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The Preface to Special Issue of 2021 BenchCouncil International
Symposium on Benchmarking, Measuring and Optimizing

This volume contains the papers presented at Bench 2021: the BenchCouncil International Symposium on Benchmarking,
Measuring and Optimizing, held virtually in November 2021. The Bench conference has three defining characteristics. First, it
provides a high-quality, single-track forum for presenting results and discussing ideas that further the knowledge and understanding
of the benchmark community. Second, it is a multi-disciplinary conference. This conference edition attracted researchers and
practitioners from different communities, including architecture, systems, algorithms, and applications. Third, the program features
both invited and contributed talks. The Bench symposium solicits papers that address pressing problems in benchmarking,
measuring, and optimizing systems.

The call for papers for the Bench 2021 conference attracted a large number of high-quality submissions. At least four
experts reviewed each paper during a rigorous review process, and the program committee selected 11 papers for the Bench
2021 conference. The papers in this volume include revisions requested by program committee members. Bench 2021 had four
keynote lectures. Jack Dongarra, professor of the University of Tennessee, presented “High-Performance Computing: Where We
Are Today And A Look Into The Future”. Dr. Peter Mattson, the Senior engineer of Google, presented “Building what ML
needs”. Dr. Wanling Gao, associate professor of the Chinese Academy of Sciences, presented “AI Scenario, Training, and HPC
AI Benchmarks”. Dr. Vijay Janapa Reddi, associate professor of Harvard University, introduced “AI Tax: Motivating the Need for
End-to-end Performance Analysis of ML Tasks”. There are four Tutorials in Bench 2021, which are “Automated Benchmarking
of cloud-hosted DBMS with the benchANT”, “High Frequency Performance Monitoring via Architectural Event Measurement”,
“Advanced MPI Programming”, and “DataBench Toolbox for Pipeline-based selection of Big Data and AI Benchmarks”. There are
four BenchCouncil Distinguished Doctoral Dissertation Award Finalists. Dr. Romain Jacob from ETH Zurich, Dr. Pei Guo from
the University of Maryland, Baltimore County, Dr. Belen Bermejo from the University of Balearic Islands, and Dr. Kai Shu from
Illinois Institute of Technology.

During the conference, the International Open Benchmark Council (BenchCouncil) sponsored four different types of awards to
recognize significant contributions to the area of benchmarking, measuring, and optimizing. The BenchCouncil Achievement Award
recognizes a senior member who has made long-standing contributions to the field. Jack Dongarra was named the 2021 recipient
of the achievement award. The BenchCouncil Rising Star Award recognizes a young researcher who demonstrates outstanding
research and practice related to the conference’s theme. Dr. Peter Mattson, Dr. Wanling Gao, and Dr. Vijay Janapa Reddi were
named the 2021 recipients of the rising star award. The BenchCouncil Best Paper Award is to recognize a paper presented at our
conference with high potential impact. And this year Prof. Tony Hey generously donated to the BenchCouncil Award committee to
spin off the best student paper award. And this award is to a student as the first author who publishes a paper that has a potential
impact. In 2021, we had three best paper finalists. Junqi Yin, Aristeidis Tsaris, Sajal Dash, Ross Miller, Feiyi Wang, and Arjun
Shankar from Oak Ridge National Laboratory received the Bench 2021 best paper award for their paper “Comparative Evaluation
of Deep Learning Workload for Leadership-class Systems”. Jiaqiang Liu, Jingwei Sun, Zhongtian Xu, and GuangZhong Sun from
the University of Science and Technology of China received the Bench 2021 Tony Hey Best Student Paper award for their paper
“Latency-Aware Automatic CNN Channel Pruning with GPU Runtime Analysis”.

We are very grateful to all the authors for contributing such excellent papers to the Bench 2021 conference. We appreciate
the indispensable support of the Bench 2021 Program Committee and thank its members for the time and effort they invested in
maintaining the high standards of the Bench symposium.
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A B S T R A C T

Currently, there is no consistent benchmarking across multi-disciplines. Even no previous work tries to relate
different categories of benchmarks in multi-disciplines. This article investigates the origin and evolution
of the benchmark term. Five categories of benchmarks are summarized, including measurement standards,
standardized data sets with defined properties, representative workloads, representative data sets, and best
practices, which widely exist in multi-disciplines. I believe there are two pressing challenges in growing this
discipline: establishing consistent benchmarking across multi-disciplines and developing meta-benchmark to
measure the benchmarks themselves. I propose establishing benchmark science and engineering; one of the
primary goals is to set up a standard benchmark hierarchy across multi-disciplines. It is the right time to launch
a multi-disciplinary benchmark, standard, and evaluation journal, TBench, to communicate the state-of-the-art
and state-of-the-practice of benchmark science and engineering.
1. The origin and evolution of the benchmark term

Benchmarking is common practice in all industries, and indeed
in many areas of life [1]. For example, an Olympic sprinter or fund
manager or IT product manager may compare themselves against
a benchmark or a close competitor to evaluate their performance.
Unfortunately, the benchmark term independently evolves in multi-
disciplines and has related but different implications. This section
investigates the origin and evolution of the benchmark concept.

I find that the modern benchmark concept (close to its current
definition) first appeared in measurement science [2] in the form of
bench mark (two words separated by a space). For example, in geodesy,
a bench mark is a mark whose height, relative to datum, has been
determined by leveling—the operation to measure differences in height
between established points relative to a datum [3]. Later, this concept
is extended into multi-disciplines.

In the computer discipline, one of the earliest benchmarking ef-
fort [4] dated back to 1962 in the Auerbach Corporation’s Standard
EDP Reports. Joslin defined this benchmarking effort as ‘‘a routine used
to determine the speed performance of a computer system’’ [4]. The
reports included reporting performance data using typical benchmark
tasks – many basic functions – but based on the vendor’s published data
without stipulating that the benchmark must run on the system under
test. Around 1965, Joslin [5] stated that the most important question
in computer evaluation should be "how long will it take this system
to process my workload (my computer application)?". This exploring
methodology produced the concepts of workload modeling, application
benchmark, synthetic benchmarks, and standard benchmark, which are
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still used nowadays [4]. These concepts seem abstract, not directly
related to the bench mark concept, though having some connections.
The primary reason may be that the computer is a new thing at that
time.

The followings are simple explanations of these concepts. Workload
modeling is selecting a representative sample set of programs from the
entire real workloads [4], which is a critical factor ensuring the bench-
mark quality. An application benchmark is a mix of programs to be
run on several different computer configurations to obtain comparative
performance in terms of handling the specific applications [5]. Because
of the difficulty (cost) of porting real applications across different
systems, in 1969, Bucholz [6] argued a greater degree of abstraction
– a synthetic benchmark to imitate the real application – is necessary
to make comparisons across different systems practical. The rising costs
of synthetic benchmarks motivated the standardization of benchmarks.
In 1976, a group of government and industry personals was formed to
ascertain the possibility of a standard benchmark library [7], which was
the first try in this regard.

As a general term, in the 1987 edition of the Oxford Reference
Dictionary, the benchmark is defined as a surveyor’s mark indicating a
point in a line of levels, a standard or point of reference [3]. The editors
obviously did not consider the benchmark concept that appeared in the
computer discipline, but their benchmark definition is similar to that in
geodesy we referred at the beginning of this section; Zairi et al. [3]
thought this definition is the beginning of today’s use of the word
benchmark in the management discipline.
https://doi.org/10.1016/j.tbench.2021.100012
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Fig. 1. The interpretation of the first category of the benchmark from the perspective of metrology [8,9].
In the management discipline, the Xerox Corporation was the
ioneer of benchmarking [3]: its roots began in 1979, evaluated it-
elf externally through this process which became known as com-
etitive benchmarking. This benchmarking research and practice [3]
ncompassed an in-depth, ongoing study of best competitors, includ-
ng detailed reverse engineering of competitor products, technology
rocesses, what they achieved and how they did it, and a tear-down
nalysis of operating capabilities and features of competing products.
his benchmarking practice is very similar to the computer discipline’s
enchmark-driven performance engineering in terms of the principle.
he latter tries to disclose the root causes of the performance bottle-
ecks of and optimize the computer systems considering the specific
orkloads.

Gradually, benchmarking was extended as a strategic quality tool
o all aspects of the business and progressively integrated into the
anagement process [3]. In this context, Zairi et al. [3] defined it as

he continuous process of measuring products, services, and processes
gainst the industry best practices that lead to superior performance.

. Five categories of benchmarks

This section investigates five categories of benchmarks in multi-
isciplines. My intention is not to provide a consistent or unified
enchmark definition. Instead, I try to reveal the essence of the bench-
arks in five different scenarios. I leave the discussion of consistent

enchmarking in the following two sections.
The first category of the benchmark is a measurement standard. In

he computer discipline, the Linpack benchmark is of this category,
hich is widely used to report the performance of a high-performance

omputer. I provide an interpretation of this category from the per-
pective of metrology. The Joint Committee for Guides in Metrology
JCGM) [8] defines a measurement standard as a realization of the
efinition of a quantity, with stated value and associated measurement
ncertainty, used as a reference. As shown in Fig. 1, a benchmark
ealizes the definition of a quantity, the unit of measurement, the
easurement methodology, and the reference implementation with

tated measurement uncertainty. A quantity is a measurable property of
he object under measurement, like length, energy, etc. Benchmarking
overs two phases: the design and implementation of the benchmark
nd measuring the object’s properties with the benchmark.

The second one is the representative workloads that run on the
ystems under measurement. The application benchmarks or synthetic
enchmarks in the computer discipline, discussed in Section 1, are of
his category. They provide the design input to the system design and
2

implementations. They do not necessarily meet the stringent definition
of measurement standards, but they are also used to evaluate systems.
For example, in the computer discipline, many deep learning workloads
(algorithms) are random with poor repeatability [10,11]. Deep learning
is a kind of artificial intelligence (AI) workload. However, they are
representative workloads that cannot be overlooked in the system
design and implementation.

Generally speaking, the first category of the benchmarks is selected
from the second category according to more strict criteria. Fig. 2
explores how to define the representative workloads in the computer
discipline. There is increasing freedom from a mathematical problem
definition to an algorithm, an intermediate representation, An ISA-
specific representation (ISA is short for instruction set architecture),
and a micro-architecture representation. Section 3 will further discuss
this challenge.

The third is a standardized data set that represents real-world data
science problem [12], with defined properties, some of which have
ground truth. ImageNet [13] (deep learning benchmark) and MIMIC-
III [14] (critical care benchmark) are typical examples. The benchmark
of this category is often used to measure against different algorithms.
The state-of-the-art algorithm implementation plus the data set usually
constitutes the benchmark of the second category.

The fourth is a representative data set, used as a reference. For
example, a financial benchmark is an index (statistical measure), cal-
culated from a representative set of underlying data, is used as a
reference for financial instruments or contracts [15]. Well-known fi-
nancial benchmarks include the London Interbank Offered Rate (Libor)
and the Euro Interbank Offered Rate [15].

The fifth is the industry best practices in different domains. Bench-
marking is the continuous process of searching the industry best prac-
tices that lead to superior performance and measuring products, ser-
vices, and processes against them [3]. The Xerox Corporation pioneered
and enhanced this benchmarking process.

3. The challenges

As I elaborate in Section 2, the five categories of benchmarks have
a closely connected relationship. However, currently, there is no con-
sistent benchmarking across multi-disciplines. Even no previous work
tries to relate those five categories of benchmarks in multi-disciplines.
The metrology science paves a foundation for this direction. However,
they mainly focus on classical quantities like length, time, and power.
Significantly different from those classical quantities, the properties of
the objects in the computer, management, or finance disciplines are
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Fig. 2. In the computer discipline, a representative workload, the second category of the benchmarks, is hierarchically defined. From top to down is a mathematical problem
definition, an algorithm, an intermediate representation, an ISA-specific representation, a micro-architectural representation. The lower level has more state space. State-of-the
practice only analyzes a micro-architectural representation, which is only a subspace or even a point at a high-dimension space [16]. This hierarchy definition can be extended to
other disciplines.
greatly affected by its mathematical problem definition and concrete
implementation, which raises a serious challenge.

Different observation angles may distort the observable properties.
For example, shown in Fig. 2, the quantity value of a computer work-
load is greatly affected by mathematical problem definitions, concrete
algorithms, different ISA and micro-architecture implementations.

I further take the first category of benchmarks as an example
to demonstrate the importance of tackling this challenge. Measuring
‘‘Quantum Supremacy’’ against the classical supercomputer is a funda-
mental issue. Google’s ‘‘Quantum Supremacy’’ declaration in 2019 [17]
stated that the Sycamore superconductive quantum computer (200 s) is
over a billion times faster than the state-of-the-practice Summit system
in 2016 [18] (10,000 years) in the task of measuring and simulating
one million samples. However, in 2021, a group of scientists and
engineers declared, on the Sunway Supercomputer [19], they reduced
the classical simulation sampling time of Google Sycamore to 304 s,
from the previously claimed 10,000 years through both algorithmic and
architecture innovations.

The speed up – the ratio of the quantity values of two different kinds
of systems – definitely will change wildly in the future. Understanding
the benchmark very well under a hierarchy like that defined in Fig. 2
is a priority before correctly interpreting the implication of the speed
up, or else it will mislead the scientific community. The situation may
become much complex in the other disciplines, as a clear hierarchy
definition is also a luxury. Establishing consistent benchmarking across
multi-disciplines is very challenging.

The other challenge is how to measure the benchmarks themselves.
Previous work has a preliminary discussion on this issue. For example,
in the computer discipline, the characteristics of a (good) benchmark,
i.e., representative [4,20], relevance, reproducible, fair, verifiable, re-
peatable, and economical are discussed in [21,22]. However, most of
those properties are subjective. We need a meta-benchmark to evaluate
those benchmarks.

I take the representative characteristic as an example; the current
theory and practice cannot convince the community that this topic is se-
riously treated. From the perspective of mathematics, it is necessary to
establish a mathematical foundation and consider the meaning of rep-
resentative in a high dimension space. Unfortunately, in practice, the
benchmarking methodology seems ad-hoc. For example, it is reported
that there are 6.8 million apps in the leading app stores [23]. How
does the community infer the mobile phone market’s representative

workloads (and benchmarks)?

3

4. The proposal

I believe that it is necessary to establish benchmark science and
engineering; one of the goals is to set up standard benchmark hierarchy
across multi-disciplines. There are two reasons. First, there is a natural
hierarchy in different categories of benchmarks. As we discussed in
Section 2, the first benchmark category is selected from the second cat-
egory according to more strict criteria. Second, through this hierarchy,
we can tackle the challenge of the rising cost of benchmarking. For
example, we can put more resources on the primary benchmarks while
relating the other benchmarks to the primary benchmarks through
traceability.

Fig. 3 is my proposal. The most important is to keep benchmarking
consistently, and the following measures will help achieve the target:
(1) the unified definition of base quantity and units of measurement;
(2) the realization of quantities and units of measurement with different
accuracy (and hence cost) levels; (3) the traceability and calibration
across the standard benchmark hierarchy. Traceability [8] is a prop-
erty of a measurement result whereby the result can be related to a
reference through a documented unbroken chain of calibrations, each
contributing to the measurement uncertainty.

At the first tier, the international community needs to define the
fundamental benchmarking principle and realize the base quantity,
unit of measurement, primary measurement standard, which is the
reference of all other benchmarks. The second tier is the first and
second categories of the benchmarks. They will reuse the definitions
and realizations of base quantity and unit of measurement from the
first tier. Meanwhile, the definition and realization of derived quantity
and unit of measurement are necessary.

The third tier is the second and fourth categories of the benchmarks.
The community often needs to revisit and ponder the mathematical
or data problem definitions to provide state-of-the-art and state-of-the-
practice implementations. The fourth tier is the fifth category of the
benchmarks. As it searches for the best practice, keeping an eye on the
advancement of all hierarchies is necessary.

5. TBench: the venue for benchmark science and engineering

I think it is the right time to launch a new journal, BenchCouncil
Transactions on Benchmarks, Standards, and Evaluations (in short,
TBench). It will provide a venue to communicate and tackle the chal-
lenges mentioned above as there is no multidisciplinary and interdis-
ciplinary journal on this area. I only noticed in the management disci-
pline a closely related journal named Benchmarking: An International
Journal.
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Fig. 3. The standard benchmark hierarchy proposal.
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The vital importance of a new journal is to guarantee that high-
uality submissions receive high-quality reviews promptly. According
o the past experiences in the other reputable journals and conferences
n the computer discipline, which is my primary background, I have
ome considerations.

In the computer discipline, a journal paper often cannot receive
onsistent and timely reviews compared with other top-tier confer-
nces. For example, different associate editors invite reviewers from
ncertain sources to handle papers with large deviations. Instead, a
rogram committee meeting provides comparatively consistent reviews
t a top-tier conference.

Another issue is the significant delay. Overall, the average
urnaround of handling a paper is from three months to a year. Some
ournals reject most submissions at the disposal of a staff who does not
nderstand its content to speed up the process and reduce the external
eview load. That will harm our community for two reasons. First, the
alue of peer review is to provide constructive feedback, which is the
tone of our scientific community. Second, it will result in the abuse of
ditor rights. The last issue is most journals adopt a single-blind review,
hich prevents fair review.

To resolve the above issues, I enact the following plans. (1) Consis-
ent and reliable reviews. In addition to about thirty founding editors or
ditors, similar to the program committee member of a conference, we
ill invite approximately 30 associate editors (Junior researchers with
h.D. degrees). The associate editor is similar to the external review
ommittee member of a conference. A team of founding editors, editors,
nd associate editors will provide the basis for consistent and reliable
eviews.

(2) Fast-track peer review. The editor-in-chief (EIC) will read each
aper’s abstract and introduction. Suppose the team thinks this is a
igh-quality paper with high impact potential. In that case, they will
nvite three editors to have a timely review, including possible remote
iscussion and make a final decision within three weeks. The team will
sk one editor and two associate editors to review the other papers.
verall, the team will finish one round of decisions within one month.

(3) A double-blind review process. One member of the EIC team
ithout conflict of interest (COI) is responsible for checking COIs, while

he other EIC and editor, who do not know the authors’ identities, make
final decision. Each published article is reviewed by a minimum of

hree independent reviewers using a double-blind peer-review process.
he identities of the reviewers are not known to the authors, and the
eviewers also do not know the identities of the authors.
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A B S T R A C T

Current trends in HPC, such as the push to exascale, convergence with Big Data, and growing complexity of
HPC applications, have created gaps that traditional performance tools do not cover. One example is Holistic
HPC Workflows — HPC workflows comprising multiple codes, paradigms, or platforms that are not developed
using a workflow management system. To diagnose the performance of these applications, we define a new
metric called Workflow Critical Path (WCP), a data-oriented metric for Holistic HPC Workflows. WCP constructs
graphs that span across the workflow codes and platforms, using data states as vertices and data mutations as
edges. Using cloud-based technologies, we implement a prototype called Crux, a distributed analysis tool for
calculating and visualizing WCP. Our experiments with a workflow simulator on Amazon Web Services show
Crux is scalable and capable of correctly calculating WCP for common Holistic HPC workflow patterns. We
explore the use of WCP and discuss how Crux could be used in a production HPC environment.
1. Introduction

The term workflow is used throughout scientific computing with
different contexts and meanings. For example, some scientific appli-
cations are developed with a workflow management system such as
Pegasus [1] or Kepler [2], that schedules, runs, adapts, and summarizes
a large number of lightweight tasks. Yet many computational sci-
ence applications are implemented outside of any structured workflow
management system. They comprise multiple steps, where each is a
distinct library, script, or application with a specific functionality and
design. For example, a science code might call an existing modeling
code that is treated as a black box. These Holistic HPC Workflows are
the focus of this work. Holistic HPC Workflows are an increasingly
important paradigm with the potential for performance bottlenecks
caused by movement and copying of large datasets, and inefficient
interfaces between the separate components and applications. Today
these workflows often include analysis and visualization of very large
data sets, using methods developed for Big Data such as machine
learning, analytics, and visualization. This growing complexity requires
new ways of characterizing performance at the workflow level [3].
Workflow management systems (WMS) like Pegasus offer researchers
a way to organize, execute, and analyze their scientific jobs. However,
the performance analysis is tightly coupled to the WMS, thus these
systems do not solve the problem of holistic performance analysis for
workflows designed outside of such a system.

