Farewell to Servers:
Hardware, Software, and Network

Approaches towards Datacenter

Resource Disaggregation
Yiying Zhang
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Monolithic Computer

OS / Hypervisor




cCan Application

monolithic  Foire s
sServers

continue to Heterogeneity
meet

datacenter Flexibility
needs?

Perf/ $
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Making
new
hardware
work with
existing
Servers IS
like fitting
puzzles




. Slots for new devices?

. Power for new devices?

Tons of Issues

- Fitting bus standards

- Changing bus?

. Software for new devices?
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Application Elasticity and

Perf/ $

- Whole VM/container has to run on one physical machine

- Move current applications to make room for new ones

VM1

Appl

Node 1

Core Coreg Core g Core

App2

Containerl

Corej Core j Core

Node 2
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CPU/Memory Usages across Machines
and across Jobs
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99th-to-Median Memory Usage Across Machines

Source: Gu et al. “Efficient Memory Disaggregation with Infiniswap” NSDI'17

Memory usage In datacenter are highly imbalanced
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Resource Utilization in Production Clusters
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* Google Production Cluster Trace Data. “https://github.com/google/cluster-data”

Unused Resource + Waiting/Killed Jobs Because of

Physical-Node Constraints
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Application .

Can

monolithic .
servers

continue to .
meet

datacenter ] Flexibility
needs?
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How to achieve better
heterogenelty, flexibility,
and perf/$?

Go beyond physical
node boundary



Resource Disaggregation:

Breaking monolithic
servers Into network-
attached, independent
hardware components
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Disaggregated Datacenter

End-to-End Solution

Performance

Heterogeneity

Flexibility

Reliability

$ Cost




Disaggregated Distributed Shared Persistent
Operatlng System ! 9 Memory (SoCC ’17)

Kernel-Level RDMA
Virtualization (SOSP’17)



Bandwidth Latency

InfiniBand
(EDR)

InfiniBand
(HDR)

GenZ

Key Challenge of Resource
Disaggregation:
Cost of Crossing Network

50-100 GB/s

16 GB/s

12.5 GB/s

25 GB/s

32-400 GB/s

~50ns

~700ns

<500ns

<100ns

Network hardware i1s much
faster than before

Current network still slower
than local memory bus
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Network Requirements for
Resource Disaggregation

- Low latency

. High bandwidth

RDMA

. Scale

. Reliable
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RDMA (Remote Direct
Memory Access)

* Directly read/write remote
memory

* Bypass kernel
* Memory zero copy

Benefits:
— Low latency
— High throughput
— Low CPU utilization

RDMA 24



Things have worked well iIn HPC
®* Special hardware
®* Few applications

®* Cheaper developer
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RDMA-Based Datacenter

Applications

Pilaf HERD-RPC
[ATC ’13] [ATC ’16]
FaRM Wukong
[INSDI "14] [OSDI '16]
HERD Hotpot NAM-DB
SIGCOMM 14 [SoCC *17] [VLDB *17]
I APUS Octopus
[SOSP *15] [S0CC 7] A
FaRM+Xact Mojim

[SOSP '15] [ASPLOS '15]

Cell
[ATC '16]

FaSST
[OSDI ’16]

RS
[VLDB ’16]

DrTM+R
[EuroSys '106]
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Things have worked well in HPC

® Special hardware
®* Few applications

®* Cheaper developer

What about datacenters?

®* Commodity, cheaper hardware
®* Many (changing) applications

®* Resource sharing and isolation
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Native RDMA

; User-Level RDMA App :
_____________________________________________ ‘
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Space OS
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Fat applications
No resource sharing

Developers )
want High-level

Low-level Easy to use
Difficult to use Resource

__ share
Difficult to share :
Socket |solation

Abstraction Mismatch
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Things have worked well in HPC

Special hardware

Few applications @

Cheaper developer @

What about datacenters?

Commodity, cheaper hardware

Many (changing) applications .

