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Abstract

The booming successes of machine learning in different domains boost industry-scale deployments
of innovative AI algorithms, systems, and architectures, and thus the importance of benchmarking
grows. However, the confidential nature of the workloads, the paramount importance of the represen-
tativeness and diversity of benchmarks, and the prohibitive cost of training a state-of-the-art model
mutually aggravate the AI benchmarking challenges.

In this paper, we present a balanced AI benchmarking methodology for meeting the subtly different
requirements of different stages in developing a new system/architecture and ranking/purchasing

∗Jianfeng Zhan is the corresponding author.
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commercial off-the-shelf ones. Performing an exhaustive survey on the most important AI domain–
Internet services with seventeen industry partners, we identify and include seventeen representative AI
tasks to guarantee the representativeness and diversity of the benchmarks. Meanwhile, for reducing
the benchmarking cost, we select a benchmark subset to a minimum–three tasks–according to the
criteria: diversity of model complexity, computational cost, and convergence rate, repeatability, and
having widely-accepted metrics or not. We contribute by far the most comprehensive AI benchmark
suite–AIBench.

The evaluations show AIBench outperform MLPerf in terms of the diversity and representative-
ness of model complexity, computational cost, convergent rate, computation and memory access
patterns, and hotspot functions. With respect to the AIBench full benchmarks, its subset short-
ens the benchmarking cost by 41%, while maintaining the primary workload characteristics. The
specifications, source code, and performance numbers are publicly available from the web site
http://www.benchcouncil.org/AIBench/index.html.
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1 Introduction

The AI advancements have brought breakthroughs in processing images, video, speech, and audio [1, 2, 3,
4, 5, 6], and hence boost industry-scale deployments of massive AI algorithms, systems and architectures.
Consequently, the importance of benchmarking grows.

The benchmarks accelerate the process [7], as they provides not only the design inputs, but also
the evaluation methodology and metrics [8]. Their relevancy, representativeness, and diversity are of
paramount importance as no single benchmark or metric can measure the performance of computer
systems on all applications [9]. Unfortunately, there are many factors mutually aggravating the challenges
of AI benchmarking.

First, AI has infiltrated into many domains with a huge number of AI workloads–including data
sets–being treated as first-class confidential issues. They are isolated between the academia and industry,
or even among different owners. Even for the most visible AI domain–Internet services, there are
only a few publicly available performance model or observed insights [5, 10] that can be leveraged for
further research. This situation is not sustainable and poses a huge obstacle for our communities towards
developing an open and mature research field.

Second, even we can cover a full spectrum of AI tasks, models, and data sets, running an entire
training session–train an AI model to achieve a state-of-the-art quality target–is prohibitively costly, and
it often takes several weeks. For AI tasks, some mixed-precision optimizations immediately improve
traditional performance metrics like throughput, while adversely affect the quality of the final model,
which can only be observed by running an entire training session [11, 12]. The architecture community
heavily relies upon simulations with slowdowns varying wildly from 10X to 1000X, which further
exaggerates this situation.

Third, through profiling massive AI tasks with different models and data sets, we can obtain frequently-
appearing primitive operations or units of computation as micro benchmarks. The micro benchmarks like
DeepBench [13] are affordable and repeatable to perform a fair comparison of competing systems, but
it overlooks statistical optimizations [12], which is the essential of AI benchmarking. Different from a
micro benchmark, an AI component benchmark performs a independent AI task with a specified quality
target–an end-to-end performance [11].

Fourth, using a few AI component benchmarks like MLPerf [14] [12] alone may lead to error-prone
design–over-optimization for some specific workloads or benchmarketing [9]. Figure 1 shows with respect
to AIBench, presented in this paper, MLPerf has a significantly smaller coverage in terms of AI model
complexity, computational cost (FLOPs–floating-point operations), and convergent rate–the epochs to
training a model to achieve a convergent quality (Figure 1(a)), computation and memory access patterns
(Figure 1(b)).

Finally but not least, there are subtly different benchmarking requirements of different stages in
developing a new system/architecture and ranking/purchasing commercial off-the-shelf ones. For example,
the initial design input needs considering diverse computation and memory access patterns. Earlier-stage
evaluations of a new architecture or system need more lightweight and portable benchmarks, while
later-stage evaluations or purchasing needs detailed evaluation using comprehensive benchmarks.