Analyzing the performance of Holistic HPC workflows presents a
challenge for many existing performance tools, that are able to ac-
curately and efficiently diagnose the performance of each individual

∗ Corresponding author.
E-mail addresses: ddn2@pdx.edu (D.D. Nguyen), karavan@pdx.edu (K.L. Karavanic).

component, but not to diagnose problems that span across them [4,5].
For instance, tools such as HPCToolkit [6] and TAU [7] use profiling
and tracing techniques to detect performance bottlenecks in parallel
applications. Some tools such as Darshan [8] and IPM [9] use I/O
tracing to characterize I/O behavior of parallel applications. These
tools were designed to analyze the performance of a single parallel
code using the common approaches of message passing interface (MPI),
multithreading (OpenMP), acceleration (CUDA), or a hybrid approach.
However, diagnosing Holistic HPC Workflows requires integrated anal-
ysis across the separate components. A recent U.S. Department of
Energy report on the future of scientific workflows called out this need
for research ‘‘extending single-application performance validation tools
to workflows of applications’’ [10].

One motivating example for our work is the Groningen Machine
for Chemical Simulations (GROMACS) [11]. GROMACS is a scientific
framework for simulating molecular dynamics of biochemical modules
such as proteins, lipids, and nucleic acids. It models these molecu-
lar dynamics by solving Newtonian equations of motion for systems
with hundreds to millions of particles. A common workflow pattern
in GROMACS involves setting up a simulation environment, adding
a solvent medium, generating an initial molecular model, calculating
energy minimization, calculating initial equilibrium, and calculating
actual molecular dynamics [12]. Each step can correspond to a single
application using a shared file system, managed by a job scheduler like
SLURM. Analyzing the workflow performance of GROMACS proved dif-
ficult; attempts included using a top-down approach by deconstructing
https://doi.org/10.1016/j.tbench.2021.100001
Received 6 August 2021; Received in revised form 11 October 2021; Accepted 20 O
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Fig. 1. Application layer of DroughtHPC workflow.

workflow into I/O, communication, and computation components and
subsequently instrumenting the workflow applications to record these
metrics [13].

A second motivating example is DroughtHPC [14]. This application,
developed at Portland State University, predicts drought for a target
geographical area. It utilizes the Variable Infiltration Capacity model
(VIC) [15] to simulate meteorological samples over a given time period.
A python script is used to perform data assimilation and call VIC in
a loop (see Fig. 1). Every call to VIC inputs and outputs 25 files.
The number of calls equals the number of samples needed multiplied
by the number of days needed. Locating workflow bottlenecks for
DroughtHPC, particularly due to dataflow and the control flow of the
entire workflow, was challenging [16]. To investigate performance
bottlenecks, researchers manually ran a variety of measurement tools
to focus attention to the key bottlenecks. The overhead of calls to the
VIC hydrologic model from within a python loop and significant file
creation, reads, and writes, represented main performance bottlenecks.
The DroughtHPC study shows a need for one performance tool that
can detect common dataflow patterns and diagnose runtime bottlenecks
across different phases in a scientific workflow.

Holistic HPC Workflow Diagnosis is also an important aspect of
the procurement process for major new systems at large science labs.
Describing the workload accurately is essential to matching the ca-
pabilities of the future systems to the needs of the lab. Fig. 2 shows
an example of the phases associated with common large-scale scien-
tific simulation workflows, with data retention timescales divided into
temporary, campaign, and forever. The temporary timescale describes
application data that is typically discarded at completion of a phase
or run. The campaign timescale includes data used throughout the
execution or set of executions of the entire scientific workflow. The
archive timescale describes data stored for longer archival purposes.
This type of diagram is modeled after those developed by The Alliance
for Application Performance at Extreme Scale (APEX) [17].

In this paper we present our initial work to address this need.
Workflow Critical Path (WCP) is a data-oriented critical path metric
for Holistic HPC Workflows. Building on earlier work on Critical Path
Analysis for individual MPI applications [18–20] we have developed a
technique for determining the critical path across an entire Holistic HPC
Workflow. This has the potential to help researchers better understand
data movement patterns and potential bottlenecks occurring across the
complex memory hierarchy and storage systems in a large-scale HPC
cluster. Our approach is designed to focus developers’ optimization
efforts, avoiding the need to separately analyze each participating
application and manually determine where to focus. It also allows the
detection of performance bottlenecks related to moving from one stage
of the workflow to the next, for example, copying and transforming
simulation output data for analysis with a visualization tool.

The key contributions of this paper are:

1. We define Workflow Critical Path (WCP), a novel perfor-
mance metric for Holistic HPC Workflows. WCP describes the
critical path for an entire HPC workflow by defining a program
activity graph (PAG) where vertices represent data state and
edges represent data mutations.

2. We present Crux, a distributed, runtime tool that calculates

WCP. Crux follows a service-oriented architecture and deploys

7

Fig. 2. APEX style workflow diagram. The brown boxes along the bottom show the
major steps in the workflow, and the blue rectangles show the levels of memory and
storage for the data at each step.

on a target number of nodes in an HPC cluster. Crux provides
an API for building workflow PAGs and computing WCP. It also
provides a user interface (UI) for visualizing WCP data. Our
Crux prototype can be deployed in the Cloud using Amazon Web
Services or locally using Docker.

3. We developed a configurable HPC workflow simulator
framework, and used it for a detailed capability, scaling
and performance study. The configurable workflow simulators
allow users to simulate representative workloads.

This represents a first step towards Holistic HPC Workflow perfor-
mance diagnosis [21].

2. Related work

There are a number of workflow management systems in use to-
day, for example Kepler and Pegasus. Such systems generally include
performance monitoring infrastructure, however the applications must
be specifically implemented for the specific workflow management
system. Crux on the other hand targets Holistic HPC Workflows, that
comprise separately developed components to solve a single problem.

Annotation-based (also referred to as application-instrumented) dis-
tributed monitoring schemes developed for commercial server envi-
ronments rely on applications to explicitly tag every record with a
global identifier that links these message records back to the originating
request. These systems tend to be very accurate but potentially slow, as
all system components must be instrumented. One example is Dapper,
developed by Google [22]. It has been used for a large, production
distributed systems tracing framework. In a Dapper trace tree, the tree
nodes are basic units of work which are referred to as spans. The edges
indicate a causal relationship between a span and its parent span. A
span is a simple log of timestamped records which encode the span’s
start and end time, any RPC timing data, and zero or more application-
specific annotations. A span can contain information from multiple
hosts and in fact every RPC span contains annotations from both the
client and server processes. Crux follows an annotation-based approach,
however it greatly reduces the overhead by only creating nodes for data
operations.

Facebook’s end-to-end performance tracing infrastructure, Canopy,
is another example of a large-scale, runtime performance tool that can
record and process over 1 billion traces per day [23]. Canopy has
several features similar to WCP. Canopy models trace data as DAGs with
nodes representing events in time, with events defined more broadly

and at a lower level than WCP. Canopy authors noted how infeasible



D.D. Nguyen and K.L. Karavanic BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100001

o
a
p
t
a

D
g
m
o
f
T
V
p
i
t
i

T
w
w

4

a

it was to expose traces at that particular level of granularity since
end-users, i.e. Facebook engineering teams, would not understand the
mappings to higher-level concepts. To address this, Canopy constructs
a modeled trace of events, which are higher-level representations of
lower-level performance data. WCP focuses on the end-to-end move-
ment and transformation of data across an entire HPC workflow instead
of performance within any particular workflow component. For exam-
ple, WCP is not intended to diagnose one MPI application. Like WCP,
Canopy also derives the critical path of its trace data and visualizes the
critical path to the end user.

Research into CPA for parallel programs started in the 1980s with
work such as Yang & Miller [20]. Their approach involved construct-
ing a directed, weighted graph, called program activity graph (PAG),
whose vertices represent events (e.g. send/receive and process cre-
ation/termination events) in a program and whose edges represent the
duration of the event. They were able to return the longest path on
a scale of tens of thousands of nodes. Critical path analysis evolved
in the 1990s with techniques such as using piggybacking critical path
data on MPI messages to compute the critical path profile during
runtime [19] Hollingsworth demonstrated that using this technique,
most programs can tolerate a 5%–10% level instrumentation overhead
without suffering significant change of the critical path length. Critical
path for individual MPI applications has continued to be improved
and scaled up with increasing numbers of MPI ranks [24–27]. Overall,
critical path analysis is useful in identifying the cause of a program’s
total execution time, diagnosing bottlenecks to application scalability,
and predicting overall performance [24].

Our work targets holistic HPC workflows, thus requiring a novel
approach to monitor separate components and merge their graphs. In
preliminary work towards this same goal, Herold & Williams introduced
a top-down performance analysis approach to monitor workflow appli-
cations [18]. They implemented a tracing infrastructure that interfaces
with the resource manager to provide summarized performance metrics
for workflow, jobs, and job steps. In contrast, we focus on defining a
specific metric, WCP, and a runtime approach to its calculation and
visualization.

3. Workflow critical path (WCP)

Workflow Critical Path is calculated by constructing a program
activity graph (PAG) spanning all components of a holistic workflow,
representing data state as vertices and data mutations as edges. The
result is a PAG that can be analyzed for data state patterns through an
entire HPC workflow (Fig. 3).

A data state comprises:

• Size — the size of the data, for example 10 MB;
• Time — the creation timestamp;
• Origin — the original application that produced the state;
• Location is the current storage location, for example ‘‘node1

disk1’’ ; and
• Label - a meaningful descriptor for the data state (e.g. file.csv,

byte_stream).

An edge represents a data mutation, an operation that changes a data
state. An edge comprises:

• cost — the elapsed time between two connected data states; and
• mutation — the operation performed on a data state resulting in

a state change.

The resulting graph allows WCP to describe a data set evolving
over time. This focus on data generalizes time: unlike profilers, the
‘‘cost’’ captured in each edge includes all computation and I/O activity
between each two data states. Reducing I/O activity cost thus poten-
tially changes or improves the critical path. Reducing computation
time also potentially changes or improves the critical path, just as in

computation-oriented approaches. f

8

Fig. 3. Trivial example of a data state undergoing different mutations. Vertex A
represents a 10.0MB file called file.csv on a disk belonging to Node1. Vertex A
undergoes a SPLIT mutation that divides file.csv into file1.csv and file2.csv. The result
is two new data states, B and C. Vertices B and C undergo a TRANSFER mutation that
transfers file1.csv and file2.csv from disk on Node 1 to memory on nodes 2 and 3
respectively.

3.1. Critical path algorithm

The critical path represents the longest path through the graph
f data state mutations based on execution time. Thus, critical path
lgorithms are typically shortest path algorithms modified to find the
ath with the longest execution time [28]. A well-known algorithm
hat solves the single source shortest path (SSSP) problem is Dijkstra’s
lgorithm which has a worst-case performance of O(|E|+|V| log |V|)

where |V| is the number of vertices and |E| is the number of edges.
elta-stepping [29] is a distributed variant that divides Dijkstra’s al-
orithm into phases that can be executed in parallel on distributed
emory architectures for an average-case time of 𝑂(log3𝑛∕log log 𝑛). For

ur WCP prototype we use a version of Delta-stepping implemented
or shared memory architectures described by Kranjčević et al. [30].
he input of the Δ-stepping algorithm is a graph given by its vertices
, edges E, and the cost function c, a source node s, and an optional
arameter 𝛥 > 0 used to divide all the outgoing edges of each vertex
nto two categories, called light and heavy edges, based on whether
he cost of that edge is smaller or larger than Δ. The Kranjčević et al.
mplementation of Delta-stepping performs 𝑂(|𝑉 |

1+ 1
𝑑 ) operations total

for graphs representing d-dimensional square lattices. Their testing
showed an average parallel efficiency of at least 50% over Dijkstra. The
pseudocode for this algorithm is shown in Fig. 4.

Traditional PAGs where nodes represent computations and edges
represent computational activities typically store the duration of com-
putational activities as the edge weight and employ a longest path
algorithm to return the critical path [28]. Since WCP represents data
state as vertices and data mutations as edges, we use the elapsed time
between data states as the edge weight.

We store a weight property, called cost, for edge E such that the cost
equals the inverse of elapsed time, i.e. difference between timestamped
values of vertex A and vertex B.

𝑐𝑜𝑠𝑡𝐸 = 1
𝑡𝑖𝑚𝑒𝐵 − 𝑡𝑖𝑚𝑒𝐴

he inverse elapsed time means that edges between data state vertices
ith large time differences will receive a small cost value and vertices
ith small time differences will receive a large cost value.

. The crux prototype

To enable further study of WCP, we implemented a prototype, Crux,
long with the tooling needed to build and deploy. Crux comprises the
ollowing modules:
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Fig. 4. Pseudocode for the Delta-Stepping Algorithm.

Crux API: An HTTP, application programming interface (API) that ex-
poses representational state transfer (REST) endpoints to work-
flow HPC applications. The Crux API server implements routines
to build workflow PAGs; interfaces with the Crux Database;
performs data integrity checks; and manages Crux’s performance
metadata;

Crux Database: A database that stores a workflow PAG and executes
Crux’s critical path algorithm for finding the WCP;

Crux UI: A user interface (UI) to visualize workflow PAGs and WCP.

In the remainder of this section we describe each of these modules,
Crux deployment, and examples of Crux.

4.1. Crux API

The Crux API is an HTTP API that follows a representational state
transfer (REST) architecture, chosen for benefits such as scalability
and portability. The Crux API must follow several constraints. First, it
must define stateful objects as API resources for clients to access. The
API resources should map to Crux’s data state schema. For example,
a client should be allowed to query a specific data state vertex in the
database by sending an HTTP GET request to an API. Second, the Crux
API must be a manager of the Crux database. It must implement logic
that tells the database how to perform simple CRUD actions such as
creating a vertex or updating an edge, or more complicated actions
like submitting queries needed to calculate the critical path from two
data state vertices in the PAG. Third, it must enforce the Crux data
state schema so that clients cannot send malformed requests. Fourth,
the API must provide support to the Crux UI for any backend requests
and must provide common application features such as user login and
access token management (See Fig. 5 and Table 1).

We identified the following properties as most important when
comparing different backend tools and languages for the Crux API pro-
totype: rapid development, high performance and asynchrony. Thus we
chose to implement the Crux API using Python’s Asynchronous Server
Gateway Interface (ASGI), a core library used by a popular Python
9

Fig. 5. Crux API interaction with HPC clients. (1) HPC applications (green) make API
calls to Crux (blue) through HTTP requests to the API server. (2) The API server
communicates to the graph database using a compatible protocol. (3) The UI is a
standalone application making HTTP requests to the API server for CRUD (create, read,
update, and delete) actions on the graph database.

backend framework, Django. We chose FastAPI [31], a framework built
around Starlette, which is a lightweight ASGI framework. FastAPI is a
fast Python framework that integrates with standards for OpenAPI and
the JSON schema.

REST-based web services are typically organized into resources,
logical objects we want to expose to the user. The Crux API includes two
resources: states and mutations. A resource is identified by a Uniform
Resource Identifier (URI). Clients can access that resource by sending
an HTTP request method to that URI. RESTful web APIs typically de-
ploy URIs following the pattern scheme://host:port/version/
resource. Parameters can also be used in URIs. For example, an
API might have a path parameter /users/{ID} which lets the client
specify a certain user with a specific ID. Parameters can also exist in the
form of query parameters which lets a client sort or filter on a particu-
lar resource. For example, /states?location=disk01 returns all
data states located on disk01. For Crux, we use a combination of path
and query parameters for clients to access resources.

Our Crux prototype includes six types of data mutations, based on
common data operations observed in scientific applications:

TRANSFER — Transfer of data between one physical location to
another (e.g. staging in data from storage to compute node)

CONVERT — Conversion of data format or schema (e.g. JSON to
CSV)

APPEND — Appending data to existing data (e.g. adding timestamps
to data points in a file)

SPLIT — Splitting of data into multiple locations (e.g. mpi_scatter())
MERGE — Merging data from different sources (e.g. mpi_gather())
DELETE — Permanent deletion of data

4.2. Crux database

The Crux Database is the backend storage for the Crux API. The
database must support concurrent control to manage write operations
from multiple API instances, and scaling to accommodate collected
PAG data, representing vertices, i.e. data state, and edges, i.e. data
mutations, of an entire HPC workflow. For an example workflow of 5
applications, each generating 100 data states and performing 100 data
mutations, Crux’s database must hold 50,000 entries.

For the Crux prototype, we wanted a solution that was well doc-
umented, showed strong concurrency use cases, and came with graph
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Table 1
The Crux API.

HTTP Method Path State Info Description

GET /states Returns a list of data states

GET /states/{ID} Returns a data state with matching ID

POST /states Creates a new data state

GET /mutations Returns a list of data mutations

POST /mutations/transfer start state, end state Creates a TRANSFER data mutation between a start data state
vertex and an end data state vertex.

POST /mutations/convert start state, end state Creates a CONVERT data mutation between a start data state vertex
and an end data state vertex.

POST /mutations/split start state, end states Creates a SPLIT data mutation between a start data state vertex and
ending at all end data state vertices

POST /mutations/merge start states, end states Creates a MERGE data mutation between all start data state vertices
and ending at an end data state vertex.

POST /mutations/append start state, end state Creates an APPEND data mutation between a start data state vertex
and an end data state vertex

POST /mutations/delete start state, end state Creates a DELETE data mutation between a start data state vertex
and an end data state vertex

POST /wcp start state: id, end state:id Returns a list of data state vertices representing the workflow
critical path between a start data state vertex and an end data state
vertex
algorithm support optimized for that database. To this end, we chose
a graph database, Neo4j [32], with a large ecosystem of tools and
support. Neo4j uses a query language called Cypher and uses a con-
vention of referring to vertices as nodes and edges as relationships.
Cypher can be used to describe patterns of nodes and relationships
and filter those patterns based on labels and properties. For example,
the following Cypher query returns all data state nodes with matching
property values:

To integrate Neo4j into Crux, we use a containerized version. We
developed a custom Python library to express Crux data state, and
data mutation schemas as proper Cypher queries to create nodes and
relationships. We use a Python Neo4j client to execute write transac-
tions between Crux API server and Neo4j. We calculate WCP using
Neo4j’s algo.shortestPath.deltaStepping() routine which
implements delta-stepping for shared memory architectures described
by Kranjčević et al. The Cypher query:

4.3. Crux UI

The Crux UI is a user interface to visualize critical path data in
the Crux Database. This includes visualizing program activity graphs,
critical paths, and various metadata like workflow runtime. In addition,
the Crux UI provides features such as user authentication and profiles.
The Crux UI runs as a standalone application and communicates to the
Crux database via the API server. For users to access the Crux UI, the
UI application must be properly exposed so authenticated end users can
reach it from their location. For example, if end users are outside of
the HPC cluster environment, the Crux UI can sit behind a public load
balancer which routes public traffic to the UI instance.
10
We implemented the Crux UI for our prototype with the Neo4j
Browser. The Neo4j Browser is a general-purpose UI that lets users
query, visualize, administrate and monitor a Neo4j database. With this
simpler approach, users can view a workflow PAG being constructed
during runtime and submit Cypher queries against the graph database.

