boost single-thread performance as necessary.

40

Focus of My Talk

Workloads

Architecture

Workload Evolution

Workload Evolution

HowWasiyes BOIS ko] Pec

Wi dleEEE PARSEC Hadoop
e T e
Tools
Perf counters gemb ?7?7?
gprof

Valgrind Pin

Studying Scale-Out Workloads

Three fundamental requirements

Transparency Instrumentation Full-System

The property that program analysis
Trah8patbidy effect

on program environment and execution

The ability for a user
Insteumiéistatibirary tools

for program analysis

using a dedicated API

The ability to study the

FulbSi{stespstem stack
from BIOS to user space

In§e'?‘§AE an x86 emula.tor | |
for dynamically instrumenting
scale-out workloads
across the entire software stack

A technique that inserts extra code into a program to collect

runtime information

iource_lnsﬁ[umentation _ o
int bar (int foo) ({ atlon .

__bar entry()

int res = foo + 2;
__bar exit();
return res;

}

int main() {
__main entry();

int foo = 0;
int t = bar(foo);

__main exit();
return O;

Binary Instrumentation

110010010000110001000110
call bar entry
001000101101010010111000
111010000101010101011001
100101011010010100101001
000001010000101100011101
101000110000010111011000
010111110101010011111011
010001110110101001100000
010010111100010101101010
001001011101000100010101
111111110010010101011001
call Dbar exit
001001110100010110100011
010100010101001010010011

Obviates need for recompiling or relinking

Why use Binary Instrumentation?
Enables instrumentation of existing binaries

Dynamic Binary Instrumentation

Instrumentation tyeestsode at
application execution

Handle dynamicall

yinerated code
Ay
Attach to running praces

How is Binary Instrumentation Used?

Trace Generation

Architectural Structure Modeling
Fault Tolerance Studies
Emulating New Instructions

Call Graph Generation

Memory Leak Detection

Thread Profiling

Race Detection

How is Binary Instrumentation Used?

® ® (< (] scholar.google.com ¥ > ©O) ® m) i

AUTONAVx Cou... Info | edX Luca http://media..bc6b69ad4421 Favorites

Vijay Janapa Reddi - Google Scholar Citations +

Pin: building customized program analysis tools with dynamic instrumentation [PDF] from uci.edu

Authors Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, Kim Hazelwood

Publication date 2005/6/12
Conference Acm sigplan notices
Volume 40
Issue 6
Pages 190-200
Publisher ACM

Description Abstract Robust and powerful software instrumentation tools are essential for program
analysis tasks such as profiling, performance evaluation, and bug detection. To meet this
need, we have developed a new instrumentation system called Pin. Our goals are to provide
easy-to-use, portable, transparent, and efficient instrumentation. Instrumentation tools
(called Pintools) are written in C/C++ using Pin's rich API. Pin follows the model of ATOM,
allowing the tool writer to analyze an application at the instruction level without the need for
detailed knowledge of the underlying instruction set. The API is designed to be architecture
independent whenever possible, making Pintools source compatible across different
architectures. However, a Pintool can access architecture-specific details when necessary.
Instrumentation with Pin is mostly transparent as the application and Pintool observe the ...

Total citations Cited by 3490
389
_llIlIIIIIIII-
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Scholar articles Pin: building customized program analysis tools with dynamic instrumentation

CK Luk, R Cohn, R Muth, H Patil, A Klauser, G Lowney... - Acm sigplan notices, 2005
Cited by 3490 Related articles All 50 versions

Open "“https://scholar.google.com/scholar?oi=bibs&hl=en&cites=15305535231300712107&as_sdt=5&as_ylo=2017&as_yhi=2017" in a new tab

SAE Overview

S
D
-
o
>
O
Ll
<
/p)

SAE Overview

& Terminal Shell Edit View Window Help W ¥ % B o E 100%BI Mar16 4:17 PM Daniel Richins

Q

danielrichins — daniel@locutus: ~/BigData/Simics — ssh -p 2002 -Y C}EﬂI"Ie|-’::1:'|0\’.‘utus ece.utexas.edu — 76x20

SAE Components

Instrumentation API

Interpreter JIT Compiler

X86 Encoder Decoder (XED)

&

Developing a ztool

#include "ztool-api.h"

static ztool handle t zhandle;
extern "C" v01d ztool _init(ztool init handle t handle) {

zhandle = ztool init get tool handle(handle)