To tackle the above challenges, we present a balanced AI benchmarking methodology for meeting the
subtly different requirements of different stages. On one hand, with seventeen prominent industry partners,
we identify and include seventeen representative AI tasks from the most important domain–Internet
Services to guarantee the representativeness and diversity of the benchmarks. On the other hand, we select
a minimum benchmark subset (three tasks) for affordability according to the criteria: diversity of model
complexity, computational cost, convergence rate, repeatability, and having widely-accepted metrics or
not.

Our contributions are as follows:

� We present a balanced AI benchmarking methodology that considers subtly different requirements
in developing a new system/architecture and ranking/purchasing commercial off-the-shelf ones.
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Figure 1: The comparisons of 17 benchmarks in AIBench against 7 benchmarks in MLPerf from the
perspectives of AI model complexity (parameters), computational cost (FLOPs), convergent rate (epochs)
(Figure 1(a)), computation and memory access patterns (Figure 1(b). The raw data and the details are
reported in Section 5.2.

� We identify seventeen prominent AI tasks from the most important and visible AI domain with
seventeen industry partners, and contribute by far the most comprehensive AI benchmark suite–
AIBench.

� We perform by far the most comprehensive workload characterization on AIBench and MLPerf
from the perspectives of model complexity, computational cost, and convergent rate, computation
and memory access patterns, hotspot functions, and other micro-architecture characteristics.

� For the first time, we systematically quantify the run-to-run variation of the seventeen benchmarks
of AIBench in terms of the ratio of the standard deviation to the mean of the training epochs to
achieve a convergent quality. We found the variation varies wildly from 0% to 38.46%.

� To achieve affordability, we select a minimum AI component benchmark subset–three tasks–Image
Classification, Object Detection, and Learning to Rank. Our experiments demonstrate the subset
maintain the primary workload characteristics of seventeen benchmarks of AIBench while reducing
the benchmarking cost by 41%.

� We found AIBench covers a much broader range (1.3X to 6.4X) against MLPerf in terms of the
ratios of peak numbers of model complexity, computational cost, and convergent rate. The seventeen
benchmarks of AIBench reflect distinct and different computation and memory access patterns
from that of MLPerf. AIBench outperforms MLPerf in terms of the diversity and representativeness
of models complexity, computation and memory access patterns, and hotspot functions. With
respect to MLPerf, AIBench reduces the benchmarking cost while avoiding error-prone design or
benchmarketing.

The rest of this paper is organized as follows. Section 2 summaries the related work. Section 3
proposes our balanced methodology. Section 4 presents the AIBench design and implementation. In
Section 5, we present the detailed workload characterization and evaluations on GPUs and CPUs. Finally,
we draw the conclusion in Section 6.

2 Related Work

AI attracts great attention, appealing many research efforts on benchmarking. Table 1 compares AIBench
with respect to the state-of-the-art or state-of-the-practice AI benchmark suites, from the perspectives
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of the component benchmarks, subset, real-world data sets and software stacks. AIBench is the only
benchmark suite that provides not only the most comprehensive AI component benchmarks but also an
affordable subset.

MLPerf [14] is an ML benchmark suite containing five AI tasks, including image classification, object
detection, translation, recommendation, and reinforcement learning. For several tasks, it provides both
light-weight and heavy-weight implementations. Totally, it includes seven benchmarks for training and
five benchmarks for inference.

Fathom [15] consists of eight deep learning benchmarks, each of which is implemented with Tensor-
Flow. The Autoenc workload provides a variational autoencoder and can be used to reduce the dimension
and compress images.

DeepBench [13] provides three basic operations and recurrent layer operations (micro benchmarks)
that are frequently appeared in training deep neural networks.

DNNMark [16] provides eight micro benchmarks which are a suite of deep neural network primitives.
DAWNBench [11] is a benchmark and competition focusing on end-to-end performance, which means

the training or inference time to achieve a state-of-the-art accuracy. It only focuses on two component
benchmarks including image classification on CIFAR10 and ImageNet, and question answering on
SQuAD.

TBD Suite [17] focuses on training performance evaluation and provides eight neural network models
that covers six application domains.

In conclusion, the state-of-the-art and state-of-the-practise AI benchmarks can not meet the subtly
different benchmarking requirements of different stages in developing a new system/architecture and
ranking/purchasing commercial off-the-shelf ones.

3 The Methodology

Our balanced AI benchmarking methodology consists of four essential parts as follows.

3.1 Performing a detailed survey of the most important domain rather than a rough
survey of a variety of domains

As it is impossible to investigate all AI domains, we single out the most important AI domain–Internet
services for the detailed survey with seventeen prominent industry partners.

3.2 Include as most as possible representative benchmarks

We believe the prohibitive cost of training a model to a state-of-the-art quality cannot justify including
only a few AI benchmarks. Instead, using only a few AI component benchmarks may lead to error-prone
design: over-optimization for some specific workloads or Benchmarketing.

