Farewell to Servers:
Hardware, Software, and Network

Approaches towards Datacenter

Resource Disaggregation
Yiying Zhang

e WukLab

e
N w—

lllllllllll

£ 11

y 22

-
-
-
@°

— en o e e e
—— — - . -
‘l

S

‘" WA UM MU

- [
1.18% 28 A AN AU AW

2212 -4 1.18%

3341 L&A 2.33%

AV AWx 44 24 RENAS
2] A
AN

' A TN FS L {9/ TR R R
A“'n H"t,.':ll'u“:.\

TH R

a1 -
95,67 p 122% Ve geh |8 um HATR
18.94 2.33% : -
¢ w 1 AT
1 4“' “

2%

4
A
Y
Av S
R
A
8
Ll
At B
.

g oo

afoarjafio

Monolithic Computer

OS / Hypervisor

cCan Application

monolithic Foire s
sServers

continue to Heterogeneity
meet

datacenter Flexibility
needs?

Perf/ $

" S

.-.
— e Mg b
et —— vy —

yIANENHYNY

' 11 "1“3'
‘hﬂ Hﬂﬁd

. opv\o—‘op
L ITalal l‘
-

ARGV E

LA Al U E D L AR R D A

Making
new
hardware
work with
existing
Servers IS
like fitting
puzzles

. Slots for new devices?

. Power for new devices?

Tons of Issues

- Fitting bus standards

- Changing bus?

. Software for new devices?

6 months of my life went to
900000 ==

.o"'; 't '.2 .t

BV 4L

N!ll!llllln

:
E
a3 .
g et _
’ - |
ﬂ
l

cCan Application
monolithic .

Servers

continue to .

meel

datacenter] Flexibility
5
needs? Perf/$

Application Elasticity and

Perf/ $

- Whole VM/container has to run on one physical machine

- Move current applications to make room for new ones

VM1

Appl

Node 1

Core Coreg Core g Core

App2

Containerl

Corej Core j Core

Node 2

11

CPU/Memory Usages across Machines
and across Jobs

(+P]
£0.75
-
—)
< i
g 0.5 - -
5 : Facebook
S
o 0.25 lf ===Google
J
0 T T ‘i’ T T 1
0 1 2 3 4 5 6

99th-to-Median Memory Usage Across Machines

Source: Gu et al. “Efficient Memory Disaggregation with Infiniswap” NSDI'17

Memory usage In datacenter are highly imbalanced

12

Resource Utilization in Production Clusters

100 -
— CPU
— Memory 30000
80 -
@ 25000
S 8
o
— 60 |’ Ml i g 20000
9 l ||!| l ‘ O
IS it b TR A e) W D 15000
Y Y i -
~ $ 10000
0
20 5
Z 5000
0, 0 il l [; ‘ wlt .
0 5 10 15 20 25 0 S 10 15 20 25

Time (day) Hme (day)

* Google Production Cluster Trace Data. “https://github.com/google/cluster-data”

Unused Resource + Waiting/Killed Jobs Because of

Physical-Node Constraints

13

https://github.com/google/cluster-data

(>

N

NG

® o o o (
® 6 & o
® 6 e 6 e e e & oo o o o o o oo ¢ o

Application .

Can

monolithic .
servers

continue to .
meet

datacenter] Flexibility
needs?

o 21

How to achieve better
heterogenelty, flexibility,
and perf/$?