}

Developing a ztool

#include "ztool-api.h"

static ztool handle t zhandle;
extern "C" v01d ztool _init(ztool init handle t handle) {
zhandle = ztool init get tool handle(handle)
{
ztool instruction exe desc t desc;
desc.fn = count inst;
desc.when = ZTOOL INSTRUCTION WHEN BEFORE;
desc.data = NULL;
desc.order = ZTOOL CB ORDER DEFAULT;
desc.config key = ztool _init get default config key (handle) ;

ztool_instruction_exe_;eglster_gb(&desc)

Developing a ztool

#include "ztool-api.h"

long unsigned icount = 0;
void count inst(ztool state handle t shandle, void *data) {
icount++;

static ztool handle t zhandle;
extern "C" v01d ztool _init(ztool init handle t handle) {
zhandle = ztool init get tool handle(handle)
{
ztool instruction exe desc t desc;
desc.when = ZTOOL INSTRUCTION WHEN BEFORE
desc.fn = count inst;
desc.data = NULL;
desc.order = ZTOOL CB ORDER DEFAULT;
desc.config key = ztool _init get default config key (handle) ;

Developing a ztool

#include "ztool-api.h"

long unsigned icount = 0;
void fini(ztool fini handle t fhandle, void *data) {
std: :cout << "Inst count: " << 1icount << std::endl;

}

static ztool handle t zhandle;
extern "C" void ztool init(ztool init handle t handle) ({

{

ztool fini desc_t desc;

desc.fn = fini;

desc.data = NULL;

desc.order = ZTOOl CB DEFAULT ORDER;

desc.config key = ztool init get default config key(handle);

ztool fini register cb(&desc) ;

Instrumentation Engine
CPU-Level Events

Configuration events
Per event data

Tool loaded Instruction/basic-block discovery (caching) Dynamic reconfiguration

Run-time events

Architectural state (registers, memory, active core) + per event data

Inetriintinn . avianiitinn Memaorv accaece Clata.~hocmca ArChlteCturaI'

All instructions events
(e.g. ring transition, cr3
By instruction format modification, machine

By interrupt/exception/ : mode modification)
By opcode + address page-walk Exception (synchronous)

By instruction Interrupt (asynchronous)

Finalization events
Per event data

Tool unloaded Simulation termination Instruction deletion (un-caching)

Supporting Multi-Core

#include "ztool-api.h"

long unsigned *mc_icount = NULL;
void fini(ztool fini handle t fhandle, void *data) {...}
void count inst(ztool state handle t shandle, void *data) {...}

extern "C" void ztool init(ztool init handle t handle) ({
int num cores = ztool init get core count (handle);
mc icount = new long unsigned[num cores];

{ ... 1}

Supporting Multi-Core

#include "ztool-api.h"

long unsigned *mc_icount = NULL;
void fini(ztool fini handle t fhandle, void *data) {...}
void count inst(ztool state handle t shandle, void *data) ({
unsigned core = ztool state get core num(shandle) ;
mc _icount[core]++;

}

extern "C" void ztool init(ztool init handle t handle) ({
int num cores = ztool init get core count (handle);
mc icount = new long unsigned[num cores];

Supporting Multi-System

Supporting Multi-System

static ztool system data key handle t ms key;
struct system data t ({

ztool handle t zhandle;

unsigned core count;

long unsigned *mc_ icount;

};

extern "C" void ztool init(ztool init handle t handle) ({
ztool handle t zhandle = ztool init get tool _handle (handle) ;
system data t *sdata = new system;data_t()
sdata->zhandle = zhandle;
sdata->core count = ztool init get core count(handle);
sdata->mc_icount = new long unsigned[sdata->core count];

ztool system alloc data key(zhandle, &ms key);
ztool system set data(zhandle, ms key, sdata);

{...}
{...}

Supporting Multi-System

struct system data t {
ztool handle t zhandle;
unsigned core count;
long unsigned *mc icount;

};

void count inst(ztool state handle t shandle, void *data) {
system data t *sdata = reinterpret cast<system data t*>(
ztool state get system data(shandle, ms key));
unsigned core num = ztool state get core num(shandle);
sdata->mc _icount[core num]++;

}

Supporting Multi-System

#include <pthread.h>

void fini(ztool fini handle t fhandle, void *data) {
system data t *sdata = reinterpret cast<system data t*>(

for (int 1 = 0, ie = sdata->core count; i < ie; ++1i)
cout << "Core " << i << " instruction count: ”
<< sdata->mc _icount[i] << endl;