For Internet services, we identify and include as most as possible representative AI tasks, models
and data sets into the benchmark suite, so as to guarantee the representativeness and diversity of the
benchmarks. For each benchmark, we propose the benchmarking rule to assure the fairness across different
systems.

This strategy is also witnessed by the past successful benchmark practice. Actually, the cost of
execution time for other benchmarks like HPC [18], SPECCPU [19] on simulators, is also prohibitively
costly. However, the representativeness and coverage of a widely accepted benchmark suite are paramount
important. For example, SPECCPU 2017 [20] contains 43 benchmarks. The other examples include
PARSEC3.0 (30) [21], TPC-DS (99) [22].

3.3 Keep the benchmark subset to a minimum

We choose a minimum AI component benchmark subset (less than MLPerf) according to the criteria:
diversity of model complexity, computational cost, convergence rate, repeatability, and having the
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Table 1: AI Component Benchmarks Comparison. ""indicates a benchmark is also included into the
subset.

AIBench MLPerf Fathom DeepBench
DNN
Mark

DAWN
Bench

TBD

Seventeen Component Benchmarks
Image
classification

Train "" " " � � " "

Infer " " " � � " �
Image
generation

Train " � � � � � "

Infer " � � � � � �

Text-to-Text
Train " " " � � � "

Infer " " " � � � �
Image-to-
Text

Train " � � � � � �
Infer " � � � � � �

Image-to-
Image

Train " � � � � � �
Infer " � � � � � �

Speech reco-
gnition

Train " � " � � � "

Infer " � " � � � �
Face
embedding

Train " � � � � � �
Infer " � � � � � �

3D Face
Recognition

Train " � � � � � �
Infer " � � � � � �

Object
detection

Train "" " � � � � "

Infer " " � � � � �
Recommen-
dation

Train " " � � � � "

Infer " � � � � � �
Video
prediction

Train " � � � � � �
Infer " � � � � � �

Image
compression

Train " � " � � � �
Infer " � " � � � �

3D object re-
construction

Train " � � � � � �
Infer " � � � � � �

Text sum-
marization

Train " � � � � � �
Infer " � � � � � �

Spatial
transformer

Train " � � � � � �
Infer " � � � � � �

Learning to
rank

Train "" � � � � � �
Infer " � � � � � �

Neural architec-
ture search

Train " � � � � � �
Infer " � � � � � �

Games
Train � " " � � � "

Infer � � " � � � �
Memory
network

Train � � " � � � �
Infer � � " � � � �

Question
answering

Train � � � � � " �
Infer � � � � � " �

Real-world Data sets and Software Stack
Text data 3 1 2 N/A N/A 1 1

Image data 8 2 2 N/A N/A 2 4
3D data 2 0 0 N/A N/A 0 0

Audio data 1 0 1 N/A N/A 0 1
Video data 1 0 1 N/A N/A 0 0

Software Stack 3 2 1 1 1 2 4
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widely-accepted metrics or not. Meanwhile, we quantify the performance relationships between the full
benchmark suite and its subset.

Using the subset for ranking is also witnessed by the past practice. For example, Top500 [23]-a super
computer ranking–only reports HPL [18] and HPCG [24]–two benchmarks out of 20+ representative HPC
benchmarks like HPCC [25], NPB [26].

3.4 Consider the comprehensive benchmarks and its subset as two indispensable parts

Different stages have subtly different benchmarking requirements. The initial design inputs of a new
system/architecture need comprehensive workload characterization. For earlier-stage evaluations of a new
system or architecture, which usually adopts simulation-based methods, heavy benchmarking is a big
burden, thus, concise, portable, and lightweight benchmarks are of great signi�cance. While later-stage
evaluations of a new architecture or system or purchasing an commercial off-the-shelf ones needs detailed
evaluation using comprehensive benchmarks to avoid error-prone design or benchmarketing.

Previous work [17, 27] �nd that each iteration of an AI task has the same computation logic and
the iteration number has little impact on micro-architectural behaviors. We train the AI models of the
seventeen benchmarks to a convergent quality, most of which are close to the state-of-the-art ones. We
call each traininga quasi-entire training session.

Considering subtly different benchmarking requirements of different stages, we run entire training
sessions of the subset and/or selectively run quasi-entire training sessions from the full benchmarks to
avoid over-optimization or benchmarketing.

For initial design inputs, we perform detailed workload characterization. For earlier-stage evaluations
of a new system or architecture, we run a subset, as it is portable and lightweight.