Resource sharing and isolation .
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Native RDMA

* * & t t Tt Tt T
Space Kernel Bypassmg

Kernel
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Userspace .~ On-NIC SRAM stores and caches metadata

7.5
S 6 OWrite-64B 0Write-1K
% 4.5
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S
215
0
1 4 16 64 256 1024
ExpenSIVE, Total Size (MB)

unscalable
hardware
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Things have worked well in HPC

Special hardware @

Few applications @

Cheaper developer @

What about datacenters?

Commodity, cheaper hardware .

Many (changing) applications .

Resource sharing and isolation .
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Y
Fat applications %-55 Expensive,
No resource ~ i T Munscalable
sharing “ hardware

-~ ’

i s

Are we removing too much
from kernel?



LITE vyRprddndicestien TiET

High-level abstraction

Resource
sharing

Performance
ISolation

Protection



All problems In
computer science
can be solved by
another level of

iIndirection




Hardware Permiasion chack
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Slmpler applications




Slmpler applications
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Cheaper hardware
Scalable performance
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Implementing Remote memset

struct pingpong_context kctx;
ctx = calloc(l, *ctx); I I I E
ctx->size = size;

ctx->rx_depth = rx_depth;

ctx->buf = malloc(roundup(size, page_size));

memset (ctx->buf, @x7b + is_server, size);

ctx->context = ibv_open_device(ib_dev);

ctx=>channel = NULL;

ctx->pd = ibv_alloc_pd{ctx->context);

ctx->mr = ibv_reg_mr(ctx->pd, ctx->buf, size,IBV_ACCESS_LOCAL_WRITE|IBV_ACCESS_REMOTE_WRITE);
ctx—>cq ibv_create_cq(ctx->context, rx_depth + 1, NULL, ctx->channel, 0);

LITE_join(IP);
uin64_t 1h = LITE_malloc(node, size);
LITE memset(1lh, @, offset, size);

ctx->gp = ibv_create_gp(ctx->pd, &attr);
ibv_modify_gp(ctx->gp, &attr,IBV_QP_STATE|IBV_QP_PKEY_INDEX|IBV_QP_PORT|IBV_QP_ACCESS_FLAGS);

struct ibv_sge sg;

struct ibv_send_wr wr;
struct ibv_send_wr xbad_wr;
memset (&wr, @, (wr));
memset(&sg, 0, (sg));

sg.addr =
sg. length
sg. lkey =

(uintptr_t)buf_addr;
= buf_size;
ctx->mr->lkey;

wr.wr_id = @;

wr.sg_list = &sg;

wr.num_sge 1;

wr.opcode = IBV_WR_RDMA_READ;
wr.send_flags = IBV_SEND_SIGNALED;
wr.wr.rdma. remote_addr = remote_address
wr.wr.rdma.rkey = remote_key;

ibv_post_send(qp, &wr, &bad_wr);
struct ibv_wc wcl2];
ibv_poll_cq(ctx->cq, 2, wc);

ctx;

40



All problems In computer
sclence can be solved by
another level of Indirection

Butler Lam.€son David Whe

except for the proef)rlem of too

many layers of indirection
— David Wheeler #



Main Challenge:
How to preserve the performance benefit of RDMA?
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LITE Design Principles

1.Indirection only at local node

2.Avold hardware-level indirection

3.Hide kernel-space crossing cost

Great Performance and Scalability
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LITE RDMA:Size of MR Scalability

25 O\Write-64B
| LITE_ write-64B
6 B\Write-1K
% LITE write-1K
0 4.5
7p
=
D
nd
15 \H.=ﬂ=ﬂ

I:ITE scales much better than native
RDMA wrt MR size and numbers
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LITE Appllcatlon Effort

Application LOC using LITE Student Days
_ITE-Log 330 36 1
_ITE-MapReduce 600* 49 4
_ITE-Graph 1400 20 7
_ITE-Kernel-DSM 3000 45 26

® Simple to use
®* Needs no expert knowledge
® Flexible, powerful abstraction

® Easy to achieve optimized performance

* LITE-MapReduce ports from the 3000-LOC Phoenix with 600 lines of change or addition



MapReduce Results

®* LITE-MapReduce adapted from Phoenix [1]

25.