@ Terminal Shell Edit View Window Help) # 2 E o) SunMar20 1:50AM Q=

danielrichins — da

daniel@locutus: ~ — ssh -p 2002 -Y daniel@locutus.ece.utexas.edu d us: ~ bash

[service_node_cmp®.sn spec-viol] DHCP: INIT-REBOOT request with wrong 'requested ip' option; expected 10.10.0.107, got 10.8.2.15
System viper®

Core @ instruction count: 140641350109337

Core 1 instruction count: 140645315602855
[viper@.mb.cpud.core[@][@] info] ztool was unloaded
System wviperl

Core @ instruction count: 140625251400256

Core 1 instruction count: 140629002511079
[viperl.mb.cpu®.core[@] [@] info] ztool was unloaded
System viper?2

Core @ instruction count: 140631007558963

Core 1 instruction count: 140651733768558
[viper2.mb.cpu@.core[@][@] info] ztool was unloaded
System viper3

Core @ instruction count: 140648782566388

Core 1 instruction count: 140642041284016
[viper3.mb.cpu@.core[@][@] info] ztool was unloaded
System wviperd

Core @ instruction count: 1480637433921720

Core 1 instruction count: 140633699848333
[viperd.mb.cpu@.core[@] [@] info] ztool was unloaded
System wviper5

Core @ instruction count: 140629793324321

Core 1 instruction count: 140632912909424
[viper5.mb.cpu@.core[@][@] info] ztool was unloaded
System viper6

Core @ instruction count: 140641428409636

Core 1 instruction count: 140635740830883
[vipers.mb.cpud.core[@] [0@] info] ztool was unloaded
System wviper7

Core @ instruction count: 140630570713093

Core 1 instruction count: 140632395766530
[viper7.mb.cpu@.core[@] [@] info] ztool was unloaded
System wviper8

Core @ instruction count: 140642074149488

Core 1 instruction count: 140636308673006
[viper8.mb.cpu@.core[@][@] info] ztool was unloaded
System viper9

Core @ instruction count: 140620546722519

Core 1 instruction count: 140620411071336
[viper2.mb.cpu@.core[@][0@] info] ztool was unloaded
“Cscript interrupted by the user

Interrupting script.

ME0OPERROO®W WEFCS, AW

Other SAE Power Features

OS Awareness
Dynamic Reconfiguration

CPU Modification & ISA Extensions

Networking

OS Awareness

As a convenience to users, SAE
provides OS-aware APIs

Currently only available for Linux

Implemented as ztools, so OS experts
can extend OS awareness to
additional platforms

Instrumentation Engine
OS-Level Events

Configuration events
Per event data

Tool loaded Image discovery (caching) Dynamic reconfiguration

Run-time events

OS state (pid, tid) + architectural state + per event data

P Taclk codmans (narnrnoram o Eunction ... : OS-events

: (e.g. system-call,
. signal, etc.)

Process/Thread creation Image load/unload

Program load
(exec()-like)

Finalization events
Per event data

Tool unloaded Simulation termination Image deletion (un-caching)

OS Awareness

#include "ztool-api.h”

extern "C" void ztool init(ztool init handle t handle) ({
{

ztool os staged event desc t desc;
desc.os_event = ZTOOL OS STAGED EVENT TASK SWITCH;
desc.when = ZTOOL OS WHEN AFTER;
desc.fn = task sw1tch
desc.data = NULL;
desc.order = ZTOOL CB ORDER DEFAULT;
desc.config key = ztool _init get default config key (handle) ;
desc.zhandle = ztool_lnlt_get_tool_handle(handle)
ztool os staged event register cb(&desc);

OS Awareness

#include "ztool-api.h”

static void task switch(ztool os staged event handle t evhandle,
void* data) {
ztool os task handle t task =
ztool os get current task(evhandle.oshandle);
int pid = ztool os task get pid(current task);
int tid = ztool os task get tid(current task);
static char name[l6];
ztool os task get name (current task, name, sizeof (name));
cout << setw(1l6) << left << name << " pid=" <<
setw(5) << pid << " tid=" << setw(5) << tid << endl;

extern "C" void ztool init(ztool init handle t handle) ({

{...}

}

OS Awareness

calculix
swapper
kblockd/1
calculix
swapper
kblockd/1
calculix
swapper
kblockd/1
calculix
swapper
kblockd/1
calculix
swapper
kblockd/1
calculix
swapper
kblockd/1
calculix
swapper

pid=1322
pid=0
pid=29
pid=1322
pid=0
pid=29
pid=1322
pid=0
pid=29
pid=1322
pid=0
pid=29
pid=1322
pid=0
pid=29
pid=1322
pid=0
pid=29
pid=1322
pid=0

tid=1322
tid=0
tid=29
tid=1322
tid=0
tid=29
tid=1322
tid=0
tid=29
tid=1322
tid=0
tid=29
tid=1322
tid=0
tid=29
tid=1322
tid=0
tid=29
tid=1322
tid=0