For later-stage evaluation of a new system or architecture, we run entire training session or selectively
run quasi-entire training session from the full benchmarks to help quickly locate the bottlenecks.

For purchasing or ranking commercial off-the-shelf systems or architecture, running an entire training
session of the subset provides valuable performance implications. Meanwhile, we also run quasi-entire or
entire training session of the full benchmark suites to avoid benchmarketing.

4 The Benchmark Design and Implementation

In this section, we illustrate the benchmark design and implementation, including selection of workloads
and quality targets (Section 4.1), metric, implementations and reimplementation rules ( Section 4.2).

4.1 The Benchmark Decisions

To cover a wide spectrum of prominent AI problem domains among Internet services, we thoroughly
analyze the essential applications scenarios among three primary Internet services, including search engine,
social network, and e-commerce, as shown in Table 2. In total, we identify seventeen representative AI
tasks, and implement each task with the state-of-the-art model as a component benchmark, as shown in
Table 3. Due to the space limitation, we give a brief introduction.

4.1.1 Image Classi�cation

Image classi�cation is to classify an image into multiple categories.
ResNet-50 [28]: ResNet-50 [28] is a convolutional neural network with 50 layers. The main module

in ResNet-50 is the bottleneck, consisting of three convolutional layers and a identity mapping.
ImageNet Dataset [29]: This dataset contains more than 14 million images, and the data size is more

than 100 GB.
Reference Quality: The reference implementation on the ImageNet dataset achieves Top-1 accuracy

74.9%.

7



4.1.2 Object Detection

Object detection aims to �nd objects of certain target classes with precise localization in a given image.
Faster R-CNN Model [30]: For object detection, we use the Faster R-CNN model, with the backbone

network of ResNet-50 to extract the features of an input image.
VOC2007 [31]: The dataset has 9,963 images, containing 24,640 annotated objects. Each image has

an annotation �le giving a bounding box and object class label for each object in one of the twenty classes
present in the image [31].

Reference Quality: The model achieves 75% mAP on the VOC2007 test data.

4.1.3 Learning to Rank

Learning to rank is to train models for ranking tasks using machine learning methods.
Ranking Distillation Model [32] : Ranking distillation is a technique that uses knowledge distillation

to train a smaller student model for ranking under the supervision of a larger teacher model, and this
student model has similar performance to the teacher model but has better online inference performance.

Gowalla Dataset [33]: The dataset contains the geographical location shared by users and user
relationship network, including 196591 nodes, 950327 edges, and 6442890 location sharing records.

Reference Quality: The target accuracy of the model is 14.58% on the Gowalla dataset.

Table 2: Representative AI Tasks in Internet Service Domains.

Internet Service Core Scenario Involved AI Problem Domain

Search Engine

Content-based image retrieval (e.g., face, scene)
Object detection; Classi�cation; Spatial transformer;
Face embedding; 3D face recognition

Advertising and recommendation Recommendation

Maps search and translation
3D object reconstruction; Text-to-Text translation;
Speech recognition; Neural architecture search

Data annotation and caption (e.g., text, image) Text summarization; Image-to-Text
Search result ranking Learning to rank
Image resolution enhancement Image generation; Image-to-Image
Data storage space and transfer optimization Image compression; Video prediction

Social Network

Friend or community recommendation Recommendation; Face embedding; 3D face recognition;
Vertical search (e.g., image, people) Classi�cation; Spatial transformer; Object detection;
Language translation Text-to-Text translation; Neural architecture search
Automated data annotation and caption Text summarization; Image-to-Text; Speech recognition
Anomaly detection (e.g., spam image detection)Classi�cation
Image resolution enhancement Image generation; Image-to-Image
Photogrammetry (3D scanning) 3D object reconstruction
Data storage space and transfer optimization Image compression; Video prediction
News feed ranking Learning to rank

E-commerce

Product searching Classi�cation; Spatial transformer; Object detection
Product recommendation and advertising Recommendation
Language and dialogue translation Text-to-Text translation; Speech recognition; Neural ar-

chitecture search
Automated data annotation and caption Text summarization; Image-to-Text
Virtual reality (e.g., virtual �tting) 3D object reconstruction; Image generation; Image-to-

Image
Data storage space and transfer optimization Image compression; Video prediction
Product ranking Learning to rank
Facial authentication and payment Face embedding; 3D face recognition;

4.1.4 Image Generation

Image generation is to generate similar images with the input image.

8



Wasserstein Generative Adversarial Networks (WGAN) Model [34]: This model consists of a
generator and a discriminator, which are 4-layer RELU-MLP with 512 hidden units.