To visualize WCP in the Neo4j browser, we use the algo.
shortestPath.stream() routine in the following Cypher query:

We needed to make one adjustment to the default behavior to
ensure correctness for MERGE data mutations. A MERGE data mutation
signifies the combining of two or more data states, such as combining of
data from files to create a new file. When this occurs in Crux, a new data
state vertex gets created and edges from each of the pre-merge data
state vertices get added. At this point, each edge receives an elapsed
time calculated from the parent vertex’s timestamp and the timestamp
of the new data state vertex. However, the critical path should be the
path that includes the pre-merged date state vertex or vertices with the
smallest elapsed time to the new data state vertex For Neo4j’s shortest
path algorithm to correctly return this path, we assign a large integer
value as the cost for the other non-critical paths (see Fig. 6).

We were able to accomplish most needed functionality for Crux
with Neo4j, however, the browser falls short of our particular needs.
A production version of Crux would require a different approach for
the Crux UI.

Fig. 9 shows a diagram of Crux installed in an HPC cluster. A basic
installation of Crux requires the following:

• Minimum of 3 nodes located in the HPC cluster. These allocated
nodes shall be on the same network as other compute nodes and
accessible via HTTP.

• Crux UI installed on 1 node behind a load balancer or reverse
proxy. This allows end users outside the HPC cluster network to
reach Crux. The UI shall target HTTP requests to the Crux API
server via another load balancer.

• At least one instance of the Crux API server installed on at least
1 node. Depending on workflow size, it may be appropriate to
install multiple instances over multiple nodes. We expect pri-
vate load balancer(s) to distribute API calls from client HPC
applications efficiently to an API instance.
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Fig. 6. Handling MERGE data mutations to use with Neo4j’s shortest path algorithm. Top image shows a PAG with timestamped values for data state vertices A, B, C, D, and
E along with data mutation edges with elapsed time (ET) and cost (inverse ET) shown. The intention is to merge vertex D and E. Vertex D took 6s to create from A whereas E
took only 2s to create. Vertex F represents the new data state vertex from merging E and D. Bottom image shows Vertex F created at t=1:08 resulting in an elapsed time of 2s
between D and F and 6s between E and F. Since the critical path must be ABCDF, we assign edge EF a high integer value in order for Neo4j’s shortest path algorithm to return
ABCDF as the critical path between A and F.
• Crux database installed on 1 node.

The Crux API is designed as a stateless server. It does not track or
store data from clients. Clients of Crux must make appropriate API calls
to Crux. This means that client HPC applications must support the same
protocol (e.g. HTTP) to communicate with Crux. Furthermore, clients
must know how to create data state information defined by Crux’s
schema. The following pseudocode shows an application loads in a data
file input.txt. In order to model this in Crux, a total of 3 Crux API
calls are needed.

4.4. Example

To illustrate WCP and Crux in practice, we instrumented two appli-
cations written in Python and C that perform similar I/O operations.
Both programs stage in data, perform computation on the data, and
write the results out to a new file. We inserted a total of 6 Crux API calls
in each program. In the Python application, we included our custom
Python library called Crux to access utility functions that help create
and manage Crux data states. In C we also include utility functions that
wrap around the libcurl library to help execute HTTP requests (see
Figs. 7–9).

5. Crux workflow simulator

In order to effectively test WCP, we developed a workflow simu-
lator for Crux, with a system of distributed applications to simulate
representative scientific workflows. The simulator system serves as a
lightweight, local testbed to examine Crux’s performance (see Fig. 10).

We designed five representative workflows, each of which exhibits a
characteristic element or pattern we have observed in HPC workflows,
motivated in particular by the APEX report and DroughtHPC. The 5
workflows are:

1. Generic. These jobs include staging in data, preprocessing data,
MPI, postprocessing data, and visualizing data. We consider
this the simplest of workflows in that there is only one data
source and the critical path will depend on the MPI rank that
takes the longest. Simulators used: ’Stagein’, ’Preprocess’, ’MPI’,
‘Postprocess’, and ‘Viz’. TOTAL_MPI_RANKS = 4 (see Fig. 11).
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Fig. 7. Crux API calls for capturing a load from input.txt.

2. Data Splits. MPI-based workflow with data splitting across a
number of physical nodes. These jobs include staging in data,
preprocessing data, MPI, postprocessing data, and visualizing
data. Simulators used: ‘Stagein’, ‘Preprocess’, ‘MPI’, ‘Postpro-
cess’, and ‘Viz’.

3. Checkpoint. A workflow that includes more than one run of
a parallel codebase with a checkpoint file created in between
runs. The time duration to transfer the file is configurable.
We simulate checkpoint files being written to storage between
runs of parallel tasks representing the scientific simulation. Sim-
ulators: ‘Stagein’, ‘Preprocess’, ‘MPI’, ‘Checkpointout’, ‘Check-
pointin’, ‘MPI2’, ‘Postprocess2’, ‘Viz’.

4. Multiple Sources. Simulates a workflow that involves loading
more than one source of data. The loading occurs between work-
flow jobs. Simulators: ‘Stagein’, ‘Preprocess’, ‘MPI’, ‘Postprocess’,
‘Load’, ‘MPI2’, ‘Postprocess’, ‘Viz’.

5. Create Delete. Simulates a workflow that involves creating tem-
porary files and deleting them between runs of a scientific
simulation. Simulators: ‘Stagein’, ‘Preprocess’, ‘MPI’, ‘Filecreate’,

‘Postprocess’, ‘MPI2’, ‘Postprocess’, ‘Viz’.
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Fig. 8. Example of a simple C code with the inserted Crux API calls shown in boldface.

To make the simulators extensible, we create a common configura-
tion file from which each simulator loads. This file parameterizes values
such as maximum wait time between jobs or input dataset size. Each
simulator starts an HTTP server and implements run_simulation()which
takes a list of previous data states and returns a list of new states once
all simulated jobs have completed. The pseudocode below highlights
the basic logic in each simulator (we use the terms ‘‘nodes’’ and
‘‘relationships’’ to refer to vertices and edges respectively in order to
follow Neo4j’s naming convention).
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Fig. 9. Deployment of Crux in an HPC cluster. Crux components (blue) are deployed
on 3 dedicated nodes. Two load balancers (yellow) are used to route traffic: a public
load balancer which securely handles HTTPS requests from a user outside the HPC
cluster network, and a private load balancer which routes traffic from compute nodes
to Crux API server instance (in this case 3 running instances). The public load balancer
can also be a reverse proxy. Storage nodes (orange) are displayed for reference.

In order to orchestrate simulator applications at runtime, we design
a controller application called simulator manager. Simulator manager
knows when to schedule each simulator’s main routine. It also facil-
itates the passing of data between applications and performs health
checks on each before starting. Simulator applications therefore only
need to communicate with the simulator manager and not each other.
The simulator manager’s main routine receives an ordered list of URLs
to each simulator. It initiates a null data state and enters a loop to call
the first simulator with the null data state. The return value is a new
data state which gets assigned to the previous state variable. The loop
is then continued with the second simulator being called and so on. The
pseudocode below outlines the basic algorithm.

We use Docker to package Crux components as container images.
Containers are isolated environments by OS-level virtualization. A con-
tainer shares a host’s kernel with other containers, but each container
will only the see contents assigned to it. Docker is a set of tools for
building and deploying containers. We choose to implement Crux with
Docker for a variety of reasons. First, using containers for development
offers benefits such as isolation, reproducibility, portability, and ver-
sion control. Second, container images are lightweight compared to
most virtual machine images. This is important when deploying Crux
with workflow simulators since all Crux components and simulators
run as individual containers (the largest being the API container at
∼900MB and the smallest being a simulator container at ∼115MB).
Third, containers make it easy to deploy to cloud environments, which
we leverage for testing purposes. (See Fig. 10).

Workflow Simulator components are implemented as standalone
applications:
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Fig. 10. Example of local deployment of Crux with simulators using Docker. Crux
components and workflow simulators (blue) running locally as Docker containers.
Network interfaces (green) shown to illustrate how containers run on separate virtual
network than the host.

• The Simulator Manager is a controller and communicates with
all simulator applications via HTTP. It knows when to launch a
certain simulator app and send data between apps when needed.

• Simulator apps are configured to represent common HPC work-
flow jobs such as pre-processing data, running an MPI job, or
performing post analysis. Each simulator app makes API calls to
the Crux API server.

• The Crux API server, implemented in Python, sends Cypher
queries via the Bolt protocol at bolt://graphdatabase.crux:7687.

• The web browser opens the Neo4j Browser at http://localhost:
7474/browser/.

6. Evaluation

We conducted a series of experiments to demonstrate Crux capabil-
ities and performance. For these tests we used Docker 19.03.5, Docker-
compose version 1.24.1, Terraform v0.12.5, Python 3.7.6, Neo4j 3.5,
Neo4j Graph 3.5.4.0, and AWS ECS Agent 1.32.0. The AWS EC2 Im-
age used was Amazon Linux AMI 2018.03.y x86_64 ECS HVM GP2
t2.medium (2 vCPU, 4 GB RAM), and the local system was macOS
Mojave (10.14.6) running on a 2.9 GHz Intel Core i9 (12 core) with
32 GB 2400 MHz DDR4.

6.1. Capability and WCP correctness

To explore WCP correctness, we configured the Crux workflow
simulator to generate and execute the five characteristic workflows
detailed in Section 6. The workflow simulator is deployed locally and
makes API calls to a Crux instance on AWS. We kept runtimes short
with modest total vertices in order to better provide screenshots of the
entire PAG and workflow critical path.

For each of the 5 workflows, we configured a Crux simulator, then
deployed it locally using a tool called Docker-Compose which launches
all simulator components as containers. The simulator containers make
API calls to a remote deployment of Crux on AWS. The workflow sim-
ulation is complete when we receive a JSON string from the Crux API
which contains the workflow critical path. At this point, we collected
screenshots of the visualized workflow PAG and workflow critical path
via Crux’s Neo4j Browser. Results are shown in Table 2 and Fig. 11.
WCP was correctly computed in all cases. While the five cases do
not cover every possible workflow pattern, we believe they cover key
workflow patterns and thus are representative. The next step will be to

explore WCP with full applications.
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Table 2
Results of 5 simulator studies.
Workflow WCP Correct? Cost Elapsed time (s)

Generic Yes 9.492 6.584
Data Splits Yes 22.159 57.590
Checkpoint Yes 74.854 7.616
Multiple Sources Yes 67.242 6.5413
Create Delete Yes 74.868 7.2561

6.2. Performance and scalability

To characterize the scalability of the Crux prototype we measured
the time required to create data state vertices on local and remote (AWS
based) deployments of Crux (Fig. 12). Next, we scaled out the instances
of Crux’s API server to 1, 2, and 3 instances, and performed the same
time measurement (Fig. 13).

6.3. Crux overhead

The main overhead of Crux will scale with the number of instru-
mented API calls required to create a full program activity graph. To
approximate the number of Crux API calls needed for a smaller scale
HPC application we used the DroughtHPC example. We estimated the
number of Crux data states that would have to be created at 300k
for VIC and 12k for the python code, for a total of 312k Crux API
calls. A full-scale deployment will be required to accurately assess the
overhead.

Dedicating nodes to deploy Crux in an HPC cluster implies taking
nodes away that could otherwise be used as compute resources. How-
ever, we demonstrate Crux’s ability to run as containers on modest EC2
instances. A small HPC cluster could potentially dedicate one node for
running Crux on virtual machines or containers instead of directly on
bare metal systems.

6.4. Discussion

Our performance experiments suggest that network proximity of
Crux to application clients improves Crux’s performance. This is con-
sistent with our original expectations. Surprisingly, we observed that
scaling out Crux API instances did not improve overall performance of
Crux on AWS. This suggests that the limiting factor to Crux’s perfor-
mance may be the load balancer responsible for distributing traffic to
the API instances. Another limiting factor could be the performance of
Crux’s database. Having multiple API instances would have diminishing
returns if Crux’s Neo4j instance is unable to process more requests.

Through our tests we observed limitations with the capability of the
Neo4j Browser for Crux: inability to highlight a path within a graph;
incorrect inclusion of one or more edges; and poor scaling to more than
2,000 vertices. Also, Neo4j Browser did not offer ways for us to visu-
alize results from previous workflow runs or easily export graph data.
Although sufficient for our initial prototype, a more comprehensive UI
would be warranted for a production tool.

7. Conclusions and future work

In this paper, we introduced a novel metric, Workflow Critical Path
(WCP) for Holistic HPC Workflows. We described a prototype tool
called Crux for calculating WCP. To evaluate Crux we developed a set
of simulators to simulate HPC workflows and workflow patterns; and
designed a cloud-based, test environment on AWS. Early results suggest
that Crux can be used to efficiently calculate WCP. WCP shows promise
as a useful diagnostic metric focused across an entire workflow.

Our continuing efforts include improvements to the prototype: a
custom Crux GUI to address the limitations we observed with the Neo4j
Browser, and the functionality to easily allow a user to save workflow
critical path results from multiple runs. For Crux to be adopted to

http://localhost:7474/browser/
http://localhost:7474/browser/
http://localhost:7474/browser/
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Fig. 11. Generic workflow PAG and WCP. Top image shows the entire PAG with 5 jobs: stage in (green), preprocess (pink), MPI (red), postprocess (tan), and visualization (blue).
All Crux PAGs begin with a null vertex (orange) created during database initialization. Bottom image shows the WCP. The critical path in this execution is the path with longest
elapsed time through the MPI job. Cost = 9.492.
Fig. 12. Time to add vertices to local and remote deployment of Crux. Measured time
required for a local Python client make Crux API calls to add 100, 1000, and 10000
data state vertices on local and remote deployments of Crux. In all cases, the time to
created vertices was less on the locally deployed Crux. Trendline for both cases suggest
a linear relationship between number of vertices to add and overall time (R2 = 1).

roduction use, the instrumentation must be automated, whereas the
nitial prototype requires manual insertion of instrumentation. We are
urrently testing full-scale applications with Crux.
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Fig. 13. Time to add vertices against number of Crux API instances. Measured time
required for a local Python client make Crux API calls to add 100, 1000, and 10000 data
state vertices on a remote deployment of Crux with 1, 2, and 3 API server instances.
There was a significant difference in time to add 100 vertices between 1, 2, and 3 API
server instances at p < .05 [F(2, 6) = 2.6949, p = 0.0135] where 1 API server instance
performed fastest (mean = 1.3792 s). Results did not show significant difference in time
for adding 1000 and 1000 vertices between 1, 2, and 3 API server instances. Trendline
in all cases suggest a linear relationship between number of vertices to add and overall
time (R2 = 1).
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A B S T R A C T

With the society’s growing adoption of machine learning (ML) and deep learning (DL) for various intelligent
solutions, it becomes increasingly imperative to standardize a common set of measures for ML/DL models with
large scale open datasets under common development practices and resources so that people can benchmark
and compare models’ quality and performance on a common ground. MLCommons has emerged recently as
a driving force from both industry and academia to orchestrate such an effort. Despite its wide adoption as
standardized benchmarks, MLCommons Inference has only included a limited number of ML/DL models (in fact
seven models in total). This significantly limits the generality of MLCommons Inference’s benchmarking results
because there are many more novel ML/DL models from the research community, solving a wide range of
problems with different inputs and outputs modalities. To address such a limitation, we propose MLHarness, a
scalable benchmarking harness system for MLCommons Inference with three distinctive features: (1) it codifies
the standard benchmark process as defined by MLCommons Inference including the models, datasets, DL
frameworks, and software and hardware systems; (2) it provides an easy and declarative approach for model
developers to contribute their models and datasets to MLCommons Inference; and (3) it includes the support
of a wide range of models with varying inputs/outputs modalities so that we can scalably benchmark these
models across different datasets, frameworks, and hardware systems. This harness system is developed on top of
the MLModelScope system, and will be open sourced to the community. Our experimental results demonstrate
the superior flexibility and scalability of this harness system for MLCommons Inference benchmarking.
1. Introduction

With the rise of machine learning (ML) and deep learning (DL) inno-
vations in both industry and academia, there is a clear need for stan-
dardized benchmarks and evaluation criteria to facilitate comparison
and development of ML/DL innovations. MLCommons Inference [1],
a standard ML/DL inference benchmark suite with properly defined
metrics and benchmarking methodologies, has emerged recently to
facilitate such an effort. However, MLCommons Inference only included
five models when it was first introduced in 2019, and has only included
seven models recently [2]. This limited and slow-growing number
of ML/DL models stifles the adoption of MLCommons Inference as a
general benchmarking platform because there are many more novel
ML/DL models from the research community, solving a wide range of
problems with different inputs and outputs modalities. To address such
a limitation, we propose MLHarness, a scalable benchmarking harness
system for MLCommons Inference, to make MLCommons Inference em-
brace new models and modalities easily. MLHarness is developed on top
of MLModelScope [3] with three distinctive new features: (1) it codifies
the required benchmarking environment for MLCommons Inference
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E-mail addresses: yhchang3@illinois.edu (Y. Chang), jpu3@illinois.edu (J. Pu), w-hwu@illinois.edu (W. Hwu), jinjunx@illinois.edu, jinjun@buffalo.edu

(J. Xiong).

explicitly, including models, datasets, frameworks, software and hard-
ware stacks; (2) it provides an easy and declarative approach for model
developers to contribute their models and datasets to MLCommons
Inference; and (3) it supports a wide range of models with varying
inputs and outputs modalities. Our experiments show that MLHarness is
capable of reporting all the required metrics as defined by MLCommons
Inference for models with different input/output modalities and for
models both within and beyond MLCommons Inference.

In particular, we make the following contributions: (1) we propose
MLHarness, a scalable benchmarking harness system for MLCommons
Inference while supporting models beyond those in MLCommons In-
ference; (2) we extend MLModelScope to provide user-defined pre-
processing and post-processing interfaces so that MLModelScope can
easily support new models and new modalities; (3) we showcase ML-
Harness’ capabilities as a scalable benchmarking harness system for
MLCommons Inference by running experiments on a range of models
both within and beyond MLCommons Inference under different frame-
works and systems configurations; and (4) we further demonstrate
the unique value of scalable benchmarking in identifying abnormal
https://doi.org/10.1016/j.tbench.2021.100002
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system behaviors and how MLHarness helps to explain those seemingly
abnormal behaviors resulting from complex software and hardware
interactions.

2. Background

2.1. ML/DL benchmark challenges

ML and DL innovations such as applications, datasets, frameworks,
models, and software and hardware systems, are being developed in a
rapid pace. However, current practice of sharing ML/DL innovations
is to build ad-hoc scripts and write manuals to describe the workflow.
This makes it hard to reproduce the reported metrics and to port the
innovations to different environments and solutions. Therefore, having
a standard benchmarking platform with an exchange specification and
well-defined metrics to fairly compare and benchmark the innovations
is a crucial step toward the success of ML/DL community.

Previous work includes (1) ML/DL model zoos curated by frame-
work developers [4–9], but they only aim for sharing ML/DL models
as a library; (2) package managers for a specific software environment
such as Spack [10], while they are just targeting on maintaining
packages in different software and hardware stacks; (3) benchmarking
platforms such as MLCommons [1,11] and MLModelScope [3], but the
former only focuses on few specific models and the latter only focuses
on models in computer vision tasks; (4) collections of reproducible
MLOps components and architectures [12–14], while their main focuses
are on deployment and automation; (5) plug-and-play shareable con-
tainers such as MLCube [15], but its generality makes it hard to identify
and locate the crucial components for the cause of abnormal behaviors
in ML/DL models; (6) simulator of ML/DL inference servers such as
iBench [16], but the main focus on capturing data transfer capabilities
between clients and servers provides no insights on profiling models.
As the above applications either only focus on a specific software and
hardware stack, or use ad-hoc approaches to handle specific ML/DL
tasks, or are lack of a consistent benchmarking method, it is hard to use
them individually to have a well rounded experience when developing
ML/DL innovations.

To address these ML/DL benchmark challenges, we propose a new
scalable benchmarking system: MLHarness by taking advantage of two
open-source projects: MLModelScope [3] for its exchange specification
on software and hardware stacks, and MLCommons Inference [1] for its
community-adopted benchmarking scenarios and metrics. With MLHar-
ness, we are able to benchmark and compare quality and performance
of models on a common ground through a set of well-defined metrics
and exchange specification.