Go beyond physical
node boundary

Resource Disaggregation:

Breaking monolithic
servers Into network-
attached, independent
hardware components

18

) Berkeley |
L5
EBYY UNIVERSITY OF CALIFORNIA

Hewlett Packard
Enterprise

ar: Microsoft » Network

Distributed
Memory

vimware

Disaggregated Datacenter

End-to-End Solution

Performance

Heterogeneity

Flexibility

Reliability

$ Cost

Disaggregated Distributed Shared Persistent
Operatlng System ! 9 Memory (SoCC ’17)

Kernel-Level RDMA
Virtualization (SOSP’17)

Bandwidth Latency

InfiniBand
(EDR)

InfiniBand
(HDR)

GenZ

Key Challenge of Resource
Disaggregation:
Cost of Crossing Network

50-100 GB/s

16 GB/s

12.5 GB/s

25 GB/s

32-400 GB/s

~50ns

~700ns

<500ns

<100ns

Network hardware i1s much
faster than before

Current network still slower
than local memory bus

22

Network Requirements for
Resource Disaggregation

- Low latency

. High bandwidth

RDMA

. Scale

. Reliable

23

RDMA (Remote Direct
Memory Access)

* Directly read/write remote
memory

* Bypass kernel
* Memory zero copy

Benefits:
— Low latency
— High throughput
— Low CPU utilization

RDMA 24

Things have worked well iIn HPC
®* Special hardware
®* Few applications

®* Cheaper developer

25

RDMA-Based Datacenter

Applications

Pilaf HERD-RPC
[ATC ’13] [ATC ’16]
FaRM Wukong
[INSDI "14] [OSDI '16]
HERD Hotpot NAM-DB
SIGCOMM 14 [SoCC *17] [VLDB *17]
I APUS Octopus
[SOSP *15] [S0CC 7] A
FaRM+Xact Mojim

[SOSP '15] [ASPLOS '15]

Cell
[ATC '16]

FaSST
[OSDI ’16]

RS
[VLDB ’16]

DrTM+R
[EuroSys '106]

26

Things have worked well in HPC

® Special hardware
®* Few applications

®* Cheaper developer

What about datacenters?

®* Commodity, cheaper hardware
®* Many (changing) applications

®* Resource sharing and isolation

27

Native RDMA

; User-Level RDMA App :
___ ‘
g] send rec key, | Mem
Mamt v rkey Mg Mt
User 4 v \A ¥ addr A
spacel -~ """y, e L e

F £ &t & & &t &
1 Kernel Bypassing

,.’(s;- -«\‘.-“ 'u.,j /:'..;? Al
Hardware [Ralbll®¥" Address mapping kb

Kernel
Space OS

28

Fat applications
No resource sharing

Developers)
want High-level

Low-level Easy to use
Difficult to use Resource

__ share
Difficult to share :
Socket |solation

Abstraction Mismatch

29

Things have worked well in HPC

Special hardware

Few applications @

Cheaper developer @

What about datacenters?

Commodity, cheaper hardware

Many (changing) applications .

Resource sharing and isolation .

30

Native RDMA

* * & t t Tt Tt T
Space Kernel Bypassmg

Kernel

31

Userspace .~ On-NIC SRAM stores and caches metadata

7.5
S 6 OWrite-64B 0Write-1K
% 4.5
S5 3
S
215
0
1 4 16 64 256 1024
ExpenSIVE, Total Size (MB)

unscalable
hardware

32

Things have worked well in HPC

Special hardware @

Few applications @

Cheaper developer @

What about datacenters?

Commodity, cheaper hardware .

Many (changing) applications .

Resource sharing and isolation .

33

Y
Fat applications %-55 Expensive,
No resource ~ i T Munscalable
sharing “ hardware

-~ ’

i s

Are we removing too much
from kernel?

LITE vyRprddndicestien TiET

High-level abstraction

Resource
sharing

Performance
ISolation

Protection

All problems In
computer science
can be solved by
another level of

iIndirection

Hardware Permiasion chack

37

Slmpler applications

Slmpler applications

i

Pf
. r L
*» Connections ™~ ' Quaues
T

LS
LITE 2-cete o ooife-2egonn,,

Pe heck o
K . Global Ikey Global rkey

Hardware Ri\Ue Global Ikey Global rkey

Cheaper hardware
Scalable performance

39

Implementing Remote memset

struct pingpong_context kctx;
ctx = calloc(l, *ctx); I I I E
ctx->size = size;