LSUN Dataset [35]: This task uses the LSUN-Bedrooms dataset [35]. The generated samples are
3-channel images of 64x64 pixels in size.

Reference Quality: This task has no widely accepted evaluation metric. We use the estimated
Earth-Mover (EM) distance as loss function in training, which needs to reach 0:5� 0:005.

4.1.5 Text-to-Text Translation

Text-to-Text translation is to translate a sequence of words into another language.
Transformer [36] : Transformer is combined of self-attention and Feed Forward Neural Network.
WMT English-German Dataset [37]: The training dataset is the WMT'14 English-German data,

which has 4.5 million sentence pairs. The inference dataset is newstest2014, which has 2737 sentence
pairs.

Reference Quality: The target accuracy is 55%.

4.1.6 Image-to-Text

Image-to-text is to generate the description of an image automatically.
Neural Image Caption Model [38]: This model consists of a vision convolution neural network

(CNN) followed by a language generating recurrent neural network (RNN).
MSCOCO 2014 Dataset [39]: The dataset has more than 82,000 images with caption annotations,

and the testing set is separated from the training set.
Reference Quality: The model achieves 4.2 perplexity on the MSCOCO 2014 dataset.

4.1.7 Image-to-Image Translation

Image-to-image translation is to learn image mapping of two different domains.
CycleGAN Model [40]: CycleGAN has two generators and two discriminators. Following [40], our

generator adopts the network structure in [41], and the discriminator adopts 70x70 PatchGANs [42].
Cityscapes Dataset [43]: Image-to-image translation task uses the Cityscapes dataset [43], which

contains more than 50 cities street scenes.
Reference Quality: This task has no widely accepted evaluation metric, we adopt per-pixel accuracy

(0:52� 0:005), per-class accuracy (0:17� 0:001), and Class IOU (0:11� 0:001) referring to the Cityscapes
benchmark [43].

4.1.8 Speech Recognition

Speech recognition is to recognize the speech audio and translate it into a text format.
DeepSpeech2 Model [44]: the Deep Speech 2 model is a recurrent neural network (RNN) with one

or more convolutional input layers, followed by multiple recurrent layers and one fully connected layer
before a softmax layer [44].

LibriSpeech Dataset [45]: The dataset contains 1000 hours of speech sampled at 16 kHz [45].
Reference Quality: The word error rate (WER) of the reference implementation of DeepSpeech2

model on LibriSpeech test-cleans data is 5.33%.

4.1.9 Face Embedding

Face embedding is to verify the face by learning an embedding into the Euclidean space.
FaceNet [46]: FaceNet model is based on the GoogleNet style Inception model, which has about 24

million parameters.
VGGFace2 Dataset [47]:This dataset includes 9000+ identities, and 3.3 million+ faces.
Reference Quality: The target quality is an accuracy of 98.97%.
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4.1.10 3D Face Recognition

3D face recognition performs identi�cation of 3D face images.
3D Face Model [48]: The model uses ResNet-50 network as backbone network and adjusts the

�rst convolutional layer and the fully connect layer so that RGB-D images can be fed into the RGB-D
ResNet-50 model.

Intellifusion Dataset: The dataset is a RGB-D dataset, provided by Intellifusion.
Reference Quality: The reference implementation achieves an accuracy of 94.64% on the Intellifusion

dataset.

4.1.11 Recommendation

This task is widely used for advertisement recommendation, community recommendation, and etc.
Neural collaborative �ltering [49] : A probabilistic approach using Gaussian assumptions on the

known data and the factor matrices.
MovieLens Dataset [50]:The MovieLens 100K movie ratings dataset contains 100,000 ratings from

1000 users on 1700 movies.
Reference Quality: The quality metric is HR@10, which means whether the correct item is on the

top-10 list. The target quality is 63.5% HR@10.

4.1.12 Video Prediction

Video prediction is to predict how its actions affect objects in its environment.
Motion-Focused Predictive Model [51]: This model predicts how to transform the last image into

the next image.
Robot Pushing Dataset [51]: This dataset contains 59,000 robot interactions involving pushing

motions.
Reference Quality: This task achieves 72 MSE on the test data.

4.1.13 Image Compression

Image compression aims to reduce the cost for storage or transmission.
Recurrent Neural Network [52]: This model consists of a recurrent neural network (RNN)-based

encoder and decoder, a binarizer, and a neural network for entropy coding.
ImageNet Dataset [29]: The dataset used for this task is the same with that of Image Classi�cation.
Reference Quality: The metric is 0.99 MS-SSIM (Multi-Scale-Structural Similarity Index [53]).