2.2. Overview of MLCommons

MLCommons [1,11], previously known as MLPerf, is a platform
aims to answer the needs of the nascent machine learning industry.
MLCommons Training [11] measures how fast systems can train models
to a target quality metric, while MLCommons Inference [1] measures
how fast systems can process inputs and produce results using a trained
model. Both of these two benchmark suites target on providing bench-
marking results on different scales of computing services, ranging from
tiny mobile devices to high performance computing data centers. As
the main focus of this paper is on benchmarking ML/DL inferences, we
only focus on MLCommons Inference in the rest of this paper.

2.2.1. Characteristics of MLCommons Inference
MLCommons Inference is a standard ML/DL inference benchmark

suite with a set of properly defined metrics and benchmarking method-
ologies to fairly measure the inference performance of ML/DL hard-
ware, software, and services. MLCommons Inference focuses on the
following perspectives when designing its benchmarking metrics:
17
• Selection of Representative Models. MLCommons Inference
selects representative models that are mature, open source, and
have earned community support. This permits accessibility and
reproducible measurements, which facilitates MLCommons Infer-
ence becoming a standardized benchmarking suite.

• Scenarios. MLCommons Inference consists of four evaluation sce-
narios, including single-stream, multistream, server, and offline.
These four scenarios aim for simulating realistic behaviors of
inference systems in many critical applications.

• Metrics. Apart from the commonly used model metrics such as
accuracy, MLCommons Inference also includes a set of systems
related metrics, such as percentile-latency and throughput. These
make MLCommons Inference appealing in satisfying the demand
of different use cases, such as 99% percentile-latency for a data
center to respond to a user query.

2.2.2. Workflows of MLCommons Inference
Fig. 1 shows the critical components as defined in MLCommons

Inference, where the numbers and arrows denote the sequence and
the directions of the data flows, respectively. The description of the
components follows:

• Load Generator (LoadGen). The LoadGen produces query traf-
fics as defined by the four scenarios above, collects logging infor-
mation, and summarizes benchmarking results. It is a stand-alone
module that stays the same across different models.

• System Under Test (SUT). The SUT consists of the inference sys-
tem under benchmarking, including ML/DL frameworks, ML/DL
models, software libraries and the target hardware system. Once
the SUT receives a query from the LoadGen, it completes an
inference run and reports the result to the LoadGen.

• Data Set. Before issuing queries to the SUT, the LoadGen needs to
let the SUT fetch the data needed for the queries from the dataset
and pre-process the data. This is not included in the latency
measurement.

• Accuracy Script. After all queries are issued and the results
are received, the accuracy script will be invoked to validate the
accuracy of the model from the logging information.

2.2.3. Limitations of MLCommons Inference
As we can observe from the characteristics and the workflows of

MLCommons Inference above, MLCommons Inference involves bench-
marking under different scenarios with various metrics, which provides
a community acknowledged ML/DL benchmark standard. However,
the focus on the seven representative models shadows its advantage
because MLCommons Inference only provides ad-hoc scripts for these
representative models, and it is hard to extend them to many other
models beyond MLCommons Inference.

In fact, the only critical component in MLCommons Inference is
the LoadGen, while the other components can be replaced with any
inference systems. In this paper, we present how to replace the com-
ponents other than the LoadGen by MLModelScope [3], an inference
platform with a clearly defined exchange specification and an across-
stack profiling and analysis tool, and extend MLModelScope so that it
becomes a scalable benchmarking harness for MLCommons Inference.
This greatly extends the applicability of MLCommons Inference for
models well beyond it.

2.3. Overview of MLModelScope

MLModelScope [3] is a hardware and software agnostic distributed
platform for benchmarking and profiling ML/DL models across

datasets, frameworks and systems.



Y. Chang, J. Pu, W. Hwu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100002

f
t
d
s
d
a
w
p
d
s

3

s
f
e
p
M

3

u
i
t
C
t
M
s
r
f

a
M
d
m

A
P
n
t
b
w

Fig. 1. Workflow of MLCommons Inference [1].

2.3.1. Characteristics of MLModelScope
MLModelScope consists of a specification and a runtime that enable

repeatable and fair evaluation. The design aspects follow:

• Specification. MLModelScope utilizes the software and model
manifests as proposed in DLSpec [17], which capture different
aspects of an ML/DL task and ensure usability and reproducibility.
The software manifest defines the software requirements, such as
ML/DL frameworks to run an ML/DL task. The model manifest
defines the logic to run the model for the ML/DL task, such as pre-
processing and post-processing methods, and the required artifact
sources. An example is shown in Listing 1.

• Runtime. The runtime of MLModelScope follows the manifests
to set up the required environment for inference. Moreover,
MLModelScope includes the across-stack profiling and analysis
tool, XSP [18], which introduces a leveled and iterative measure-
ment approach to overcome the impact of profiling overhead.
As shown in Fig. 2, MLModelScope captures profiling data for
different levels, which enables users to correlate the information
and analyze the performance data in different levels.

2.3.2. Limitations of MLModelScope
Although MLModelScope involves a clearly defined specification

and is able to run several hundreds of models in different ML/DL
 n

18
Fig. 2. Profiling levels in MLModelScope [3].

rameworks, it currently only supports models for computer vision
asks. While MLModelScope discussed the possibility of using user-
efined pre-processing and post-processing inline Python scripts to
erve as a universal handler for all kinds of models, MLModelScope
id not implement those interfaces but only introduced built-in im-
ge manipulations to support computer vision tasks. In this paper,
e have actually implemented the user-defined pre-processing and
ost-processing interfaces and demonstrated its usage on models with
ifferent modalities and different pre-processing and post-processing,
uch as question answering and medical 3D image segmentation.

. MLHarness implementation

This section describes the crucial implementations of MLHarness, a
calable benchmarking harness system for MLCommons Inference [1]
or tackling the limitations of MLCommons Inference and MLMod-
lScope [3]. The implementations include the support of user defined
re-processing and post-processing interfaces and the encapsulation of
LModelScope for MLCommons Inference.

.1. Pre-processing and post-processing interfaces

As described in DLSpec [17] and MLModelScope [3], to make the
ser defined pre-processing and post-processing interfaces universal,
nline Python scripts are chosen to allow great flexibility and produc-
ivity, as Python functions can download and run Bash scripts and some
++ code. On the other hand, MLModelScope is implemented in Go;
herefore, it is necessary to build a bridge between the runtime of
LModelScope and the embedded Python scripts in the model manifest

o that, within the MLModelScope runtime, we can invoke the Python
untime to execute user defined pre-processing and post-processing
unctions.

A naive solution is to save the input data and the functions as files
nd execute pre-processing and post-processing functions apart from
LModelScope. However, this approach is impractical since it intro-

uces high serialization and process initialization overhead, and it also
akes MLModelScope incapable of supporting streaming data [17].

In order to avoid using intermediate files, we instead use Python/C
PIs [19] to embed a Python interpreter into MLModelScope to execute
ython functions, as suggested by DLSpec. To use these APIs, we
eed to implement wrappers in Go to call them. Instead of building
hese wrappers from scratch, we use the open source Go-Python3
indings [20]. In this fashion, the Python functions can be executed
ithin MLHarness directly to avoid the problems mentioned in the

aive solution.
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3.1.1. Implementation details
Fig. 3 shows the invocation sequence of user defined pre-processing

and post-processing functions by MLHarness. The before_
preprocess and the before_postprocess functions are invoked
only once at the startup stage; the after_preprocess function and
the after_postprocess functions are invoked only once after all
nferences are done. These four functions are for the sake of loading
atasets, writing logging information to files, and specifying configura-
ions during runtime if necessary. The preprocess function and the
ostprocess function are invoked right before and after every model

nference, respectively, to pre-process and post-process the inputs and
utputs of the model.

To embed a Python interpreter, we need to initialize it through
Python/C APIs at the beginning of MLHarness. Then, as Listing 2
shows, the function handling the embedded Python pre-processing and
post-processing scripts consists of four parts, utilizing the Go-Python3
bindings:

• MoveDataToPythonInterpreter. Moving data from Go to
Python is not easy since the data being processed are large,
for example, a tensor representing an image. One solution is
to serialize the data at one end, transfer the data as a string,
and deserialize at the other end. However, it introduces a high
overhead due to the high cost of encoding and decoding. To
overcome this problem and to make data transfer efficient, we
propose to copy the data in-memory, i.e., we only send the shape
of the tensor and the address of its underlying flattened array, and
reconstruct the tensor by copying data from the address and by
its shape. Note that to guarantee the validity of data transfer, we
need to make sure that the underlying flattened array represents
the tensor contiguously, particularly in case lazy operations were

done on the tensor, such as transposition.

19
Fig. 4. Structure of MLHarness.

• FindTheProcessingFunctionByItsName. The processing
functions in the model manifest are registered in the __main__
module of the Python interpreter during its initialization. To get
the corresponding PyObject of these functions, we query the
__main__ module by the names of functions, which are the six
processing functions as listed in Fig. 3.

• ExecuteProcessingFunction. The signatures of the pro-
cessing functions in the model manifest are in the form of pro-
cess(ctx, data), where ctx is a dictionary capturing addi-
tional information in the manifest, and data is the tensor we got
from MoveDataToPythonInterpreter. Therefore, in order
to invoke the processing function, we need to call the Go-Python3
binding with the PyObject of the processing function, the dic-
tionary of ctx and the data going to be processed. Note that
the data is only effective for preprocess and postprocess,
and it is just a PyObject of None for the other four processing
functions.

• GetResultFromPythonInterpreter. This is similar to the
first part except that it moves data from Python to Go instead of
the other way around. Note that we still copy the data in-memory
to avoid unnecessary overhead.

3.2. Structure of MLHarness

Fig. 4 shows the encapsulation of MLModelScope for MLCommons
Inference. In order to utilize MLCommons Inference defined scenarios
and performance metrics, we keep the LoadGen and the accuracy script
the same as they were in MLCommons Inference. On the other hand,
We replace the built-in SUT and data set in MLCommons Inference with
MLModelScope runtime to run the models. In this way, MLModelScope
is capable of acting as an easy-to-use black box to respond to the queries
issued by the LoadGen in MLCommons Inference, and it also provides
across-stack profiling information for further analysis, which are not

available when merely using MLCommons Inference.
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3.2.1. Implementation details
MLModelScope is developed in Go, but the LoadGen in MLCommons

Inference is developed in C++ and used in Python through Python
bindings. In order to make the communication between MLModelScope
and MLCommons Inference feasible, we build MLModelScope as a C
shared library [21], use the ctypes module [22] in Python to load
the shared library, and call the functions in the shared library. Three
notable implementations are described below:

• Function wrappers. To simplify the process of building the C
shared library and leaving MLModelScope as a black box, we cre-
ate function wrappers for critical applications in MLModelScope
and only export them in the shared library. This includes the
Initialize and Finalize wrappers to initialize and finalize
the profiling tools in MLModelScope. It also includes the Load-
QuerySamples, IssueQuery, and UnloadQuerySamples
wrappers to pre-load and pre-process the data from the data set,
handle queries from the LoadGen, and free the memory occupied
by the pre-loaded data, respectively.

• Data transmissions. It is hard to directly exchange data between
Go and Python, since there is no one-to-one correspondence
between data types in these two languages. To solve this prob-
lem, we utilize the built-in primitive C compatible data types in
ctypes [22] for Python and CGO [23] for Go, since they define
how to transform data if there is no clear correspondence between
data types in C and the corresponding languages. Using this
method, the data conversion can be done in-memory instead of
through serialization.
20
• Blocking statements. When we exchange data between Go and
Python, the garbage collector at one end does not automatically
know that it needs to keep the data before the data are really
copied or used at the other end, which might result into undefined
behaviors. To solve this problem, we need to manually create
blocking statements to block garbage collection until a deep copy
of the data is made at the other end. This can be done using
the KeepAlive function [24] in Go and managing reference
counts [25] in Python to prevent garbage collection being invoked
until the KeepAlive is executed and the reference count is
decreased to zero, respectively.

3.3. Example of MLHarness

With the help of user defined pre-processing and post-processing
interfaces, MLHarness is able to handle various models’ inputs and out-
puts modalities that are not supported in MLModelScope. Also, it is easy
to use the model manifest to add models for MLModelScope to report
MLCommons Inference defined metrics, which is hard when merely
using MLCommons Inference. Listing 3 is the model manifest using the
pre-processing and post-processing interfaces for BERT [26], a language
representation model, to handle the question answering modality that
was not supported in MLModelScope. The pre-processing step uses the
tokenizer from the transformers Python third-party library [27] to parse
data and prepare input features. The post-processing step reshapes the
outputs into the format as defined by the accuracy script. The tedious
implementation of the tokenizer is one of the reason why MLMod-
elScope cannot support the question answering modality, since it is
hard to create an equivalent built-in alternative inside MLModelScope
using Go. On the contrary, through the user defined pre-processing
and post-processing interfaces, MLHarness can utilize the community
developed Python third-party libraries to overcome this obstacle.

4. Experimental results

We conduct two sets of experiments to demonstrate the success
of MLHarness on overcoming the limitations in MLModelScope [3]
and MLCommons Inference [1]. In the first set of experiments, we
use MLHarness to benchmark models in MLCommons Inference and
report MLCommons Inference defined metrics to show that it supports
modalities that are not supported in MLModelScope, such as question
answering and medical image 3D segmentation. In addition, we show
that MLHarness is able to report the results for all four scenarios defined
by MLCommons Inference. In the second set of experiments, we use
MLHarness to benchmark models beyond MLCommons Inference and
report MLCommons Inference defined metrics to show the usage of
our newly extended MLModelScope as an easy-to-use black box for
MLCommons Inference.

4.1. Experiment setup

Table 1 shows the systems used for experiments. The system nam-
ing convention follows the rule as the identifier of the CPU types
followed by the acronym of the ML/DL framework, and then the
identifier of the GPU type if a GPU is used. There are three system
instance categories in total. The first category is an Intel desktop-
grade CPU system, including system 9800-ORT-RTX, 9800-PT-RTX,
9800-ORT, 9800-PT, and 9800-MX-RTX. The second category is also
an Intel but different desktop-grade CPU system, including system
7820-ORT-TITAN, 7820-PT-TITAN, and 7820-TF. The last category
is a server-based system using AMD CPUs, including system AMD-
ORT-A100 and AMD-ORT-V100. We choose different combinations
of frameworks, software systems and hardware systems in order to
demonstrate the flexibility and scalability of MLHarness as a harness
for benchmarking.

For both sets of experiments, we report the accuracy, the throughput

in the offline scenario, and the throughput and 90 percentile latency in
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Table 1
Systems used for experiments.
System annotations Framework Processor Accelerator

9800-ORT-RTX ONNX Runtime 1x Intel(R) Core(TM) i7-9800X CPU @ 3.80 GHz 1x GeForce RTX 3090
9800-PT-RTX PyTorch 1x Intel(R) Core(TM) i7-9800X CPU @ 3.80 GHz 1x GeForce RTX 3090
9800-ORT ONNX Runtime 1x Intel(R) Core(TM) i7-9800X CPU @ 3.80 GHz None
9800-PT PyTorch 1x Intel(R) Core(TM) i7-9800X CPU @ 3.80 GHz None
7820-ORT-TITAN ONNX Runtime 1x Intel(R) Core(TM) i7-7820X CPU @ 3.60 GHz 1x TITAN V
7820-PT-TITAN PyTorch 1x Intel(R) Core(TM) i7-7820X CPU @ 3.60 GHz 1x TITAN V
7820-TF TensorFlow 1x Intel(R) Core(TM) i7-7820X CPU @ 3.60 GHz None
AMD-ORT-A100 ONNX Runtime 1x AMD EPYC 7702 64-Core Processor 1x A100
AMD-ORT-V100 ONNX Runtime 1x AMD EPYC 7702 64-Core Processor 1x V100
9800-MX-RTX MXNet 1x Intel(R) Core(TM) i7-9800X CPU @ 3.80 GHz 1x GeForce RTX 3090
Table 2
MLHarness and MLCommons reported results for all four scenarios on 9800-ORT-RTX.
Benchmark suite Offline (sample/s) Single-Stream Server Multi-Stream

(sample/s) 90th percentile (sample/s) 99th percentile (sample/query) 99th percentile
latency (ms) latency (ms) latency (ms)

MLHarness 133 118 9.2 69 44 5 42
MLCommons Inference 315 308 3.2 121 14 12 44
the single-stream scenario. The accuracy is defined differently for each
modalities, including the top-1 accuracy for image classification, mAP
scores for object detection, F1 scores for question answering, and mean
DICE scores for medical image 3D segmentation. As defined in MLCom-
mons Inference [1], the offline scenario represents applications where
all data are immediately available and latency is unconstrained, such
as photo categorization; on the contrary, the single-stream scenario
represents a query stream with sample size of 1, reflecting applications
requiring swift responses, such as real time augmented reality. In order
to facilitate the comparison between these two scenarios, we fix the
batch size of the inferences to 1 in all experiments. This helps to
demonstrate how scenarios can affect the throughput of models.

MLHarness is also capable of reporting results of the other two
scenarios as defined by MLCommons Inference [1], which are the
server and the multistream scenarios. The server scenario represents
applications where query arrival is random and latency is important,
such as online translation. The multistream scenario represents appli-
cation with a stream of queries, where each query consists of multiple
inferences, such as multi-camera driver assistance. We demonstrate
that MLHarness is able to report the results of these two scenarios by
running ResNet50 on 9800-ORT-RTX.

Note that, because of the limited access to data-center scale systems,
we are not able to develop and conduct experiments for the rest of the
two models as provided by MLCommons Inference, which are DLRM
for recommendation system and RNNT for speech recognition. But we
believe our methodologies as discussed can be easily extended for the
two models.

4.2. Results of models in MLCommons Inference

In this set of experiments, we demonstrate the capability of ML-
Harness on reporting MLCommons Inference [1] defined metrics, by
benchmarking representative MLCommons Inference models with a
variety of systems.

Table 2 shows the various MLCommons Inference defined experi-
mental results of ResNet50 produced by MLHarness on system 9800-
ORT-RTX. From the results, we observe that using MLHarness, running
ResNet50 on such a target system is able to classify 133 images per
second, respond to a query of one image in less than 9.2 ms in 90% of
the time if the queries are received contiguously, respond to a query
of one image in less than 44 ms in 99% of the time if the queries
are received following the Poisson distribution with an average of 69
queries per second, and respond to a query of five images in less than
42 ms in 99% of the time if the queries are received contiguously. Note
that the number of queries per second in the server scenario and the
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number of samples per query in the multistream scenarios are tunable
parameters for the system to meet the latency requirements.

We also run the same set of experiments on 9800-ORT-RTX using
the original MLCommons Inference flows, as shown in Table 2. The
results show that MLCommons Inference performs two to three times
better than MLHarness. In order to investigate the discrepancy that
MLHarness has a worse performance than MLCommons Inference, we
take the Offline scenario as an example and break down the execu-
tion time into two parts, including (1) model-inference time for the
interval between the model receives pre-processed input tensors and
returns output tensors and (2) post-processing time involving generat-
ing MLCommons Inference defined format. As Fig. 5 shows, while both
MLHarness and MLCommons Inference spend nearly the same amount
of time on model inference, the much higher latency for MLHarness
to post-process data make it hard to achieve the same performance as
reported by MLCommons Inference. The underlying reason of this high
latency in MLHarness is due to the aggregated data transferring time
between different languages, as data need to be moved several times
among ML/DL frameworks, post-processing interfaces and wrappers,
while it is not the case for MLCommons Inference since once the
inference is done, data always reside in Python. One way to mitigate
this high latency is to further optimize MLHarness for MLCommons
Inference by responding directly to the LoadGen in the post-processing
function instead of transferring data back to MLHarness and then
reporting to MLCommons Inference suite through wrappers between
different languages.