ctx->rx_depth = rx_depth;

ctx->buf = malloc(roundup(size, page_size));

memset (ctx->buf, @x7b + is_server, size);

ctx->context = ibv_open_device(ib_dev);

ctx=>channel = NULL;

ctx->pd = ibv_alloc_pd{ctx->context);

ctx->mr = ibv_reg_mr(ctx->pd, ctx->buf, size,IBV_ACCESS_LOCAL_WRITE|IBV_ACCESS_REMOTE_WRITE);
ctx—>cq ibv_create_cq(ctx->context, rx_depth + 1, NULL, ctx->channel, 0);

LITE_join(IP);
uin64_t 1h = LITE_malloc(node, size);
LITE memset(1lh, @, offset, size);

ctx->gp = ibv_create_gp(ctx->pd, &attr);
ibv_modify_gp(ctx->gp, &attr,IBV_QP_STATE|IBV_QP_PKEY_INDEX|IBV_QP_PORT|IBV_QP_ACCESS_FLAGS);

struct ibv_sge sg;

struct ibv_send_wr wr;
struct ibv_send_wr xbad_wr;
memset (&wr, @, (wr));
memset(&sg, 0, (sg));

sg.addr =
sg. length
sg. lkey =

(uintptr_t)buf_addr;
= buf_size;
ctx->mr->lkey;

wr.wr_id = @;

wr.sg_list = &sg;

wr.num_sge 1;

wr.opcode = IBV_WR_RDMA_READ;
wr.send_flags = IBV_SEND_SIGNALED;
wr.wr.rdma. remote_addr = remote_address
wr.wr.rdma.rkey = remote_key;

ibv_post_send(qp, &wr, &bad_wr);
struct ibv_wc wcl2];
ibv_poll_cq(ctx->cq, 2, wc);

ctx;

40

All problems In computer
sclence can be solved by
another level of Indirection

Butler Lam.€son David Whe

except for the proef)rlem of too

many layers of indirection
— David Wheeler #

Main Challenge:
How to preserve the performance benefit of RDMA?

42

LITE Design Principles

1.Indirection only at local node

2.Avold hardware-level indirection

3.Hide kernel-space crossing cost

Great Performance and Scalability

— . — T — T N — — — ¥ - - - - - YV, —~— — - —_ _— g —
. l ' < o o aan A .’ e ‘Il || . T . Ea e £ II' o o I' 'II’ Ty . pe 3 0 'l y a ‘ 2 anbhats ga - =
u u

43

LITE RDMA:Size of MR Scalability

25 O\Write-64B
| LITE_ write-64B
6 B\Write-1K
% LITE write-1K
0 4.5
7p
=
D
nd
15 \H.=ﬂ=ﬂ

I:ITE scales much better than native
RDMA wrt MR size and numbers

44

LITE Appllcatlon Effort

Application LOC using LITE Student Days
_ITE-Log 330 36 1
_ITE-MapReduce 600* 49 4
_ITE-Graph 1400 20 7
_ITE-Kernel-DSM 3000 45 26

® Simple to use
®* Needs no expert knowledge
® Flexible, powerful abstraction

® Easy to achieve optimized performance

* LITE-MapReduce ports from the 3000-LOC Phoenix with 600 lines of change or addition

MapReduce Results

®* LITE-MapReduce adapted from Phoenix [1]

25.

N
w

Runtime (sec)

N

B

Hadoop
B Phoenix
B LITE

LITE-MapReduce outperforms Hadoop

by 4.3X to 5.3X

[1]: “Ranger etal., Evaluating MapReduce for Multi-core and Multiprocessor Systems. (HPCA 07)” 46

LITE Summary

Virtualizes RDMA into flexible, easy-to-use abstraction

Preserves RDMA's performance benefits

Indirection not always degrade performance!