4.1.14 3D Object Reconstruction

3D reconstruction is to capture the shape and appearance of real objects.
Convolutional Encoder-decoder Network [54]: This model combines image encoder, volume

decoder, and perspective transformer.
ShapeNet Dataset [55]: ShapeNetCore contains about 51,300 unique 3D models from 55 common

object categories.
Reference Quality: The metric is the average IU (intersection-over-union) score. The target average

IU is 45.83% on ShapeNetCore.

4.1.15 Text Summarization

Text summarization is the task of generating a headline or a short summary.
Sequence-to-sequence Model [56]: This model consists of the off-the-shelf attentional encoder-

decoder RNN.
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Gigaword Dataset [57]: The dataset contains about 3.8M training examples, and 400K validation
and test examples.

Reference Quality: The model achieves 41 Rouge-L on the Gigaword datase.

4.1.16 Spatial Transformer

Spatial Transformer is to provide spatial transformation capabilities.
Spatial Transformer Network [58] : The model includes a localisation network, a grid generator, a

sampler.
MINST Dataset [59]: The MNIST dataset consists of 60,000 training images and 10,000 test images.
Reference Quality: This task achieves an accuracy of 99%.

4.1.17 Neural architecture search [60]

Neural network search is to automatically design neural networks.
Neural Architecture Search: Neural Architecture Search is to maximize the accuracy of the searched

neural network.
Reinforcement learning [61]: This model �nds ef�cient neural networks by sharing parameters in

child models to �nd a optimal neural architecture.
PTB Dataset [62]: The dataset contains 2,499 stories from a three-year Wall Street Journal collection

of 98,732 stories for syntactic annotation.
Reference Quality: The target quality is 100 perplexity.

Table 3: Component Benchmarks in AIBench.

No. Component Benchmark Algorithm Data Set Target Quality

DC-AI-C1 Image classi�cation ResNet50 [28] ImageNet 74.9% (accuracy)

DC-AI-C2 Image generation WassersteinGAN [34] LSUN N/A

DC-AI-C3 Text-to-Text translation Recurrent neural networks [36] WMT English-German 55% (accuracy)

DC-AI-C4 Image-to-Text Neural Image Caption Model [38] Microsoft COCO 4.2 (perplexity)

DC-AI-C5 Image-to-Image CycleGAN [40] Cityscapes N/A

DC-AI-C6 Speech recognition DeepSpeech2 [44] Librispeech 5.33% (WER)

DC-AI-C7 Face embedding Facenet [46] LFW, VGGFace2 98.97% (accuracy)

DC-AI-C8 3D Face Recognition 3D face models [48] 77,715 samples from 253 face
IDs

94.64% (accuracy)

DC-AI-C9 Object detection Faster R-CNN [30] VOC2007 75% (mAP)

DC-AI-
C10

Recommendation Neural collaborative �ltering [49] MovieLens 63.5% (HR@10)

DC-AI-
C11

Video prediction Motion-Focused predictive models [51] Robot pushing data set 72 (MSE)

DC-AI-
C12

Image compression Recurrent neural network [52] ImageNet 0.99 (MS-SSIM)

DC-AI-
C13

3D object reconstruction Convolutional encoder-decoder net-
work [54]

ShapeNet Data set 45.83% (IU)

DC-AI-
C14

Text summarization Sequence-to-sequence model [56] Gigaword data set 41 (Rouge-L)

DC-AI-
C15

Spatial transformer Spatial transformer networks [58] MNIST 99% (accuracy)

DC-AI-
C16

Learning to rank Ranking distillation [32] Gowalla 14.58% (accuracy)

DC-AI-
C17

Neural architecture search Ef�cient neural architecture search [61] PTB [62] 100 (perplexity)
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4.2 Metrics, Implementations, and Reimplementation Rules

This section brie�y presents the metrics, implementations and reimplementation rules.

4.2.1 Metrics

AIBench focuses on a series of metrics covering accuracy, performance, and energy consumption, which
are major concerns by our industry partners.

The metrics for online inference contains query response latency, tail latency, throughput, inference
accuracy, and inference energy consumption.

The metrics for of�ine training contains the samples processed per second, the wall clock time to train
the speci�c epochs, the wall clock time to train a model achieving a target accuracy [11], and the energy
consumption to train a model achieving a target accuracy [11].

4.2.2 The implementations and Reimplementation Rules

AIBench provide reference implementations and corresponding running scripts, dataset, and monitoring
tools for each component benchmark. We provide two implementations on both TensorFlow [2] and
PyTorch [63] frameworks.