Table 3 shows the experimental results of ResNet50 and Mo-
bileNet for image classification, SSD MobileNet 300x300 and
SSD ResNet34 1200x1200 for object detection, BERT for question
answering, and 3D-UNet for medical image 3D segmentation. All of
these models are provided by MLCommons Inference and can be found
at its GitHub page [2].

An interesting observation from Table 3 is that the throughput
of ResNet50 on system AMD-ORT-V100, which is 202 samples per
second, is higher than that on system AMD-ORT-A100, which is 159
samples per second. This seems to be counter-intuitive as the A100
GPU is two generations newer than the V100 GPU, hence the A100
GPU is supposed to have better performance than V100. With ML-
Commons’ inference methodology alone, we are not able to figure out
the reason of this ‘‘seemingly abnormal’’ behavior. This is the place
for MLHarness to shine with its extended MLModelScope capabilities.
Leveraging the across-stack profiling and analysis capabilities from
MLModelScope, we are able to align framework-level spans from the
ONNX Runtime profiler and the library-level spans from CUDA Pro-
filing Tools Interface, and capture the detailed view of this strange
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Table 3
MLHarness reported results for models in MLCommons Inference.
Model System Accuracy Offline (sample/s) Single-Stream

(sample/s) 90th percentile
latency (ms)

MLPerf ResNet50

9800-ORT-RTX Top1: 76.452% 133 118 9.2
9800-ORT Top1: 76.456% 63 62 16
7820-ORT-TITAN Top1: 76.456% 118 116 9.2
7820-TF Top1: 76.456% 20 20 57
AMD-ORT-A100 Top1: 76.456% 159 146 6.7
AMD-ORT-V100 Top1: 76.456% 202 154 6.4

MLPerf MobileNet

9800-ORT-RTX Top1: 71.676% 196 160 6.5
9800-ORT Top1: 71.676% 61 58 23
7820-ORT-TITAN Top1: 71.676% 188 159 6.6
7820-TF Top1: 71.676% 24 24 44
AMD-ORT-A100 Top1: 71.666% 358 270 3.7
AMD-ORT-V100 Top1: 71.676% 382 319 3.2

MLPerf SSD MobileNet 300 × 300

9800-ORT-RTX mAP: 23.172% 35 32 37
9800-ORT mAP: 23.173% 28 28 37
7820-ORT-TITAN mAP: 23.173% 30 28 41
7820-TF mAP: 23.173% 13 13 78
AMD-ORT-A100 mAP: 23.170% 20 20 52
AMD-ORT-V100 mAP: 23.173% 18 18 57

MLPerf SSD ResNet34 1200 × 1200

9800-ORT-RTX mAP: 19.961% 20 19 54
9800-ORT mAP: 19.955% 1.4 1.7 816
7820-ORT-TITAN mAP: 19.955% 16 15 66
7820-TF mAP: 20.215% 1.4 1.4 704
AMD-ORT-A100 mAP: 19.957% 23 21 54
AMD-ORT-V100 mAP: 19.955% 14 13 95

MLPerf BERT

9800-ORT-RTX F1: 90.874% 41 38 27
9800-PT-RTX F1: 90.881% 21 18 67
9800-ORT F1: 90.874% 2.2 2.5 487
9800-PT F1: 90.874% 0.86 0.85 1305
7820-ORT-TITAN F1: 90.874% 30 29 35
7820-PT-TITAN F1: 90.874% 27 26 39
AMD-ORT-A100 F1: 90.879% 92 78 15
AMD-ORT-V100 F1: 90.874% 29 29 37

MLPerf 3D-UNet AMD-ORT-A100 mean: 0.85300 0.043 0.045 22655
AMD-ORT-V100 mean: 0.85300 0.045 0.045 22194
Fig. 5. Break down execution time into model-inference time and post-processing time
for MLHarness and MLCommons Inference running Offline scenario with ResNet50 and
a single input on 9800-ORT-RTX.

behavior by delving deeper into the results. Fig. 6 shows the perfor-
mance of ResNet50 with batch size one across the system AMD-ORT-
V100 and system AMD-ORT-A100 at both the layer and the kernel
(sub-layer) granularity levels, respectively. At the layer granularity, we
observe that the end-to-end inference time on system AMD-ORT-V100
is indeed shorter than that on AMD-ORT-A100, and the reduced run-
time mainly comes from the shortened runtime of many Conv2+ReLu
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layers (in orange color). For example, by focusing only on the second
to the last Conv2+ReLu layer, we see that the duration on system
AMD-ORT-A100 is almost twice as large as the duration on system
AMD-ORT-V100. By zooming into that particular layer at the kernel
level granularity, we quickly realize that the two systems have exe-
cuted different GPU kernels. For system AMD-ORT-V100, there are two
major kernels, i.e., cudnn::winograd::generateWinogradTilesKernel and
volta_scudnn_winograd_128x128. In contrast, for system AMD-ORT-
A100, there is only one major kernel, i.e., implicit_convolve_sgemm.
We suspect that this discrepancy in performance is mainly due to
the less optimized kernel selection algorithm offered by the newer
system CUDNN library (v8.1) for A100 GPUs than for V100 GPUs. This
further validates the importance of full-stack optimization for system
performance.

In summary, we show that MLHarness is capable of reporting ML-
Commons Inference defined metrics by encapsulating MLModelScope
[3] as an easy-to-use black box into MLCommons Inference, and that
our harness system is able to benchmark models that are not supported
in MLModelScope, including BERT for question answering and 3D-
UNet for medical image 3D segmentation, with the help of the new
interfaces for user-defined pre-processing and post-processing func-
tions. Moreover, as MLHarness is built on top of MLModelScope, we
are able to utilize its across-stack profiling and analysis capabilities
to align the information across the ML/DL framework level and the
accelerating library level, and pinpoint critical distinctions between
models, frameworks, and system.

4.3. Results of models beyond MLCommons Inference

Unlike the first set of experiments, which focuses on showcasing
the success of MLHarness in orchestrating MLCommons Inference [1]
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Fig. 6. Performance of ResNet50 with batch size one across systems AMD-ORT-V100 and AMD-ORT-A100 at both layer and kernel (sub-layer) granularity levels, respectively. The
axis on the top is the duration to execute each layer in the model, while the axis at the bottom is the duration to execute kernels of the second to the last Conv2 + Relu layer.
Table 4
MLHarness reported results for models beyond MLCommons Inference using PyTorch and ONNX Runtime as ML/DL frameworks.
Model System Accuracy Offline (sample/s) Single-Stream

(sample/s) 90th percentile
latency (ms)

TorchVision AlexNet

9800-ORT-RTX Top1: 56.520% 218 171 6.1
9800-PT-RTX Top1: 56.516% 191 154 6.8
9800-ORT Top1: 56.522% 86 81 12
9800-PT Top1: 56.522% 12 12 90
7820-ORT-TITAN Top1: 56.522% 219 168 6.1
7820-PT-TITAN Top1: 56.522% 186 152 6.9

TorchVision ResNet18

9800-ORT-RTX Top1: 69.758% 179 144 7.3
9800-PT-RTX Top1: 69.756% 122 113 9.6
9800-ORT Top1: 69.758% 128 118 8.8
9800-PT Top1: 69.758% 28 32 42
7820-ORT-TITAN Top1: 69.758% 175 145 7.2
7820-PT-TITAN Top1: 69.758% 132 119 9.2

TorchVision ResNet34

9800-ORT-RTX Top1: 73.314% 142 124 8.7
9800-PT-RTX Top1: 73.306% 90 89 12
9800-ORT Top1: 73.314% 72 70 14
9800-PT Top1: 73.314% 20 19 65
7820-ORT-TITAN Top1: 73.314% 144 125 8.5
7820-PT-TITAN Top1: 73.314% 98 93 12

TorchVision ResNet50

9800-ORT-RTX Top1: 76.130% 129 115 9.4
9800-PT-RTX Top1: 76.132% 76 76 15
9800-ORT Top1: 76.130% 63 61 16
9800-PT Top1: 76.130% 7.9 7.7 149
7820-ORT-TITAN Top1: 76.130% 128 112 9.6
7820-PT-TITAN Top1: 76.130% 79 78 15

TorchVision ResNet101

9800-ORT-RTX Top1: 77.374% 100 89 12
9800-PT-RTX Top1: 77.376% 59 68 22
9800-ORT Top1: 77.374% 36 36 29
9800-PT Top1: 77.374% 4.7 4.8 239
7820-ORT-TITAN Top1: 77.374% 94 87 12
7820-PT-TITAN Top1: 77.374% 60 67 22

TorchVision ResNet152

9800-ORT-RTX Top1: 78.310% 84 76 15
9800-PT-RTX Top1: 78.312% 46 64 26
9800-ORT Top1: 78.312% 26 26 41
9800-PT Top1: 78.312% 3.5 3.5 324
7820-ORT-TITAN Top1: 78.312% 74 72 15
7820-PT-TITAN Top1: 78.312% 52 60 26
way of benchmarking MLCommons Inference models, the second set of

experiments illustrates how to make use of the exchange specification

and the across-stack profiling and analysis tool in MLModelScope [3] to

facilitate developments and comparisons of ML/DL innovations in the

context of MLCommons Inference methodologies.
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Table 4 shows a sample of six models to demonstrate how easy it
is to use MLHarness to scale the MLCommons Inference way of bench-
marking of various models beyond MLCommons Inference on a variety
of system configurations. In this particular example, these results fur-
ther show the relationships among the depth of the convolutional
neural networks, the accuracy, and the throughput. The six models
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Table 5
MLHarness reported results for models beyond MLCommons Inference using TensorFlow and MXNet as ML/DL frameworks.
Model System Accuracy Offline (sample/s) Single-Stream

(sample/s) 90th percentile
latency (ms)

VGG16 7820-TF Top1: 70.962% 9.3 9.2 115
9800-MX-RTX Top1: 72.852% 100 88 11

VGG19 7820-TF Top1: 71.056% 8.7 8.6 123
9800-MX-RTX Top1: 73.814% 91 82 12
are AlexNet along with five models from the ResNet family. All
f these models are from TorchVision [9], where the implementation
etails and the reference accuracy can be found at its GitHub page [28].
gain, the success of importing these models into MLHarness using the
xchange specification is validated by the accuracy results, where all
f them are within at least 99% of the reference accuracy as stated
y TorchVision. In addition, the pre-processing and post-processing
unctions in the exchange specification can be regarded as a reusable
omponent because these models share the same pre-processing and
ost-processing steps.

Fig. 7 compares the accuracy of the six convolutional neural net-
orks in systems 9800-ORT-RTX to 7820-PT-TITAN as listed in Table 1.
he models are placed in increasing order of depth from left to right,
ith ResNet152 being the deepest. As expected, there is no huge vari-
nce on the accuracy across systems, but the deeper the convolutional
eural network is, the more accurate the model is.

Fig. 8 compares the throughput of the six convolutional neural
etworks in system 9800-ORT-RTX to 7820-PT-TITAN as listed in Ta-
le 1. From Fig. 8, we observe that there is a trend that the deeper
he convolutional neural network is, the lower the throughput it has.
owever, for the two systems 9800-ORT and 9800-PT, which are the

wo system configurations without GPUs, are not following the trend
hen comparing AlexNet and ResNet18. As our MLHarness is built
n top of MLModelScope, we then use the across-stack profiling and
nalysis tool, XSP [18], to identify the bottleneck. Table 6 shows the
op three most time-consuming layers of AlexNet and ResNet18
dentified by XSP on system 9800-PT, which has no GPU support
nd has PyTorch as the ML/DL framework. It clearly points out that
he bottleneck of AlexNet is from matrix multiplications of fully
onnected layers. Although there is also a fully connected layer in
esNet18 as recorded by XSP, its size is 512 by 1000, which is much
maller than the largest one in AlexNet, whose size is 4096 by 4096.

Although in Table 4, we use the same implementations of models by
onverting PyTorch models to ONNX formats that can be used in ONNX
untime, it is also valuable to compare the same structure of model
ith different implementations and training processes. Table 5 shows

he experiments on the models from the VGG family using TensorFlow
nd MXNet as ML/DL frameworks, where the models for TensorFlow
an be found at TensorFlow Model Graden [29] and the models for
XNet can be found at GluonCV [4]. From Table 5, we can observe

hat the accuracy is different between implementations of the same
odel, which further illustrates the difficulty of model reproducibility.
his also shows how flexible MLHarness is in terms of running scalable
enchmarking across different combinations of models and frameworks
y utilizing the extended exchange specification as discussed in this
ork, and how scalable experimentation helps to identify common

ssues convincingly.
In summary, these exemplar experiments as discussed in this sec-

ion show not only that it is easy to add models into MLHarness
y utilizing the extended exchange specification and to report ML-
ommons Inference defined metrics for models that are beyond ML-
ommons Inference, but also that, with the help of MLModelScope,
LHarness can easily and scalably compare models and extract criti-

al and detailed information, which is impossible when merely using
LCommons Inference.
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Fig. 7. Accuracy of models in different systems.

Fig. 8. Offline throughput of models in different systems.

Table 6
The top-3 most time-consuming layers of AlexNet and ResNet18 on system
9800-PT.
AlexNet ResNet18

Layer name Latency (ms) Layer name Latency (ms)

aten::mm 47.99 aten::maxpool2d 6.31
aten::mm 17.99 aten::convolution 2.46
aten::mm 4.13 aten::convolution 2.24

4.4. Impact of MLHarness

The experimental results above demonstrate the success of ML-
Harness in benchmarking ML/DL model inferences by providing an
extended exchange specification for researchers to easily plug in their
ML/DL innovations and collect a set of well-defined metrics. One of our
near future goals is to further extend MLHarness to support MLCom-
mons training [11]. Nevertheless, the impact of MLHarness is not only
restricted to ML/DL community. Benchmarking, reproducibility, porta-
bility, and scalability are important aspects in any computing-related
research, such as high performance computing and computational bi-
ology. The success of MLHarness is only a starting point, from which we
are aiming for extending the same techniques to other research domains
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that utilize heterogeneous computational resources, and providing a
scalable and flexible harness system to overcome the similar set of
challenges.

5. Conclusion

As ML/DL community is flourishing, it becomes increasingly imper-
ative to standardize a common set of measures for people to benchmark
and compare ML/DL models quality and performance on a common
ground. In this paper, we present MLHarness, a scalable benchmarking
harness system, to remedy and ease the adoption of ML/DL innovations.
Our experimental results show superior flexibility and scalability of
MLHarness for benchmarking and porting, by utilizing the extended ex-
change specification and reporting community acknowledged metrics.
We also show that with the help of MLHarness, we are able to easily
pinpoint critical distinctions between ML/DL innovations, by inspecting
and aligning profiling information across stacks.
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A B S T R A C T

The smartphone hardware and software ecosystems have evolved very rapidly. Multiple innovations in the
system software, including OS, languages, and runtimes have been made in the last decade. Although, per-
formance characterization of microarchitecture has been done, there is little analysis available for application
performance bottlenecks of the system software stack, especially for contemporary applications on mobile
operating systems.

In this work, we perform system utilization analysis from a software perspective, thereby supplementing the
hardware perspective offered by prior work. We focus our analysis on Android powered smartphones, running
newer versions of Android. Using 11 representative apps and regions of interest within them, we carry out
performance analysis of the entire Android software stack to identify system performance bottlenecks.

We observe that for the majority of apps, the most time-consuming system level thread is a frame rendering
thread. However, more surprisingly, our results indicate that all apps spend a significant amount of time
doing Inter Process Communication (IPC), hinting that the Android IPC stack is a ripe target for performance
optimization via software development and a potential target for hardware acceleration.
1. Introduction

Smartphones have become an integral part of our daily lives. People
depend on smartphones for many tasks related to business, finance,
entertainment, and social interactions. Currently, there are more than
2 billion mobile devices in use worldwide [1]. The Ericsson Mobil-
ity Report 2019 states that there are 6.1 billion mobile broadband
subscriptions globally and the number of Long-Term-Evolution (LTE)
subscriptions have grown to 3.9 billion [2]. This widespread adoption
of mobile devices can be largely attributed to increasing device af-
fordability, which has been made possible due to numerous hardware
and software innovations. This includes the open-source nature of the
Android Operating System [1], which has allowed smartphone vendors
to customize the software stack for their hardware. As a result, Android
has quickly gained a majority market share for smartphones [3].

Smartphones are very interesting from a system design perspective
since they need to provide a number of functionalities that require
general purpose as well as special purpose compute. As a result, smart-
phone SoCs have evolved rapidly to become complex ecosystems in-
corporating many specialized IP blocks, including DSPs and GPUs in
addition to general purpose CPUs [1]. The number and diversity of
architectures of such units has also increased over time to accommodate
the evolving needs of applications.

✩ This work is supported through grants received from Huawei Technology India (DSA2020112121) and Ashoka University (R/IFR/CMS/MAW/18).
∗ Corresponding author.
E-mail address: varun.gohil@ashoka.edu.in (V. Gohil).
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Many recent efforts have been made to understand the performance
bottlenecks and utilization characteristics of smartphone devices [4–
7]. However, most prior studies focus on bottom-up understanding of
smartphone utilization from an architectural design perspective. For
example, [5] present the distribution of computation amongst ARM’s
big and little cores. They also study clock frequencies at which one
can perform computations on a mobile device in an energy efficient
manner. These studies are important since mobile SoC architectures
evolve rapidly and characterization of new architectures is important to
understand and alleviate performance bottlenecks of new architectures.

The software stack for smartphones has been evolving even faster
than hardware. Android has been following a yearly release cycle
in recent years, with each iteration adding more functionality and
optimizations [18]. As a result, every release causes major changes
to the software stack which potentially lead to performance bottle-
necks. Knowledge of these bottlenecks is not only useful for optimizing
the next generation apps but also for making decisions about future
architectural innovations. Despite its importance, there is a lack of
understanding of software bottlenecks in both the apps as well as the
system software. Understanding and enumerating performance bottle-
necks of the software stack remains an important endeavor that has not
been taken up in earnest by the systems research community. However,
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Table 1
Applications traced and their Region of Interest.

Category Application Regions of Interest (ROI)

PDF Viewer Adobe Acrobat [8] Read PDF
Camera Camera Take a picture, Record a video
Game Candy Crush [9] Play one level of the game
Social Network Facebook [10] Scroll through the feed
Mailing app Gmail [11] Send mail
Virtual Assistant Google Assistant [12] Perform a query
Browsing app Google Chrome [13] Search, Scroll through a page
Location app Google Maps [14] Search a location, Zoom into a location
Audio Streaming Spotify [15] Play a song in background, Play a song in foreground
Messaging app WhatsApp [16] Send a message
Video Streaming YouTube [17] Play a video

Apart from the regions of interest mentioned above, we also trace the launch of each of the apps.
recent announcements from technology companies [19] indicate that
there exists a large room for performance improvement in the Android
software stack.

We believe that a top-down analysis of application characteristics
will augment our understanding of mobile devices by supplementing
prior work. Hence, we study the software subsystem of Android based
smartphones by tracing the entire system (application + operating
system) stack at runtime, capturing performance bottlenecks. Prior
works [4,6,7] have measured CPU utilization using Thread Level Par-
allelism (TLP) as a metric to identify the amount of parallelism the
hardware can exploit. While TLP is a useful metric to decide the number
of cores to be placed on the chip, it does not provide information on the
computation being performed by the cores and the functionality sup-
ported by the computations. Knowledge of the functionality for which
the computation is being performed is necessary to optimize software
and to design novel hardware accelerators to be used alongside the
CPU. Generally, in Android smartphones, a particular thread or a group
of threads is responsible for a particular functionality. By identifying
the threads having high execution times, one can identify the function-
ality that consumes higher CPU time and should be optimized. Hence,
we focus this paper on trying to answer the following questions.

• Which are the most time-consuming threads per app?
• Are there any common threads across a cross section of apps that

end up consuming the most time?
• Which threads take up the most time during app launch?