Meeting the Requirements

Transparency Instrumentation

Performance
Counters

Pin, Valgrind,
DynamoRIO

Full-System

Simulation and Analysis Engine for Scale-Out Workloads

Nadav Chachmonr
Magnus Christensson’

"Intel Corporation

ABSTRACT
Weint

yAE] framework bised on dynamic bi
for fine grained and customizable

duce a sy

sLomnentation
evel intraspee
tion of everything that ates an the saor. SAR can
mstrur the BIOS,

L can ul instn it

st stimulas
g, evaluation, and validation of architeciural extensions
and program: analysis taals using its Bexible AP [s fast
mgh to e 1 WD satds—a mnoder
ating system ot crinutes—tnus enabling re
evitluato i
|

related wo multicore conhgurations, virtoalization, s

.
and more, To reacn hign speeds, SAE couple

sl plationn and employs

We desenibe SAL'S architectur
desi | =i i tness for

mulii-systemn architee U andd program analysis

CCS Concepts
sComputing methodologies — Simulation
munts: Simulation tools; Inderactive sinulation;

wirorn-

Keywords
Analysis, i
out, big

SAL we : https

THhis resenrch was funded by the US Govercoment
in this does w3 hioew
terpreted ss ropresenl

of the US. Gonwrn

wepres of all oo pezt of the work for e
e peevaded thal copries & raale co diviibuned
oo anad the full cita-
boosmrd b ofsers e
clleswive,
Esly, by 2ont oo sesvers o bo radiskilule
¢ & foe. Reguaos! sorzsioanes from pesressoon & acmuey,

JON 16, May 29 Jwe (02, 2006, Jsrandul, Thokey

W0 M6 ACM. ISBN 978, 1.4505.435

Daniel Richins'
Wenzhi Cui:

Robert Cohn®
Vijay Janapa Reddr

‘The University of Texas at Austin

INTRODUCTION
The lands of computing continues to evolve rapxily
as o tne worslomds, Computing workloads nave evolved
1g simply singles or multithreaded o running across
dastrivuted systems, mostly driven @ large-scade progziun
ming irinewarks, such as Spark and Hadoop, that sup:x
et analyti
and pralii
and robust instrureentat
introspecty ot ¢
2 and analyzing scak
challenging. 3 not imepoesible, doe to the lack of induscry
strength toals that can enable hne-grined, transparent pro
gram: introspection boath within and seross nades
identify three fundamental regquirements for wals to
cale-aus workloads, 1) trumentfation: Researchers
=t be able wo beikd o centralized and comprehen:
ol distributed execution. Tnis requires that they be able to
write arbitrary taols and cont rom a centrislized in
wriace
nel s
these worklowds mest capture everything that executes an
eesor, Doth In xernels and user-space and across pre
klowud,

s and nades. (3] Transparency: [nas

tool st e trinspare L

Iy, but alo w0 ity interactions with the rest
uned the r necwor<. A single instru

mitext system running slower than the zest of the
example, could compromi=e trunsarency bec the node
nteractions woukd be altered by the changed speed,

We introcdues the Intel Simulation and Analy=3= Engine
) systemn-level dynmmie binasy instnunentation en

ts all three ro

gruaned di ted we

(1] SALE suppuorts
npentation with a
5. It instruonents

. e 12 i oot i

sributed ex = hears, SAE isag

oL hat sireulates instruc tion i e cantext of
a full or dstributed = Hence, it = not limited to aser
space exploration. instend capturing literally all activity an

whing even kernel, driver, and BIOS oper
i 4 it
e Wind Haver Stimaes, Consequently, SAE re
sidess entizely in the nost maciine’s spaoe: it uses none o
irtual machi mernory spisce, naor does 3t chiang
i virtual ine. And s
an within SAE, there is no rel
ative slowdown between any bwo s

In Summary

&h

Workloads
(BigBench)

Architecture
(CorePacking)

Big data requires a holistic view.

Growing need for academia and
industry to collaborate with one another

80

Acknowledgments

Daniel Richins
Wenzhi Cui

Nadav Chachmon
Magnus Christensson
Tahrina Ahmed
Russell Capp

Robert Cohn

Bhaskar Gowda

Intel SAE team

Intel BigBench team

&h

81

Thank You!