The benchmark reimplementation are allowed to adjust the hyper parameters to suit for the system
under test and maximize the execution performance, e.g., learning rate, batch size. However, the
reimplementation disallows retraining of the model, model pruning, and reducing the input data size.

5 Evaluation

In this section, we compare AIBench against MLPerf from the perspectives of model and micro-
architectural characteristics (Section 5.2), quantify the run-to-run variation and measure their bench-
marking cost (Section 5.3), propose a minimum subset to achieve affordability and representativeness
(Section 5.4), and characterize micro-architectural behaviors from the perspectives of runtime breakdown,
hotspot functions and stall analysis (Section 5.5).

5.1 Experimental Con�guration

We conducted experiments on two type servers equipped with different GPUs: one is TITAN XP, and the
other is TITAN RTX. The other con�gurations of the servers are the same. The experiments for workload
characterization are based on the TITAN XP GPUs, while the experiments running training sessions are
based on TITAN RTX GPUs. The con�gurations of GPUs and other servers are shown in Table 4. The
operating system we use is ubuntu 16.04 with the kernel version of Linux 4.4, and the other software
is CUDA 10, python 3.7, and PyTorch 1.10. In the rest of this section, we only evaluate the reference
PyTorch implementations of AIBench because of the prohibitive training cost explained in Section 5.3.2.

5.2 The Comparison of AIBench against MLPerf

5.2.1 Model Characteristics

In this subsection, we characterize the model characteristics of the AIBench and MLPerf benchmarks
from the perspectives of model complexity, computational cost, and convergent rate.

The characterization approach is similar to that of [64]. The differences have two points: they only
evaluate different AI models of the same image classi�cation task, while we evaluate twenty-two AI tasks
(17 of AIBench and 5 of MLPerf) with different state-of-the models; They report Top-1 accuracy, while
we report the convergent rate–the cost of training a model.
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Table 4: Hardware Con�guration Details.

CPU Con�gurations
CPU Type Intel CPU Core

Intel R Xeon E5-2620 v3 12 cores@2.40G
L1 DCache L1 ICache L2 Cache L3 Cache
12 � 32 KB 12 � 32 KB 12 � 256 KB 15MB

Memory 64GB, DDR3
Ethernet 1Gb

Hyper-Threading Disabled
GPU Con�gurations v1

GPU Type Nvidia Titan XP
Nvidia Cuda Cores 3840 cores

GPU Memory 12GB, GDDR5X
GPU Con�gurations v2

GPU Type Nvidia Titan RTX
Nvidia Cuda Cores 4608 cores

GPU Memory 24GB, GDDR6

We use the total amount of learnable parameters, FLOPs of a single forward computation, and the
number of epochs to achieve a convergent quality (e.g., accuracy, BLEU) to characterize the above
three characteristics, respectively. We use the OpCounter tool [65] to estimate the FLOPs and learnable
parameters for both AIBench and MLPerf bencmarks. Since some operations cannot be counted by the
tool, the reported numbers may be smaller than the actual one. We do not report the numbers of the
reinforcement learning model for both AIBench ( Neural Architecture Search) and MLPerf (Game) shown
in Table 1, because the FLOPs and learnable parameters vary signi�cantly from different epochs.

For each benchmark of AIBench and MLPerf, we train the model to achieve a convergent quality.
Speci�cally, the convergent quality is 73.7% (accuracy) for Image Classi�cation, 55% (accuracy) for Text-
to-Text translation, 4.2 (perplexity–the smaller is the better) for Image-to-Text, 23.5% (WER–the smaller
is the better) for Speech Recognition, 89% (accuracy) for Face Embedding, 94.59% (accuracy) for 3D
Face Recognition, 74% (mAP) for Object Detection, 60% (HR@10) for Recommendation, 72 (MSE–the
smaller is the better) for Video Prediction, 0.99 (MS-SSIM) for Image Compression, 45% (IU) for 3D
Object Reconstruction, 41 (Rouge-L) for Text Summarization, 99% (accuracy) for Spatial Transformer,
13.9% (accuracy) for Learning-to-Rank, and 100 (perplexity) for Neural Architecture Search. For the
MLPerf benchmarks, the convergent quality is 37.7 (BBOX) for Object Detection (heavy), 22.47 (mAP)
for Object Detection (light), 22.21 (BLEU) for Translation (recurrent), 25.25 (BLEU) for Translation
(nonrecurrent). Note that AIBench and MLPerf use the same model and dataset for Image Classi�cation
and Recommendation, so their numbers are consistent in the rest of this paper.