We believe that this type of analysis will help the process of developing
high performance software but and helps identify potential hardware
acceleration opportunities for mobile devices. Since many previous
studies have pointed out the importance of app launch times for user
engagement and experience [20], we also pay special attention to app
launches as a region of interest. Overall, the major contributions of this
work are as follows:

• We identify and perform system-level tracing of eleven popular
mobile applications on actual hardware, running Pie version of
Android (Android 9), which helps us analyze time consumed by
application and OS threads.

• To better represent performance information, we group threads
into bins based on their functionalities. This helps us increase
interpretablity of results and analyze the time consumed per
functionality.

• We identify that for majority of applications, the most time
consuming thread is a system-managed thread named Ren-
derThread or another thread involved in frame rendering.

• Using thread bins, we identify that although the most time-
consuming thread is almost always a thread related to frame
rendering, a larger portion of execution time is consumed by the
group of threads responsible for Inter Process Communication
(IPC). This insight makes inter process communication a potential
target for software optimization and hardware acceleration.
27
Table 2
Smartphone details.
Technical specifications

Device model Nokia 6.1 Plus

Operating System Android Pie
Architecture ARM 64-bit
CPU Qualcomm Snapdragon 636
Cpu Cores 8
GPU Adreno (TM) 509
RAM 6 GB
Resolution 1080 × 2280
Display PPI 431

2. Methodology

2.1. Applications traced

We choose eleven applications for our study, each of which rep-
resents a common use case of a smartphone. For example, we in-
clude Google Chrome [13] as a browsing app, Youtube [17] as video-
streaming app, WhatsApp [16] as a messaging app, and Gmail [11]
as a mailing app. Most of the selected apps come pre-installed in the
majority of Android smartphones. We select the remaining apps based
on their popularity which we measure using their position on Google
Play [21] Store’s Top Charts. The selected apps were at the top of the
Top Charts when we performed our study .

Prior work [1] suggests that one should divide the applications into
regions-of-interest (ROI) to gain deeper insight into the applications. A
region-of-interest (ROI) is a smaller portion of the application’s execu-
tion which performs a particular task. For example, Google Chrome has
multiple regions-of-interest like performing a search, switching a tab,
and scrolling. Each of these ROIs deals with a specific functionality of
Google Chrome. The reason for dividing the applications into ROIs is
that these individual ROIs can directly influence user-experience and
studying them independently of each other reduces the complexity of
analysis that needs to be performed. We provide a comprehensive list
of all applications we trace and their ROIs in Table 1. Apart from the
ROIs mentioned in Table 1, we also trace the app launches for all apps.

2.2. Tools and setup

For system-level (app + operating system) tracing, we use the
Systrace [22] tool. Systrace is a tool shipped with Android Studio and
is primarily used for analyzing the performance of an Android device.
It is a wrapper around Atrace [23] and Ftrace [24]. Atrace performs
user space tracing while ftrace traces the Linux kernel. The traces
capture not only the threads spawned by the app, but also background
threads being executed by the Android operating system. From the
traces obtained using Systrace, we find the time for which each thread
executes on the processor core.

To trace the ROIs, we start Systrace tracing and perform the task

related to the ROI. We immediately stop Systrace tracing when the task
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Fig. 1. Effect of Binning. Results for Google Chrome’s scrolling ROI.

of the ROI ends. We perform tracing for each region of interest of each
app at least five times.

We perform our experiments on Nokia 6.1 Plus [25] smartphone.
It runs the stock Android Pie (Android 9) operating system. Further
details about the smartphone are presented in Table 2.

2.3. Binning threads

The Android operating system and the apps spawn a large number
of threads. Since Systrace performs system level tracing the generated
traces have information for a large number of threads. This leads to
the resulting plot being cluttered and difficult to interpret. Hence, to
reduce clutter and improve interpretability, we group threads working
for a common functionality into a single bin. We identify two major
bins which aid our analysis. They are:

• Frame Rendering Bin (FR Bin)
• Inter-Process Communication Bin (IPC Bin)

Fig. 1 shows the effect of thread binning. The pie chart on the
top in Fig. 1 shows the execution time distribution across individual
threads for Google Chrome’s scrolling ROI. After thread binning, the pie
chart on top is transformed to the one on the bottom. The latter shows
execution time distribution among selected bins and the remaining
threads. Observing the bottom pie-chart, we can easily infer that the
major portion of execution time is spent on frame rendering. We were

able to create two classes of thread bins based on the functionality
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Table 3
List of threads within bins.
Frame rendering bin

RenderThread
surfaceflinger
UiThread
Compositor
CrGpuMain
CrRendererMain
android.display
mdss_fb0
DispSync
android.anim

Above list is not exhaustive

Inter Process Communication Bin

Binder
HwBinder
Chrome_IOThread
Chrome_ChildIOT

of individual threads. While binning threads, we ensured that threads
were mapped to correct bins and that no thread was mapped to more
than one bin.

Frame Rendering Bin : The Frame Rendering (FR) bin is a group of
all threads which are responsible for rendering a frame on the mobile
device’s screen. Table 3 provides a list of threads within this bin.
The major threads within this bin are RenderThread, Surface-
Flinger and UiThread.

Inter Process Communication Bin : The Inter Process Communi-
cation (IPC) bin is a group of all threads that are executed to share
information between processes. Table 3 provides a comprehensive list
of all threads within this bin. The major threads within the IPC bin are
Binder and HwBinder.

3. Results and observations

In this section, we discuss the answers to the questions that we
initially set out to answer in Section 1.

3.1. What are the most time-consuming threads/bins per app?

Table 4 shows the most time consuming threads for each re-
gion of interest for all eleven applications. We observe that for most
ROIs across applications, RenderThread is the most time-consuming
thread. RenderThread is a system-managed thread that is primarily
responsible for offloading rendering work to GPU to reduce the burden
on UiThread [26]. By doing so it ensures the animations are smooth
even when the UiThread is delayed, which is essential to maintain
Quality-of-Service (QoS) for the user [26]. RenderThread is the
most time-consuming thread in ROIs like scrolling in Facebook and
Chrome, messaging using WhatsApp and Gmail, recording a video,
or playing a song in foreground on Spotify. All these ROIs involve
frequent modifications to the user display which justify most time being
consumed by RenderThread.

For the game Candy Crush, GLThread is the most time-consuming
thread. GLThread is also a rendering thread and is responsible for
performing OpenGL graphics rendering operations [27]. Similarly, for
Google Maps’ ‘‘Zoom into a location’’ ROI, GLViewThreadImp is the
most time consuming thread. GLViewThreadImp is responsible for
managing Views, which are basic building blocks of user-interface com-
ponents, of the OpenGL graphics library [28,29]. For Google Chrome
Search ROI, we observe that CrRendererMain is the most time-
consuming thread. CrRendererMain is the renderer thread for a
webpage. As per Chromium’s documentation, CrRendererMain runs
the javascript, html and css code which is displayed on the screen [30].
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Table 4
Most time-consuming thread and bin per ROI. Numbers within parenthesis indicate percentage execution time.

Application Region of Interest Most time consuming thread Most time consuming bin

Adobe Read PDF om.adobe.reade (13.6%) FR (26.7%)
Camera Take a picture PostProcessingImag (14.5%) IPC (30.3%)
Camera Record Video RenderThread (11.0%) IPC (22.1%)
Candy Crush Play 1 level GLThread (45.2%) FR (54.2%)
Facebook Scroll RenderThread (17.2%) IPC (23.1%)
Gmail Send Mail RenderThread (17.3%) IPC (29.8%)
Google Assistant Query RenderThread (11.2%) IPC (25.4%)
Google Chrome Scroll RenderThread (19.4%) FR (43.4%)
Google Chrome Search CrRendererMain (13.4%) IPC (33.8%)
Google Maps Search Location Jit thread pool (11.6%) IPC (26.4%)
Google Maps Zoom into Location GlViewThreadImp (17.1%) FR (26.6%)
Spotify Play Music in Background AndroidOut_1D (6.2%) IPC (20.6%)
Spotify Play Music in Foreground RenderThread (27.4%) FR (39.2%)
Whatsapp Send Message RenderThread (19.4%) IPC (35.8%)
YouTube Play Video ExoPlayerImplIn (8.8%) IPC (38.6%)
T
M
i

Overall, the most time-consuming threads for these ROIs are involved
in rendering the frame on user display.

For YouTube’s ‘‘Play a Video’’ ROI we observe that ExoPlayerIm-
plIn is the most time-consuming thread. This thread runs ExoPlayer
that is an alternative media player for Android [31,32]. For Cam-
era’s ‘‘Take a Picture’’ ROI, PostProcessingImag thread is the
highest time-consumer. From the thread’s name, we hypothesize that
this thread might be involved in an image’s post-processing which
involves tasks like setting the exposure, white balance, and applying
selected filters. Unfortunately, we do not find any documentation on
om.adobe.reade and AndroidOut_1D threads and hence cannot
comment on their functionality.

Overall, for 7 out of 15 ROIs concerning the eleven applications
involved in our study, RenderThread is the most time-consuming
thread. Further, the highest time-consuming threads in 10 of 15 ROIs
are working on the appropriate rendering of the frame. One should
also note that the execution time of RenderThread is not contiguous.
xecution times of multiple instances of RenderThread are added
ogether to obtain the total execution time. We find that each individual
nstance of RenderThread is short-lived, on average it takes 0.73 ms
o execute, and there exists thousands (1000–2000) of such instances
ithin each region of interest.

The above results may lead one to conclude that frame rendering
s the major time consumer for the applications since the most time
onsuming thread for majority of applications is related to frame-
endering. However, we find that this is not the case when we analyze
he results for thread bins. Table 4 shows that the most time consuming
in is the Inter Process Communication (IPC) bin. The IPC bin is the
ighest time consumer for 10 out of 15 ROIs across the applications.
his indicates that even though the major time-consuming thread is
elated to frame rendering, as a whole, threads used to communicate
etween processes are the larger time-consumer than threads involved
n frame rendering. This observation indicates that inter process com-
unication might be a bigger bottleneck for mobile applications than

rame rendering.

.2. What are the time-consuming threads which are common across apps?

We isolate the common time-consuming threads across applica-
ions. We believe optimizing these threads would result in higher
erformance benefits across applications. We observe the following
ime-consuming threads to be common across apps:
RenderThread: It is the most time consuming thread for 7 out of

5 ROIs under consideration and it is one of the top three most time
onsuming threads for 11 out of 15 ROIs. It offloads the rendering tasks
o GPU from the UiThread, to maintain the smoothness of animations
y avoiding frame drops [26].
surfaceflinger: It is the dominant time-consuming thread after

enderThread within the Frame Rendering bin. It is one of the
29
able 5
ost time-consuming thread and bins on app launch. Numbers within parenthesis

ndicate the percentage of execution time occupied by the thread/bin.
Application Most time consuming thread Most time consuming bin

Adobe om.adobe.reade (12.6%) FR (23.5%)
Camera RenderThread (14.9%) IPC (35.2%)
Candy Crush GLThread (44.6%) FR (57.9%)
Facebook Jit thread pool (11.6%) IPC (12.6%)
Gmail Jit thread pool (10.2%) IPC (32.1%)
Google Assistant RenderThread (11.6%) IPC (39.7%)
Google Chrome RenderThread (11.6%) IPC (36.6%)
Google Maps Jit thread pool (14.0%) IPC (23.2%)
Spotify m.spotify.musi (13.9%) FR (18.0%)
Whatsapp RenderThread (19.4%) IPC (36.0%)
YouTube RenderThread (12.5%) IPC (25.1%)

top three most time consuming threads for 5 out of the 15 ROIs.
The surfaceflinger thread takes in multiple items from various
graphics buffers and composes them into a single buffer which is then
sent to the user display [33].

Binder: The Binder threads are a major time consumer for the
Inter Process Communication bin. They are used for communication
within application processes and within framework and application
processes [34]. The framework processes are managed by the Android
framework and are device-independent.

HwBinder: Similar to Binder threads, HwBinder threads are
also a major time consumer for the Inter Process Communication bin.
They are used for communication between framework and vendor
processes [34]. The vendor processes are processes spawned by the
code that the vendors add to Android framework and are generally
device-dependent.

3.3. What are the time-consuming threads during an app launch?

App launches are crucial regions of interest in the context of smart-
phones. One might think that reducing app launch time results in fewer
benefits than reducing the app’s running time. Although this statement
is true and intuitive, app launches are important because of the usage
pattern of smartphones. Many users have a large number of short-lived
sessions on their smartphones. These short sessions last for less than
10 seconds [20]. During these short sessions, a long app launch time
significantly degrades user experience, which is the reason why several
efforts have been made to optimize app launch time. For example,
Android preserves an apps memory even after it is closed, so the time
taken by an app launch in the future can be reduced [35].

We trace the app launches of each of the apps listed in Table 1.
Table 5 shows the most time-consuming thread and bin during the
launch of the applications. We observe that RenderThread con-

sumes a large percentage of execution time for the majority of the
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applications. During an app launch, RenderThread is the most time-
consuming thread for 5 out of the 11 apps, while it is in the top 2 most
time-consuming threads for 9 out of the 11 apps. This is expected since
when a new application is launched, new views corresponding to the
launched application need to be rendered on the screen.

Similar to other ROIs, the Inter Process Communication bin is the
highest time consumer during an app launch. This indicates that opti-
mizing Inter process communication would also optimize app launches
which would directly improve Quality of Service (QoS).

4. Related work

Several prior publications have focused on evaluating performance
and energy of smartphones by characterizing the hardware. For exam-
ple, Gao et al. [6,7] demonstrated that mobile applications had low
Thread-Level Parallelism (TLP) leading to under utilization of allocated
cores. A recent work by [5] studied the core utilization in smartphone
architectures which have both big and little cores. They report that
standalone applications rarely utilize all big cores during execution,
however during application launches or updates all big cores are uti-
lized to meet latency targets and avoid degradation in user experience.
Most of these works primarily try to answer the question, ‘‘For what
percentage of execution time is the core being utilized?’’. While answering
the above question is crucial to identify performance inefficiencies, it
does not provide insights into the system software stack that may help
alleviate these bottlenecks. Our work supplements the prior work by
identifying the functionalities (IPC and RenderThread) which have the
highest execution time, which on optimization would lead to significant
performance benefits.

There have been some research that takes a software-first approach
for performance analysis of smartphone applications. [36] use static
code analysis to identify frequently occurring performance bug pat-
terns in applications. Further, [37] develop a tool that can automat-
ically detect performance bottlenecks on Android smartphones. How-
ever given the nature of the Android ecosystem and the frequent
major release cycles require constant performance bottleneck analysis
of the system software stack as well. Our work complements such
works which perform a software-focused performance analysis. Instead
of using any form of static analysis, we identify the time consuming
threads of smartphone applications by actually running the applica-
tions on a real-world smartphone and provide targets for performance
optimization.

5. Limitations and future work

Our current study is limited to Android Version 9. Because of the
quick moving nature of the Android ecosystem, owing to yearly release
cycles, new versions of Android had been released while we were
undertaking this study.

In addition, there is a lack of performance analysis tools for the
Android ecosystem, unlike x86/x64, where a large number of open
source, well maintained performance analysis tools exist, this is not
the case for Android on ARM. Lack of performance analysis tools
severely hampers the types of analyses that can be carried out. The
analysis done in this paper was carried out using Systrace [22], which
is supported for Android version 9. However, more recent Android
versions provide a tool called Perfetto [38] for system-level tracing.
Further, Perfetto on Android 9 requires the system tracing service to be
turned on, which was not possible due to the fact that we performed
our experiments on stock android [39]. These factors compelled us to
limit out study to Android 9. However, we believe a study similar to
this work across Android versions could potentially reveal important
performance optimization trends. We also believe future work would
be a more comprehensive study by using more smartphone models and
different Android versions on each model.

The scope of this work is limited to answering the question ‘‘Which

functionality or subsystem of the Android system stack takes up highest
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portion of execution time?’’. Although extremely important, this work
does not reveal what part within the subsystem needs to be optimized
and what kind of optimizations would be beneficial. For example, our
work indicates that the IPC bin consumes higher portion of execution
time but it does not point out which exact components of the IPC
subsystem should be optimized to reduce this time. As we have alluded
to before, this is primarily due to the of lack of tools which can be used
for such analysis. Tools like Systrace do not provide such information.

The presented analysis is limited to an Android smartphone. We
could not perform similar analysis on smartphones with other operating
systems because there do not exist any open-source tools that may act
as alternatives/equivalents of Systrace for those operating systems.

Finally, the work focuses on Regions of Interest (ROIs) for analyzing
the execution time breakdown. The authors have tried to select the
most relevant ROIs for each application, which is similar to studies
done in the past, which are based on the most common user behavioral
patterns, and whose performance determined user engagement [1,20].
However, we acknowledge that the set of ROIs for each application is
not necessarily the most representative nor is it necessarily exhaustive.
Future work will focus on identifying a much more representative and
exhaustive set of regions-of-interest for the application.

6. Conclusion

In this work, we performed a system level performance bottlenecks
analysis for an Android smartphone for eleven popular applications.
Our results demonstrate that for all applications, the highest time con-
suming thread is either RenderThread or another thread related to
frame rendering. Further, on grouping threads into bins based on their
functionality, we find that the highest time consuming functionality
is Inter Process Communication. We find similar distribution in time
consumption for both app executions and app launches. Our results
identify that software optimization and hardware acceleration should
target Inter Process Communication to maximize performance and
improve user experience.
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A B S T R A C T

With the development of the Electronic Health Record (EHR) technique, vast volumes of digital clinical data are
generated. Based on the data, many methods are developed to improve the performance of clinical predictions.
Among those methods, Deep Neural Networks (DNN) have been proven outstanding with respect to accuracy by
employing many patient instances and events (features). However, each patient-specific event requires time and
money. Collecting too many features before making a decision is insufferable, especially for time-critical tasks
such as mortality prediction. So it is essential to predict with high accuracy using as minimal clinical events as
possible, which makes feature selection a critical question. This paper presents detailed benchmarking results
of various feature selection methods, applying different classification and regression algorithms for clinical
prediction tasks, including mortality prediction, length of stay prediction, and ICD-9 code group prediction.
We use the publicly available dataset, Medical Information Mart for Intensive Care III (MIMIC-III), in our
experiments. Our results show that Genetic Algorithm (GA) based methods perform well with only a few
features and outperform others. Besides, for the mortality prediction task, the feature subset selected by GA
for one classifier can also be used to others while achieving good performance.
1. Introduction

Over the past decades, the Electronic Health Record (EHR) tech-
nique is developed; vast volumes of digital clinical data are generated,
making it possible for Clinical Decision Support Systems (CDSSs) to
make better decisions. For example, public databases such as MIMIC-
III [1] have promoted the research in clinical predictions. Based on
those databases, different severity scoring systems, traditional ma-
chine learning algorithms, and DNNs are developed and continuously
improved to achieve better clinical prediction tasks such as patient
mortality, disease classification, and length of hospital stay.

Traditional severity scores like Simplified Acute Physiology Score
(SAPS-II) [2], the Sepsis-related Organ Failure Assessment (SOFA) [3],
and Acute Physiology and Chronic Health Evaluation (APACHE) [4] are
standard for mortality prediction in practice. Clinicians usually choose
the patient-specific events they used based on their experience. Then
a standard process is implemented. First, a severity score is calculated
based on the relative events, usually measured within the first 24 h
after ICU admission. Second, a simple model such as logistic regression
is applied to the score to predict the final death probability.

Recent work shows that DNN and Super Learner (SL) algorithms
perform better than single traditional classifiers and severity scoring
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E-mail addresses: zhangfan@ict.ac.cn (F. Zhang), luochunjie@ict.ac.cn (C. Luo), lanchuanxin@ict.ac.cn (C. Lan), zhanjianfeng@ict.ac.cn (J. Zhan).

systems [5–8]. To improve the predictive performance, many DNN
models are developed. Purushotham et al. [6] proposed a Multimodal
Deep Learning Model (MMDL) to process an extensive feature set,
which consists of 141 features, and got very good predicting results.
Harutyunyan et al. [7] proposed a multitask LSTM-based method to
predict four clinical prediction tasks. In addition to DNN, SL is also
studied extensively and shows promising results. Pirracchio et al. [5]
provided and assessed the performance of the Super ICU Learner Algo-
rithm (SICULA). Lee et al. [8] trained case-specific Random Forests (RF)
to make mortality prediction and exhibited the best AUROC compared
with other single models such as death counting, logistic regression,
and decision tree.