N
w

Runtime (sec)

N

B

Hadoop
B Phoenix
B LITE

LITE-MapReduce outperforms Hadoop

by 4.3X to 5.3X

[1]: “Ranger etal., Evaluating MapReduce for Multi-core and Multiprocessor Systems. (HPCA 07)” 46



LITE Summary

Virtualizes RDMA into flexible, easy-to-use abstraction

Preserves RDMA's performance benefits

Indirection not always degrade performance!

Division across user space, kernel, and hardware
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Disaggregated Datacenter

flexible, heterogeneous, elastic, perf/$, resilient, scalable, easy-to-
use

Do Remote | Distributed Shared Persistent

. Memory + Smart : : ,
e e en s GO Ol : Memory (SoCC '17)

New Processor and One-Sided Remote Distributed Non-Volatile
Memory Architecture Memory / NVM Memory

Kernel-Level RDMA New Network Topology,
Virtualization (SOSP’17) | E.."Routing, Congestion-Citrl

RDMA Network | Infiniband




Traditional OSes

- Manages single node and all hardware resources in it

- Bad for hardware heterogeneity and hotplug

- Does not handle component failure
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Disaggregated OS
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When hardware IS
disaggregated,
the OS
should be also!




Process
Mgmt
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Micro-OS Service

- Manages hardware resource of a component

. Virtualizes the hardware

. Communicates with other micro-OS services
- Runs in hardware controller (kernel space)

. Only processors have user space
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Leg() v Heterogeneity
Architecture . Fiexibiiity ¥ Resource utl

v Fallure isolation
CPU
Manager

Processor
(CPU)

v Elasticity

network across components

Memory ® o NVM
Manager Manager
Memory NVM

Hard Disk
56



Many Challenges

- Handling component failure
- Manage distributed, heterogeneous resources
- Fitting micro-OS services in hardware controller

- Implementing Lego on current servers
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Lego Implementation

- Built from scratch, >200K LOC and growing

- Runs all Linux ABIs and unmodified binaries

. Three micro-OS services: processor, memory, storage
- Global resource manager

- Emulates disaggregated hardware with regular servers

58



Lego Summary

- Resource disaggregation calls for new system

- Lego: new OS designed and built from scratch
for datacenter resource disaggregation

. Split OS Into distributed micro-OS services,
running at device

- Many challenges and many potentials

59



Disaggregated Datacenter

flexible, heterogeneous, elastic, perf/$, resilient, scalable, easy-to-
use

Do Remote | Distributed Shared Persistent

. Memory + Smart : : ,
e e en s GO Ol : Memory (SoCC '17)

New Processor and One-Sided Remote Distributed Non-Volatile
Memory Architecture Memory / NVM Memory

Kernel-Level RDMA New Network Topology,
Virtualization (SOSP’17) | E.."Routing, Congestion-Citrl

RDMA Network | Infiniband




Physical Resource
Disaggregation

® Great support of heterogeneity

® Very flexible in resource management

®* But needs hardware, network, and OS changes

61



IS there any less disruptive
way to achieve better
resource utilization and
elasticity?



Virtually Disaggregated
Datacenter

® Use resources on remote (distributed) machines

Monolithic Se Monolithic Server Monolithic Server
h CPU CPU CPU

e e
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Using Remote/Distributed Resources

* \Was a popular idea in 90s
— Remote memory/paging/swap
— Network block device
— Distributed shared memory (DSM)

* No production-scale adoption
— Cost of network communication
— Coherence traffic

64



REVISIT YOUR
OLD IDEAS

WITH NEW EYES.