Fig. 2 shows the model characteristics. We �nd that from the perspective of computation cost, the
FLOPs of the AIBench benchmarks range from 0.09 to 157802 M-FLOPs, while that of MLPerf vary
from 0.213248 to 24500 M-FLOPs–a much narrower range. From the perspective of model complexity,
the amount of learnable parameters of AIBench range from 0.03 million to 68.4 million, while MLPerf
only cover a range of 5.2 to 49.53 million. From the perspective of convergent rate, the required epochs
of AIBench range from 6 to 96, while MLPerf only cover a range of 3 to 49. Thus, only using MLPerf
cannot cover the diversities of different AI models.

We �nd that Object Detection and 3D Object Reconstruction have approximate amounts in terms of
both FLOPs and learnable parameters. They have the largest FLOPs among all benchmarks. Learning-
to-Rank has the smallest number of FLOPs. Image-to-Text has the most complex model, while Spatial
Transformer has the least complex model. Text-to-text translation requires the most largest epochs to
converge, while the remaining models converge within 60 epochs.
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Figure 2: The Comparisons of AIBench against MLPerf from the Perspectives of Model Complexity,
Computational Cost, and Convergent Rate.

5.2.2 Micro-architectural Characteristics

GPU architecture contains multiple streaming multiprocessors (SM), each of which has a certain number
of CUDA cores, memory registers, memory caches, warp schedulers and etc. To compare the AIBench
and MLPerf from a perspectives of computation and memory access patterns, We choose �ve micro-
architectural metrics, including achievedoccupancy, ipcef�ciency, gld ef�ciency, gst ef�ciency, and
dramutilization. Achievedoccupancy represents the ratio of the average active warps per active cycle
to the maximum number of warps provided by a multiprocessor [66]. Ipc ef�ciency indicates the ratio
of the executed instructions per cycle to the theoretical number [66]. Gld ef�ciency means the ratio
of the requested global memory load throughput to the required global memory load throughput [66].
Gst ef�ciency means the ratio of the requested global memory store throughput to the required global
memory store throughput [66]. Dram utilization means the utilization level of the device memory relative
to the peak utilization [66].

Fig. 3 presents the computation and memory access patterns of the twenty four AI benchmarks (17 of
AIBench, 7 of MLPerf). We �nd that they have distinct computation and memory patterns not only under
different scenarios, e.g., processing text, image, audio, video, but also under different tasks of the same
scenario, e.g., image classi�cation and image generation.

Performing further analytics on Fig. 2 and Fig. 3, Figure 1 shows with respect to AIBench, MLPerf
has a signi�cantly smaller coverage in terms of AI model complexity, computational cost, convergent rate
(Figure 1(a)), computation and memory access patterns (Figure 1(b)). AIBench outperforms MLPerf in
terms of representativeness and diversity.

5.3 Repeatability and Benchmarking Cost Evaluation

In this subsection, we quantify the run-to-run variation and measure the benchmarking cost of AIBench
against MLPerf.

5.3.1 Run-to-run Variation

Repeatability [67] refers to the variation in repeat measurements (different runs of the same benchmark
implementation under the identical con�gurations) made on the same system under test. A good benchmark
must be repeatable. However, most of the AI benchmarks exhibit run-to-run variation even using the same
benchmark implementation on the same system.
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Figure 3: The Computation and Memory Access Patterns of 24 Benchmarks from MLPerf (7) and AIBench
(17) (1: achievedoccupancy; 2: ipcef�ciency; 3: gld ef�ciency; 4: gst ef�ciency; 5: dramutilization).

For each benchmark, we �x the hyperparameters, i.e., batch size, learning rate, optimizer, weight
decays, and repeat at least four times (maximally 10 times) for each benchmark, to measure the run-to-run
variation. Note that our evaluation uses the random seed and does not �x the initial seed except for speech
recognition. We use the coef�cient of variation–the ratio of the standard deviation to the mean–of the
training epochs to achieve a convergent quality, to represent the run-to-run variation. Table 5 shows the
results. We �nd that the run-to-run variation of different AI benchmarks vary wildly. The run-to-run
variation of 3D face recognition is the largest (38.46%). While object detection, image classi�cation and
learning to rank are the smallest, which are 0%, 1.12% and 1.9%, respectively. The run-to-run variations
of Image-to-Image and Image generation are not reported due to a lack of a widely accepted metric to
determine the termination condition for a run. For speech recognition, even sharing the same initial seed,
the run-to-run variation still reaches to 12.08%.
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