No matter which method we use, feature selection is an important
part. First, medical databases store vast amounts of clinical events and
not all of them are related to the target task. Second, minimal clinical
events enable doctors to make timely decisions. For severity scoring
systems, a set of alternated related events is chosen based on clinicians’
experience. A simple subset of those events is selected according to
correlation coefficient or other index associated with the target concept
of the prediction task [2–4,10]. Traditional machine learning and deep
learning algorithms usually take the same features directly used in
https://doi.org/10.1016/j.tbench.2021.100004
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Table 1
Comparison of benchmarking works.

[7] [6] [9] This work

Number of features Smaller feature set ✓ ✓ ✓ ✓

Larger feature set ✓ ✓ ✓

Feature type Non-time series ✓ ✓ ✓

Time-series ✓ ✓ ✓ ✓

Feature selection methods
Severity score ✓ ✓ ✓ ✓

Machine learning ✓ ✓

Evolutionary computing GA ✓ ✓

Classifications methods Traditional machine learning ✓ ✓ ✓ ✓

DNN ✓ ✓ ✓

Prediction tasks

Mortality ✓ ✓ ✓ ✓

Length of stay ✓ ✓ ✓

Phenotyping ✓

ICD-9 code group ✓ ✓ ✓
severity scores [6,7] or take a similar method to select features [9]. In
this paper, we do an exhaustive evaluation of various feature selection
methods, and our main contributions are listed below.

(1) Benchmarking feature selection methods including traditional
severity scores, machine learning-based feature selection meth-
ods, and evolutionary computing GA for three clinical prediction
tasks.

(2) Compare feature subsets selected by GA for different classifiers.
The results show that for the mortality prediction task, the
features chosen by GA are universal for different classifiers.

The rest of this paper is organized as follows: in Section 2, we provide
an overview of the related work; in Section 3, we describe the dataset
and methods we employed; in Section 4, the benchmarking experiments
and results are reported and discussed in detail; in Section 5, we
summarize the paper.

2. Related work

First, we summarize the feature selection algorithms that are ap-
plied in the medical field. Then we discuss the existing benchmarks
on healthcare datasets, especially for MIMIC-III. The comparison of
benchmarks is listed in Table 1.

The first severity scores proposed such as APACHE [4], APACHE-
II [11], and SAPS [12] selected features based on experience of medical
experts. Further work usually used statistical methods to calculate
correlation coefficient associated with target prediction task, such as [2,
13,14]. Since publication, all of the methods have been continuously
modified to improve the predictive performance [15]. A lot of work
employed GA to select risk factors and predict in-hospital mortality [9,
10,16–19]. In this work, we report an exhaustive set of benchmarking
results of feature selection methods, including GA.

Public datasets such as MIMIC-III have promoted the benchmarking
of models for clinical prediction tasks. Purushotham et al. [6] bench-
marked deep learning models based on an extensive feature set and get
high Area Under the Receiver Operating Characteristic Curve (AUROC)
and Area under Precision–Recall Curve (AUPRC). The complete feature
set we used is the same as the feature set C in [6], which contains
136 time-series features and five non-time series features. Harutyunyan
et al. [7] first benchmarked four clinical prediction tasks and presented
a multitask classifier. The most significant difference between us and
previous works is that we benchmark feature selection algorithms, es-
pecially GA, instead of classification or regression algorithms. Krishnan
et al. [9] proposed a GA-based model to make mortality prediction. We
extend the benchmark to the other two prediction tasks and combine
GA with DNN models to get higher AUROC and AUPRC. Johnson
et al. [20] reproduced 28 published works for mortality prediction, and
the results showed that it is a big challenge to reproduce other people’s
work without public code.
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Table 2
Summary statics of cohort selection.
Data Total

Admissions in the MIMIC-III (V1.4) 58,976
The first admissions 46,520
First admissions of adult patients 38,424
Patients died 24 h after the admissions 35,643

3. Materials and methods

3.1. Dataset preprocessing

MIMIC-III is developed by the Massachusetts Institute of Technology
(MIT)’s Laboratory for Computational Physiology and contains around
60,000 intensive care unit admissions. MIMIC-III (v1.4) consists of
46,520 distinct patients and 58,976 admissions, from where we select
35,643 admissions for our experiments. We extracted data from 5
commonly used tables, namely inputevents, outputevents, chartevents,
labevents, prescriptions tables. The statistics of cohort selection are
tabulated in Table 2. We selected the patient cohort based on the
following criteria:

• Only adult patients, whose age was >15 years at the time of ICU
admission, were selected.

• Only the first admission was included for each patient. This
decision uses the earliest available data to predict and ensure
similar data selection compared to other related works.

• We only include the patients who died 24 h after the first admis-
sion.

Because the original data from MIMIC-III has erroneous records
such as missing values, inconsistent units, etc., we clean data according
to [6], which includes the following procedures: (a) Unify the units. (b)
Select one valid record. For multiple records simultaneously, take the
average values for numerical data and bring the first for categorical
data. (c) Re-sample and fill-in the data. Time-series data is divided
into hours and a forward–backward imputation is done to impute the
missing values.

3.2. Prediction tasks

For benchmark, we select three clinical prediction tasks which
are important in critical care research and are commonly studied by
machine learning researchers. The first is in-hospital mortality which
is important for doctors to take effective actions for patient care in
Intensive Care Units (ICUs) [9]. The second is ICD-9 code group predic-
tion, where we divide the ICD-9 codes into 20 groups according to [6]
and treat it as a multi-classification problem. The third is length of stay

prediction, which is to predict the hospital stay after admission.
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Table 3
Genetic algorithm.

Genetic Algorithm

Input: Dataset D(X, Y) , classifier C and target number of features N
Output: Optimal N features X′ for C
1. Randomly generate N features from X as X0
2. Calculate fitness for X0, which is AUC for D(X0, Y) and C.
3. Set X′ =X0
4. while i ≤ 10000 do
5. Generate a new feature set X𝑖

by randomly replacing one feature in X′

6. Calculate fitness for X𝑖
7. if X𝑖.fitness > X′ .fitness:
8. X′ =X𝑖
9. if X′ .fitness ⩾ 1
10. return X′

11. return X′

3.3. Feature selection/extraction methods

We extract 136 time-series features and five non-time series features
as our full feature set according to [6]. Those features are selected
based on clinical significance and missing rate while containing all fea-
tures used in severity scoring systems such as SAPS-II and SOFA. Based
on this feature set, different feature selection methods are evaluated
including GA based methods, scoring methods and machine learning
methods.

GA is a metaheuristic inspired by the process of natural selection.
It can be used to generate high-quality solutions to optimization and
search problems by the process of mutation, crossover, and selec-
tion [21]. It is proved to be useful in feature selection as a wrapper
feature selection technique [9]. Table 3 lists the GA procedure we used.

For scoring methods, we choose two popularly used severity scores,
namely SAPS-II and SOFA. SAPS-II [2] is designed to predict the prob-
ability of hospital mortality. It can be calculated based on 17 variables
which can be expand into 20 raw features of our complete feature set.
SOFA [3] score can be calculated based on 6 variables which can be
expand into 17 raw features of our complete feature set.

For machine learning methods, Principal Component Analysis
(PCA) [22] and Recursive Feature Elimination (RFE) are chosen.

PCA is a widely used filter feature extraction technique, which
projects the data to a new orthogonal space and then chooses a few
of the essential features to achieve dimensionality reduction. RFE is a
wrapper feature selection technique that selects features based on the
accuracy of the subsequent classifiers.

3.4. Classification/regression methods

For machine learning we use three common commonly used algo-
rithms: decision tree, Bayesian ridge regression, and logistic regres-
sion. For DNN we use three types of deep models, namely Feedfor-
ward Neural Networks (FNN), Recurrent Neural Networks (RNN), and
Multimodal Deep Learning Model (MMDL) according to [6].

4. Benchmarking results

Based on the MIMIC-III dataset, we report the experimental results
for three prediction tasks, which answer the following questions: (a)
Can DNN models use relatively small feature subsets to perform as well
as the full feature set? (b) Whether the subset of features selected by
GA is universal for different classifiers of the same task?
34
4.1. Mortality prediction task evaluation

Tables 4, 5 show the results of mortality prediction task. Because
PCA cannot handle time-series data, it is blank for RNN and MMDL
results. We can observe that: (a) Deep learning-based prediction mod-
els perform better than traditional machine learning-based models
and obtain around 2%–20% and 10%–30% improvement for AUROC
and AUPRC, respectively. (b) GA performs better and obtains around
6%–18% and 10%–40% improvement over other methods for AUROC
and AUPRC, respectively. (c) Compared with using all features (141
features), GA gets similar or even better results with only 20 features.

Fig. 1 shows the result of applying the features selected by GA-
MMDL to other classifiers. We can observe that: (a) Although GA is a
wrapper feature selection method, the features that GA-MMD chooses
can also be used to other classifiers and achieve almost as good results
as the GA combined with the specific classifier.

4.2. ICD-9 code prediction task evaluation

We divided the dataset into 20 classes according to [6] and treated
it as a multi-classification task. However, because Bayes and LR in
the package of scikit-learn do not support multi-classification tasks,
we perform binary classification for these two algorithms and then
calculate the average AUROC and AUPRC as the final results.

Tables 6, 7 show the results of icd-9 code group prediction task. We
can observe that: (a) Deep learning prediction models perform better
than traditional machine learning models and obtain around 9%–25%
and 20%–35% improvement for AUROC and AUPRC, respectively. (b)
GA performs better and obtains around 1%–10% improvement over
other methods for both AUROC and AUPRC. (c) Compared with using
all features (141 features), GA gets similar or even better results with
only 20 features.

Fig. 2 shows the result of applying the features selected by GA-
MMDL to other classifiers. We can observe that: (a) Only for deep
learning models, the features that GA-MMDL chooses achieve similar
results with the GA combined with the specific classifier. For machine
learning classifiers, the features that GA-MMDL chooses do not perform
well.

4.3. Length of stay prediction task evaluation

Table 8 shows the results of the length of the stay prediction task.
We remove the LR algorithm since it is not capable of processing
regression problems. We can observe that: (a) GA performs better than
others and obtains around 6%–30% improvement over other methods
in terms of MSE (in hours). (b) Compared with using all features (141
features), GA gets similar or even better MSE with only 20 features,
save time and money.

Fig. 3 shows the result of applying the features selected by GA-
MMDL to other regressors. We can observe that: (a) Only for the RNN
model, the features GA-MMDL selects have good performance. For the
other classifiers, the features that GA-MMDL chooses do not perform
well.

4.4. Statistical significance tests of GA

From the above results, we can see that GA always performs better
than other feature selection methods. We think this is because as
the number of iterations (epochs) increases, GA can reach the local
optimum. If there are enough iterations, GA can even reach the global
optimum. The price of high precision is time overhead. However, this
feature selection method only need to be trained once offline and in
actual application doctors can quickly make a diagnosis with a few
features.

To further check whether GA’s improved performance is statistically
significant compared with others we conducted statistical tests. The
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Table 4
AUROC of in-hospital mortality prediction task.
Algorithm Score method (Features) Feature extraction/selection (Features) All features (141)

SAPS-II (20) SOFA (17) PCA (20) RFE (20) GA (20)

ML
DT 0.6055 ± 0.0171 0.6780 ± 0.0052 0.5856 ± 0.0119 0.7009 ± 0.0066 0.7657 ± 0.0085 0.7631 ± 0.0119
Bayes 0.8002 ± 0.0046 0.8018 ± 0.0011 0.7672 ± 0.0057 0.8166 ± 0.0085 0.9158 ± 0.0058 0.9177 ± 0.0047
LR 0.5448 ± 0.0042 0.5570 ± 0.0043 0.5824 ± 0.0691 0.5581 ± 0.0044 0.7206 ± 0.0090 0.7348 ± 0.0053

DL
FNN 0.7945 ± 0.0059 0.7978 ± 0.0036 0.7863 ± 0.0067 0.8034 ± 0.0089 0.9207 ± 0.0026 0.9263 ± 0.0032
RNN 0.8459 ± 0.0017 0.8651 ± 0.0037 – 0.8309 ± 0.0016 0.9326 ± 0.0064 0.9312 ± 0.0023
MMDL 0.8532 ± 0.0033 0.8781 ± 0.0003 – 0.8282 ± 0.0057 0.9376 ± 0.0036 0.9345 ± 0.0029
Table 5
AUPRC of in-hospital mortality prediction task.
Algorithm Score method (Features) Feature extraction/selection (Features) All features (141)

SAPS-II (20) SOFA (17) PCA (20) RFE (20) GA (20)

ML
DT 0.1992 ± 0.0121 0.3196 ± 0.0035 0.1756 ± 0.0080 0.3619 ± 0.0087 0.4652 ± 0.0024 0.4564 ± 0.0141
Bayes 0.3374 ± 0.0158 0.3795 ± 0.0154 0.2706 ± 0.0040 0.3790 ± 0.0183 0.6109 ± 0.0271 0.6333 ± 0.0096
LR 0.1549 ± 0.0041 0.1750 ± 0.0021 0.1498 ± 0.0146 0.1696 ± 0.0087 0.4301 ± 0.0088 0.4320 ± 0.0025

DL
FNN 0.3548 ± 0.0139 0.3871 ± 0.0073 0.2900 ± 0.0196 0.4010 ± 0.0076 0.7050 ± 0.0059 0.7122 ± 0.0119
RNN 0.4299 ± 0.0116 0.5454 ± 0.0077 – 0.4396 ± 0.0101 0.7486 ± 0.0189 0.7283 ± 0.0074
MMDL 0.4410 ± 0.0116 0.5687 ± 0.0070 – 0.4439 ± 0.0153 0.7551 ± 0.0093 0.7389 ± 0.0057
Fig. 1. Apply the features selected by GA-MMDL to other classifiers for the mortality prediction task.
Table 6
AUROC of icd-9 code group prediction task.
Algorithm Score method (Features) Feature extraction/selection (Features) All features (141)

SAPS-II (20) SOFA (17) PCA (20) RFE (20) GA (20)

ML
DT 0.5735 ± 0.0004 0.5746 ± 0.0003 0.5609 ± 0.0005 0.5633 ± 0.0011 0.5875 ± 0.0005 0.5868 ± 0.0011
Bayes 0.6818 ± 0.0010 0.6694 ± 0.0023 0.6523 ± 0.0027 0.6993 ± 0.0052 0.7542 ± 0.0036 0.7505 ± 0.0023
LR 0.5454 ± 0.0004 0.5395 ± 0.0008 0.5438 ± 0.0006 0.5687 ± 0.0024 0.6064 ± 0.0023 0.6032 ± 0.0011

DL
FNN 0.8087 ± 0.0008 0.8034 ± 0.0014 0.8036 ± 0.0014 0.8158 ± 0.0002 0.8383 ± 0.0005 0.8408 ± 0.0007
RNN 0.8147 ± 0.0012 0.8121 ± 0.0001 – 0.8229 ± 0.0003 0.8351 ± 0.0005 0.8427 ± 0.0009
MMDL 0.8197 ± 0.0007 0.8179 ± 0.0003 – 0.8217 ± 0.0007 0.8384 ± 0.0007 0.8440 ± 0.0007
Table 7
AUPRC of icd-9 code group prediction task.
Algorithm Score method (Features) Feature extraction/selection (Features) All features (141)

SAPS-II (20) SOFA (17) PCA (20) RFE (20) GA (20)

ML
DT 0.3719 ± 0.0012 0.3740 ± 0.0018 0.3522 ± 0.0013 0.3538 ± 0.0014 0.3825 ± 0.0009 0.3820 ± 0.0008
Bayes 0.4523 ± 0.0006 0.4440 ± 0.0031 0.4096 ± 0.0031 0.4722 ± 0.0052 0.5206 ± 0.0051 0.5201 ± 0.0020
LR 0.3440 ± 0.0004 0.3400 ± 0.0005 0.3414 ± 0.0002 0.3739 ± 0.0035 0.4500 ± 0.0043 0.3896 ± 0.0018

DL
FNN 0.6698 ± 0.0033 0.6602 ± 0.0022 0.6552 ± 0.0047 0.6717 ± 0.0003 0.7148 ± 0.0009 0.7265 ± 0.0007
RNN 0.6820 ± 0.0006 0.6780 ± 0.0005 – 0.6897 ± 0.0008 0.7148 ± 0.0018 0.7311 ± 0.0022
MMDL 0.6911 ± 0.0021 0.6902 ± 0.0004 – 0.6925 ± 0.0029 0.7214 ± 0.0015 0.7340 ± 0.0005
results are tabulated in Table 9. We can see that GA is statistically
significant for mortality and length of stay prediction tasks but not
for ICD-9 code group classification. This may be because it is more
difficult to improve AUROC and AUPRC of multi-classification than
binary-classification tasks.
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5. Summary

This paper presented comprehensive benchmarking results of dif-
ferent feature selection methods and classification algorithms on three
clinical prediction tasks. We demonstrated that: (a) GA always performs
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Fig. 2. Apply the features selected by GA-MMDL to other classifiers for icd-9 code prediction task.
Table 8
MSE of length of stay prediction.

Algorithm Score method (Features) Feature extraction/selection (Features) All features (141)

SAPS-II (20) SOFA (17) PCA (20) RFE (20) GA (20)

ML DT 54344.8815 ± 2390.9406 52836.9795 ± 3621.4408 54717.3409 ± 709.7653 48846.0888 ± 3862.0252 43468.6583 ± 2223.4084 45166.0388 ± 2853.9258
Bayes 58715.9520 ± 2012.4531 74876.8679 ± 22148.1398 58784.5393 ± 3291.4266 61219.8744 ± 3515.9883 53172.5127 ± 4091.2336 52564.0560 ± 2409.1296

DL
FNN 60096.6133 ± 4174.1588 61843.7995 ± 6065.2225 57233.4701 ± 6296.6451 60358.6628 ± 4690.3527 53843.4805 ± 3482.8460 60998.5990 ± 9321.8411
RNN 55031.8490 ± 3363.6808 54386.3086 ± 1304.0803 – 52148.4479 ± 1121.8866 43776.1263 ± 1633.5601 42790.0521 ± 1290.5697
MMDL 54876.1159 ± 2560.8740 54138.1146 ± 2704.3223 – 51897.9544 ± 1752.6679 44385.0039 ± 3158.0891 43398.7773 ± 4523.6935
Fig. 3. Apply the features that GA-MMDL selects to other classifiers for the length of
the stay prediction task.

Table 9
Whether is statistically significant with significance level 0.05.

Task Metric SAPS-II SOFA PCA RFE

Mortality AUROC Yes No Yes Yes
AUPRC Yes Yes Yes Yes

ICD9 AUROC No No No No
AUPRC No No No No

Length of stay MSE Yes Yes Yes Yes

better than other feature selection methods; for mortality and length
of stay tasks, the improved performance is statistically significant.
(b) Compared with using all features, GA gets similar or even better
predictive results with much fewer features, save time and money,
which makes it more advantageous to detect and collect clinical data.
(c) Other classifiers can also use the features that GA-MMDL selects for
the mortality prediction task, achieving good performance.