Remote/Distributed Memory in Modern Times

 New and heterogeneous applications

— Large parallelism
— New computation and memory requirements

— New programming models

 Network 1s 10x-100x faster
— InfiniBand: 200Gbps, <500ns
— GenZ: 32-400GB/s, <100ns

* New types of memory

— NVM, HBM
66



Recent New Attempts

® Distributed Shared Memory
— Grappa

®* Network swapping

— InfiniSwap

®* Non-coherent distributed memory

— VMware
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Our View

Design new remote/distributed memory systems that
leverage new hardware and network properties

Design for modern datacenter applications

Tradeoff of performance and programability

First project: distributed Non-Volatile Memory
(Persistent Memory)

68



DSM

Persistent
DSPM)

a significant step towards
using PM In datacenters

69



DSPM

* Native memory load/store interface
— Local or remote (transparent)
— Pointers and in-memory data structures

* Supports memory read/write sharing

70



DSM

Persistent
DS

a significant step towards
using PM In datacenters
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DSPM: One Layer Approach

Benefits of both memory and storage
No redundant layers
No data marshaling/unmarshalling




Hotpot:

A Kernel-Level
RDMA-Based
DSPM System

Easy to use

Native memory interface

Fast, scalable
Flexible consistency levels

Data durability & reliability



Hotpot Architecture

.....................

. Central
. Dispatcher

management and
initialization tasks

..................................

OS' data OS

: metadata :




Hotpot Architecture

.....................

. Central
. Dispatcher

management and
initialization tasks
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Hotpot Architecture

.....................

. Central
. Dispatcher
: ' management and
initialization tasks

..................................

[ e ———— ————————— ——— o ——]——————— ———————————————— — s —

________________________________________________

; data
» metadata :
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Hotpot Architecture

.....................

. Central
. Dispatcher
: ' management and
initialization tasks

[ e ———— ————————— ——— o ——]——————— ———————————————— — s —

E App App Threads App Threads

load/store load/store

; data
: metadata :
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Hotpot Architecture

.....................

. Central
. Dispatcher

management and
initialization tasks

--------------

[ o — ————— —————————————] —————— o ————————————————— bt —

_______________________________

App Threads

load/store

; data
: metadata :

=

load/store

'
e -
'
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Hotpot Architecture

. Central
. Dispatcher
: management and
initialization tasks

[ o — ————— —————————————] —————— o ————————————————— bt —

App Threads

— — — — — ol — — T —————— — ———— — ———— — — vl —

load/store commit

; data
» metadata :
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Throughput

(KIOPS)

Btmpfs-JOtmpfs-F

* Modify MongoDB with ~120 LOC, use MRMW mode
 Compare with tmpfs, PMFS, Mo

j—
O P 00 N

MongoDB Results

jim, Octopus using YCSB

A

Workload | Read | Update | Scan | Insert | R&U
A 50% 50% - - -
B 95% 5% - -
C 100% - - -
D 95% - 5% -
E - 95% 5% -
F 50% : - 50%

BN

B

C

D

alml JUl

PMFS—J M PMFS-F 1 Octopus EMojim HMHotpot




Disaggregated Datacenter

flexible, heterogeneous, elastic, perf/$, resilient, scalable, easy-to-
use

Do Remote | Distributed Shared Persistent

. Memory + Smart : : ,
e e en s GO Ol : Memory (SoCC '17)

New Processor and One-Sided Remote Distributed Non-Volatile
Memory Architecture Memory / NVM Memory

Kernel-Level RDMA New Network Topology,
Virtualization (SOSP’17) | E.."Routing, Congestion-Citrl

RDMA Network | Infiniband




Conclusion

- New hardware and software trends point to
resource disaggregation

- WukLab is building an end-to-end solution for
disaggregated datacenter

- Opens up new research opportunities Iin
hardware, software, networking, security, and
programming language
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Questions?
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http://wuklab.io