Division across user space, kernel, and hardware

47

Disaggregated Datacenter

flexible, heterogeneous, elastic, perf/$, resilient, scalable, easy-to-
use

Do Remote | Distributed Shared Persistent

. Memory + Smart : : ,
e e en s GO Ol : Memory (SoCC '17)

New Processor and One-Sided Remote Distributed Non-Volatile
Memory Architecture Memory / NVM Memory

Kernel-Level RDMA New Network Topology,
Virtualization (SOSP’17) | E.."Routing, Congestion-Citrl

RDMA Network | Infiniband

Traditional OSes

- Manages single node and all hardware resources in it

- Bad for hardware heterogeneity and hotplug

- Does not handle component failure

hardware

10Ul

?hos

".f“'zt'j!af

game
acts
- —
2 o Q =
€3 . < o n
= command type media o o -% g
3 e -
anpliances e S E
appiliiances E ®o
programn : o = O
: computing O
—
m
=
>

7)) TOC
Q Q Tw
detallsm 5 B LGy
S O 9 .20
= £ o 2
o S S 2o &
Q O -
o' -l - © APls
= players washing ma O runs
Erelieves multi-user
O - .,.. -: v)

Disaggregated OS

57

When hardware IS
disaggregated,
the OS
should be also!

Process
Mgmt

53

|

—Process

_ngmi

—®

Network _VirtuhI_ |
Memory = —
vstem ngfa:e
Network

§¥slem
Network

=

54

Micro-OS Service

- Manages hardware resource of a component

. Virtualizes the hardware

. Communicates with other micro-OS services
- Runs in hardware controller (kernel space)

. Only processors have user space

55

Leg() v Heterogeneity
Architecture . Fiexibiiity ¥ Resource utl

v Fallure isolation
CPU
Manager

Processor
(CPU)

v Elasticity

network across components

Memory ® o NVM
Manager Manager
Memory NVM

Hard Disk
56

Many Challenges

- Handling component failure
- Manage distributed, heterogeneous resources
- Fitting micro-OS services in hardware controller

- Implementing Lego on current servers

57

Lego Implementation

- Built from scratch, >200K LOC and growing

- Runs all Linux ABIs and unmodified binaries

. Three micro-OS services: processor, memory, storage
- Global resource manager

- Emulates disaggregated hardware with regular servers

58

Lego Summary

- Resource disaggregation calls for new system

- Lego: new OS designed and built from scratch
for datacenter resource disaggregation

. Split OS Into distributed micro-OS services,
running at device

- Many challenges and many potentials

59

Disaggregated Datacenter

flexible, heterogeneous, elastic, perf/$, resilient, scalable, easy-to-
use

Do Remote | Distributed Shared Persistent

. Memory + Smart : : ,
e e en s GO Ol : Memory (SoCC '17)

New Processor and One-Sided Remote Distributed Non-Volatile
Memory Architecture Memory / NVM Memory

Kernel-Level RDMA New Network Topology,
Virtualization (SOSP’17) | E.."Routing, Congestion-Citrl

RDMA Network | Infiniband

Physical Resource
Disaggregation

® Great support of heterogeneity

® Very flexible in resource management

®* But needs hardware, network, and OS changes

61

IS there any less disruptive
way to achieve better
resource utilization and
elasticity?

Virtually Disaggregated
Datacenter

® Use resources on remote (distributed) machines

Monolithic Se Monolithic Server Monolithic Server
h CPU CPU CPU

e e

63

Using Remote/Distributed Resources

* \Was a popular idea in 90s
— Remote memory/paging/swap
— Network block device
— Distributed shared memory (DSM)

* No production-scale adoption
— Cost of network communication
— Coherence traffic

64

REVISIT YOUR
OLD IDEAS

WITH NEW EYES.

Remote/Distributed Memory in Modern Times

 New and heterogeneous applications

— Large parallelism
— New computation and memory requirements

— New programming models

 Network 1s 10x-100x faster
— InfiniBand: 200Gbps, <500ns
— GenZ: 32-400GB/s, <100ns

* New types of memory

— NVM, HBM
66

Recent New Attempts

® Distributed Shared Memory
— Grappa

®* Network swapping

— InfiniSwap

®* Non-coherent distributed memory

— VMware

67

Our View

Design new remote/distributed memory systems that
leverage new hardware and network properties

Design for modern datacenter applications

Tradeoff of performance and programability

First project: distributed Non-Volatile Memory
(Persistent Memory)

68

DSM

Persistent
DSPM)

a significant step towards
using PM In datacenters

69

DSPM

* Native memory load/store interface
— Local or remote (transparent)
— Pointers and in-memory data structures

* Supports memory read/write sharing

70

DSM

Persistent
DS

a significant step towards
using PM In datacenters

71

DSPM: One Layer Approach

Benefits of both memory and storage
No redundant layers
No data marshaling/unmarshalling

Hotpot:

A Kernel-Level
RDMA-Based
DSPM System

Easy to use

Native memory interface

Fast, scalable
Flexible consistency levels

Data durability & reliability

Hotpot Architecture

.....................

. Central
. Dispatcher

management and
initialization tasks

..................................

OS' data OS

: metadata :

Hotpot Architecture

.....................

. Central
. Dispatcher

management and
initialization tasks

..................................

[e ———— ————————— ——— o ——]——————— ———————————————— — s —

——

os G | OB

: metadata !

Hotpot Architecture

.....................

. Central
. Dispatcher
: ' management and
initialization tasks

..................................

[e ———— ————————— ——— o ——]——————— ———————————————— — s —

__

; data
» metadata :

76

Hotpot Architecture

.....................

. Central
. Dispatcher
: ' management and
initialization tasks

[e ———— ————————— ——— o ——]——————— ———————————————— — s —

E App App Threads App Threads

load/store load/store

; data
: metadata :

=

Hotpot Architecture

.....................

. Central
. Dispatcher

management and
initialization tasks

[o — ————— —————————————] —————— o ————————————————— bt —

App Threads

load/store

; data
: metadata :

=

load/store

'
e -
'

78

Hotpot Architecture

. Central
. Dispatcher
: management and
initialization tasks

[o — ————— —————————————] —————— o ————————————————— bt —

App Threads

— — — — — ol — — T —————— — ———— — ———— — — vl —

load/store commit

; data
» metadata :

79

Throughput

(KIOPS)

Btmpfs-JOtmpfs-F

* Modify MongoDB with ~120 LOC, use MRMW mode
 Compare with tmpfs, PMFS, Mo

j—
O P 00 N

MongoDB Results

jim, Octopus using YCSB

A

Workload | Read | Update | Scan | Insert | R&U
A 50% 50% - - -
B 95% 5% - -
C 100% - - -
D 95% - 5% -
E - 95% 5% -
F 50% : - 50%

BN

B

C

D

alml JUl

PMFS—J M PMFS-F 1 Octopus EMojim HMHotpot

Disaggregated Datacenter

flexible, heterogeneous, elastic, perf/$, resilient, scalable, easy-to-
use

Do Remote | Distributed Shared Persistent

. Memory + Smart : : ,
e e en s GO Ol : Memory (SoCC '17)

New Processor and One-Sided Remote Distributed Non-Volatile
Memory Architecture Memory / NVM Memory

Kernel-Level RDMA New Network Topology,
Virtualization (SOSP’17) | E.."Routing, Congestion-Citrl

RDMA Network | Infiniband

Conclusion

- New hardware and software trends point to
resource disaggregation

- WukLab is building an end-to-end solution for
disaggregated datacenter

- Opens up new research opportunities Iin
hardware, software, networking, security, and
programming language

82

Thank you
Questions?

—~ WAy |
{ N/B/ 2w B~
e WukLa
"y VvV W
rCAYD

wuklab.io

http://wuklab.io