As part of future work, we plan to make a severity-scoring system
based on the features that GA-MMDL selects for the mortality task. This
system promises doctors to quickly and accurately assess the severity
of a patient’s disease with a few simple variables.
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A B S T R A C T

Deep learning (DL) workloads and their performance at scale are becoming important factors to consider as
we design, develop and deploy next-generation high-performance computing systems. Since DL applications
rely heavily on DL frameworks and underlying compute (CPU/GPU) stacks, it is essential to gain a holistic
understanding from compute kernels, models, and frameworks of popular DL stacks, and to assess their
impact on science-driven, mission-critical applications. At Oak Ridge Leadership Computing Facility (OLCF),
we employ a set of micro and macro DL benchmarks established through the Collaboration of Oak Ridge,
Argonne, and Livermore (CORAL) to evaluate the AI readiness of our next-generation supercomputers. In this
paper, we present our early observations and performance benchmark comparisons between the Nvidia V100
based Summit system with its CUDA stack and an AMD MI100 based testbed system with its ROCm stack.
We take a layered perspective on DL benchmarking and point to opportunities for future optimizations in the
technologies that we consider.
1. Introduction

The share of deep learning (DL) scientific applications has steadily
increased in the allocation portfolio among High-Performance Comput-
ing (HPC) centers. In recent years, it has reached a tipping point that
the procurement of next-generation HPC infrastructures has to take the
performance of the DL stack into consideration. In the case of DOE
leadership class platforms, a Collaboration of Oak Ridge, Argonne, and
Livermore (CORAL) has established a set of benchmarks to gauge the
hardware/software competitiveness. For the first time in the CORAL-
2 benchmarks [1] suite, DL workloads are included in the evaluation
for the acquisition of the systems: Frontier at Oak Ridge, Aurora at
Argonne, and El Capitan at Livermore. Ranging from DL kernels to
distributed training, the CORAL-2 DL benchmarks consist of micro-
benchmarks, such as DeepBench [2], and DL suites including both
ResNet50 on ImageNet [3] and application benchmarks such as the can-
cer distributed learning environment (CANDLE) [4]. Comparing to the
industry-led benchmarking effort, MLCommons HPC (also referred to as
MLPerf HPC [5]), the CORAL-2 benchmarks focus more on throughput
and fundamental building blocks.

✩ This manuscript has been co-authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government
retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to
these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
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E-mail addresses: yinj@ornl.gov (J. Yin), tsarisa@ornl.gov (A. Tsaris), dashs@ornl.gov (S. Dash), rgmiller@ornl.gov (R. Miller), fwang2@ornl.gov

(F. Wang), shankarm@ornl.gov (M. Shankar).

Regardless of the increasing complexities of deep neural net (DNN)
models, the compute operations essentially boil down to three types
of mathematical kernels, i.e., general matrix multiply (GEMM), convo-
lution, and recurrent operation. Considering that distributed training
at scale has became a common practice at data centers, the commu-
nication operation has to be taken into account as well. The overall
performance of DL applications is hence mostly determined by the
hardware/software stack for the aforementioned three mathematical
and one communication operations. (While I/O is also an important
determining factor, the benchmarks we consider here do not face an
I/O bottleneck when high-performance node local storage, e.g., SSD, is
used for the data and proper pipelining practices are followed.)

Different from simulation codes that traditionally dominate HPC
workloads, DL applications rely heavily on the underlying frameworks,
e.g., TensorFlow [6] and PyTorch [7], which provide all the building
blocks from model components to training and inference supports. On
the one hand, this ecosystem lowers the barrier for DL application
developers; on the other hand, it requires hardware vendors to provide
an optimized DL software stack to support high-level frameworks.

Currently, Nvidia GPUs are the major platforms for DL workloads,
and the corresponding software stack, i.e. CUDA [8], cuDNN [9], and
https://doi.org/10.1016/j.tbench.2021.100005
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Fig. 1. Comparisons of simulation and learning benchmarks. The overall targets are similar, but facility focus varies due to distinctive development characteristics, e.g. framework
plays a much bigger role in learning.
NCCL [10], are the dominant workhorses. As its counterpart, AMD
GPUs and the associated ROCm [11], MIopen [12], and RCCL [13]
stack, provide a similar ecosystem for DL applications. Though the
Nvidia stack is more mature and widely deployed, the AMD stack is en-
tirely open-sourced and progressing, and both platforms are supported
by popular DL frameworks such as TensorFlow and PyTorch.

Employing the CORAL-2 DL benchmarks, in this paper we eval-
uate the performance of an early-access testbed for the upcoming
Frontier Exascale system. From kernel primitives, model workloads,
to framework and applications, we systematically explore benchmark
performance differences between the MI100 based testbed with ROCm
stack and the V100 based Summit [14] system with CUDA stack. Our
contributions are the following,

• From the perspective of HPC facilities, we propose a layered
approach and associated metrics, establish Roofline model, and
FOM (Figure of Merits) to evaluate DL workloads from primitive
kernels, popular models, to frameworks and applications.

• We provide the first look at an early-access emerging platform
based on AMD MI100 GPUs, and show the performance com-
parisons against a top Nvidia V100 based system in production
today.

• We introduce and leverage machine learning (ML) methods (XG-
Boost [15]) to model the relationship between input parameters
and performance outcomes. It lays the groundwork to identify
dominant factors to consider for further and future optimizations.

• We show an one-on-one comparison of the resource utilization for
our two DL stacks on the same workloads.

The rest of the paper is organized as follows: Section 2 provides
general background on differentiating aspects of traditional simulation-
based HPC workloads versus emerging DL workloads, as well as an
overview of DL benchmarks proposed for the CORAL systems. Section 3
details a layered approach, methodology, and metrics we will use for
performance evaluation and comparison. Section 4 presents our results
based on the proposed methodology covering compute kernel, model
and workloads, frameworks, and applications, which aims to provide an
end-to-end perspective on key performance metrics. Section 5 presents
our conclusions and discusses opportunities for future work.

2. Background and overview

With the rise of DL applications and specialized hardware, DL
benchmarking [16] has attracted a lot of attentions recently. Ranging
from application level benchmarks, such as MLPerf, to kernel and
model level benchmarks, such as DeepBench and HPL-AI [17], the
scope touches almost every aspect of DL. The areas of focus, however,
are quite different, as shown in Fig. 1. For application developers,
the time-to-solution matters most. But for an emerging field such as
DL, where the scientific DL community codes are still maturing in
comparison to well-adopted simulation codes (e.g., LAMMPS [18]),
understanding the kernel performance is of greater interest.
39
Table 1
CORAL-2 kernel, model workload, framework, and application benchmarks for
learning.
Type Benchmark Task Distributed

Kernel

DeepBench
GEMM N
CNN N
RNN N

N/RCCL-tests

Allreduce Y
Allgather Y
Reduce Y
ReduceScatter Y

Model Workload Deep Learning Suite

AlexNet N
GoogleNet N
OverFeat N
VGG N
RNN-Net N

Framework TF_CNN_Benchmark ResNet50 Y

Application CANDLE P1B1 N
P3B1 N

At HPC facilities, we make the following observations regarding
traditional simulation and DL applications:

1. Unlike simulation applications, most DL applications strongly
depend on the frameworks, and are implemented in high-level
scripting languages and use pre-compiled framework binaries at
run time.

2. The number of DL frameworks are converging to the two most
popular ones, i.e., TensorFlow and PyTorch, while the adop-
tion of simulation frameworks (e.g., RAJA, Kokkos) is still at a
relative low level.

3. DL frameworks hide most of the complexities in code porting and
optimization from developers, since hardware vendors of GPU,
TPU, etc., generally upstream the optimized DL stack support to
frameworks.

Overall, most DL developers interact mainly with frameworks (e.g.,
TensorFlow and PyTorch) in Python, and are transparent to under-
lying compute kernels and platform. This is one of the major dis-
tinctions from simulation codes, where the programming framework
(e.g., C/C++/Fortran) provides merely basic APIs. In light of the above
observations, we focus more on DL primitives and frameworks in
facility benchmarking instead of application-level benchmarks. Never-
theless, an end-to-end application benchmark (CANDLE) is included to
show the performance of the overall pipeline. A side by side comparison
of key components of the DL and the traditional simulation stack is
shown in Fig. 1.

CORAL-2 DL Benchmarks In Table 1, we list the benchmarks under
study in this work. It covers key DL primitives such as operations for
convolution, recurrent neural network (CNN/RNN), and model work-
loads, frameworks, and applications representative to HPC facilities.
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Fig. 2. The node architecture, DL core stack, and supporting framework for Summit and Spock systems.
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The kernel benchmarks include DeepBench on a single device and
N/RCCL tests for cross device communication. The model workloads
consist of CNN models such as AlexNet [19], GoogleNet [20], etc., and
an RNN model. The TF_CNN_Benchmarks [21] is used to evaluate Ten-
sorFlow framework for data parallel training. The CANDLE application
is used to benchmark overall time-to-solution. In all, the scope involves
a full spectrum of DL benchmarks corresponding to the application
layer down to the foundational kernels as shown in Fig. 1.

DL Stack To evaluate the AMD and Nvidia DL stack, we execute the
ORAL-2 benchmarks on both the Summit supercomputer and a testbed
ystem for Frontier called Spock [22]. The node configurations of these
wo systems are shown in Fig. 2. Each Summit node is equipped with
Nvidia Volta GPUs (V100) and 2 IBM Power9 (P9) CPUs. Pairs of 3
100s are fully connected with NVLink fabrics of 50 GB/s bandwidth,
nd nodes are then connected via EDR InfiniBand with a capability of
5 GB/s. Spock is an early-access system with an architecture similar to
rontier’s but is a generation earlier in accelerator technology (MI100)
ompared to Frontier (MI200). Each Spock node is equipped with

AMD Instinct MI100 GPUs and 1 EPYC 7662 Rome CPU. All 4
I100s are connected with each other using 92 GB/s Infinity Fabric,

nd nodes are connected via Slingshot-10. The node local storage are
ot illustrated because this study focuses on accelerator devices and
ssociated software stack.

For DL frameworks, the support of different accelerator hardware
e.g. GPU, TPU, ARM) requires the corresponding linear algebra soft-
are for the devices. As shown in Fig. 2, for Nvidia GPUs, DL primitives
f the CNN/RNN etc., are provided via cuDNN on top of the CUDA
latform. Depending on the implementations (e.g., CNN can be based
n matrix multiplication, Fourier transform, etc.), cuBLAS or cuFFT
an be invoked. Similarly, MIOpen is the core DL primitive library for
MD GPUs on top of the ROCm platform, and works with rocBLAS,
ocFFT, etc., to support upper level frameworks. In terms of the support
or scaling up DL operations, both Nvidia and AMD provide a GPU
irect communication library, i.e., NCCL and RCCL, respectively. The
ollowing studies are performed with CUDA v10.2, ROCm v4.1, and
ensorFlow v2.3.

. Methodology and metrics

Depending on the category and purpose (See Fig. 1 and Table 1) of
he benchmarks, different metrics are utilized. Typically, for through-
ut benchmarks, floating point operations per second (FLOPS) is used
nd a similar metric in DL is the processed data samples per sec-
nd (e.g., images/s [21]). For distributed DL in framework scalability
enchmarks, we measure the scaling efficiency in terms of through-
ut. Application benchmarks usually resort to the end-to-end time-to-
olution. To calculate the FLOPS for the GEMM operation, the formula
40
Fig. 3. The illustration of the key parameters in the GEMM.

Fig. 4. The illustration of the key parameters in the convolution. It can be converted
into matrix multiplication via ‘‘im2col’’ [9].

is defined as:

FLOPSGEMM ∼ 2 × 𝑚 × 𝑛 × 𝑘∕𝑡, (1)

where (𝑚, 𝑘) and (𝑘, 𝑛) are matrix dimensions as shown in Fig. 3, and 𝑡
s the measured run time.

Since key compute operations in both CNN and RNN can be broken
nto matrix multiplications (See Figs. 4 and 5), the FLOPS formulas
ollow a similar scheme. (There are other types of implementations
or convolution, e.g., Winograd and FFT [23] - for the simplicity of
iscussion, we focus on the GEMM based implementation.)

For the 2D Convolution operation (GEMM based) on input di-
ension of height ℎ, width 𝑤, and channel 𝑐, FLOPS is calculated

ia,

LOPSConv2D ∼ 2 ×
(

ℎ𝑜 ×𝑤𝑜
)

× 𝑘𝑓
(

𝑐 × 𝑓𝑤 × 𝑓ℎ
)

∕𝑡 (2)

ℎ𝑜 =

(

ℎ + 2 × padℎ − 𝑓ℎ
)

strideℎ
+ 1 (3)

𝑤𝑜 =

(

𝑤 + 2 × pad𝑤 − 𝑓𝑤
)

stride𝑤
+ 1 (4)

where 𝑘𝑓 is the number of filters each of dimension (𝑓ℎ, 𝑓𝑤) with
padding (pad) and stride specified in h and w dimension, respec-
ively, and ℎ𝑜 and 𝑤𝑜 [9] are the effective height and width after

applying a filter.
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Fig. 5. The illustration of the key parameters in the RNN operation. The basic building
block is also matrix multiplication.

Similarly, for the RNN operation (See Fig. 5), the FLOPS calculation
follows,

FLOPSRNN ∼ 2 ×𝐻 ×𝐻 × 𝑠∕𝑡, (5)

Where 𝐻 and 𝑠 are the hidden size and time steps, respectively. For
the data input with 𝑁 samples (i.e., batch size 𝑁), the FLOPS for the
operation will be simply multiplied by a factor of 𝑁 .
Roofline Model In addition to FLOPS, another important metric to
gauge the compute and memory performance is the so called Roofline
model, which can visually demonstrate the bottleneck of the bench-
mark and hardware, i.e., whether it is compute or memory bound. To
that end, the arithmetic intensity I, i.e., floating operations per memory
load, needs to be calculated. For single-precision GEMM, this is given
by,

𝐼 = 𝐹𝐿𝑂𝑃𝑠
4(𝑚 ∗ 𝑘 + 𝑘 ∗ 𝑛 + 2𝑛 ∗ 𝑚)

(6)

assuming the ideal data re-use of the two input matrices of element size
𝑚 ∗ 𝑘 and 𝑘 ∗ 𝑛. The Roofline model is then obtained by plotting the
performance (FLOPS) versus the arithmetic intensity (FLOPs/bytes).
Figure of Merit Regardless of the types of the benchmarks, a relative
metric, i.e., figure of merit (FOM), is often used in procurement. In this
study, it is defined as follow,

FOM =
𝑁
∏

𝑖

(

metric𝑖

metric𝑖b

)1∕𝑁

(7)

where the 𝑚𝑒𝑡𝑟𝑖𝑐𝑖𝑏 is for the performance metric of 𝑖th task on the
baseline system. To account for a balanced performance, the geomet-
ric mean is taken over either 𝑁 sub-tasks within the benchmark or
across 𝑁 benchmarks. The metric for each sub-task or benchmark
can be aforementioned FLOPS, images/s, scaling efficiency, or time-to-
solution.
ML modeling The performance of DL kernels depends on many factors
including algorithm, implementation, input shape, etc. It is hard to pre-
dict kernel runtime especially when there are multiple algorithms for
the same operation (e.g., convolution) and built-in heuristics (e.g., in
cuDNN, FFT-based convolution is used when 𝑓ℎ or 𝑓𝑤 is bigger than 5)
to select the algorithm at runtime. For the closed-source library such
as cuDNN, it becomes even more challenging.

To identify the important parameters on kernel performance, we use
XGBoost [15] to model the relationship between input parameters and
performance outcome, and then rank the parameter based on its feature
importance. Because the features are well-structured (in contrast to
text and image) and limited in size, the traditional ML method such
as XGBoost is well suited for the task.
Resource Utilization Another important way of understanding the
performance of deep learning applications is by tracking resource uti-
lization. This is typically used to find bottlenecks of the workload
and identify operations that need optimization. In this work we use
the nvidia-smi for the V100 GPUs on Summit and the rocm-
smi for the MI100 GPUs on Spock to monitor the memory used and
the GPU utilization for the framework and application benchmarks.
Specifically the memory.used and the utilization.gpu flags
were used for the nvidia-smi, and the showuse and showmemuse

for the rocm-smi.

41
Even though those low level tools may not have been configured
the same way, it is important to show early their default behavior on
deep learning workloads, so that further optimization strategies can be
made as more realistic HPC/DL workloads are applied. For example
one noticeable difference from the documentation provided for those
tools is that nvidia-smi sample period may be between 1 s and
1/6 s depending on the product, where rocm-smi samples every
millisecond. Also higher level custom profilers usually use directly
those low level tools, and by showing those results we hope to give
a better understanding for the future developers on the current status.

The strategy is to request data from those tools on each batch/epoch
iteration on the training stage, rather than monitoring the bench-
mark application itself. This way we can better focus on compar-
ison between training steps, and eliminate differences between job
schedulers or initial environment/system conditions between Spock
and Summit, which might change over time. In all cases the flag
TF_FORCE_GPU_ALLOW_GROWTH was used as true for better com-
parison between the two.

4. Evaluation results

Following the approach described in Section 3, we perform system-
atic evaluations of the DL stack on Summit and Spock system in terms
of kernel, model, framework, and application benchmarks.

4.1. Kernel benchmarks

As previously discussed, we focus on the performance characteristics
of kernel and model workloads (listed in Table 1) because they serve
as common denominators across DL applications. For example, in Deep-
Bench, the inputs for GEMM, CNN, and RNN kernels are selected from
representative real DL workloads.

For kernel benchmarks, we employ DeepBench and N/RCCL tests for
computing and communication primitives, respectively. These kernels
usually account for a single tensor/layer operation of a neural network.
Moving one level up, the workload benchmarks put together the kernel
operations for popular DL models. Considering DL frameworks operate
in single precision by default, we evaluate the kernels and model
workloads in the same single precision.
Compute Kernels In Fig. 6, the generated FLOPS (See Eqs. (1), (3)) of
a single device on Summit and Spock are plotted for a list of GEMM,
CNN, and RNN operations, respectively. For GEMM, MI100 performs
better for more computationally expensive operations, while for less
expensive ones, the performance differences between MI100 and V100
are generally small. Of the predefined inputs (see examples in Table 4)
in DeepBench, the best performance of 17.7 (77% of peak) and 14.7
(93% of peak) TFLOPS are achieved for MI100 and V100, respectively.
The corresponding input parameters are annotated in Fig. 6 (GEMM),
i.e., (𝑚 = 6144, 𝑛 = 48000, 𝑘 = 2048) for MI100 and (𝑚 = 4096, 𝑛 =
7000, 𝑘 = 4096) for V100. For ill-shaped inputs, e.g., (𝑚 = 512, 𝑛 = 8, 𝑘 =
500000), the kernels become memory bound. For CNN, specifically
the GEMM based (so called ‘‘im2col’’ implementation, see Fig. 4) 2D
convolution, the MI100 outperforms V100 in most of cases, and a
similar 79% of peak is obtained while 50% for V100 for the best case.
On the other hand, V100 seems to perform better for RNN kernels,
especially for larger inputs, but because RNN is more memory intensive,
both devices are far below the peak compute performance.

To provide an overall comparison, in Fig. 7, we plot the FOM for
all three kernel types combining performances for various inputs. With
Summit as the baseline (FOM=1), Spock performs similarly for GEMM
and RNN, and shows an edge over CNN. Considering the run time of a
model usually dominated by the most expensive layer, we also calculate
the FOM for the top 10 most expensive kernel operations. Spock shows
a 20% and 10% advantage for GEMM and CNN, respectively.

According to the Roofline model, as shown in Fig. 8, the boundary

for the memory and compute capability is 17.4 and 19.2 for V100
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i
b

Fig. 6. The FLOPS of the GEMM, CNN, and RNN primitive operations for identified
representative inputs in DeepBench. The parameters are annotated for the best and
worst performance, respectively.

Fig. 7. The aggregated FOM of DeepBench benchmark for all and top 10 most
expensive tasks, respectively.

on Summit and MI100 on Spock, respectively. In both regions (left

and right of the dashed boundary line), data points for Summit is

closer to the upper limit, i.e. maximum bandwidth and theoretical peak
42
Fig. 8. The Roofline model for DeepBench GEMM benchmark (FP32).

Fig. 9. The bandwidth of typical DL communication kernels up to four nodes on
Summit and Spock.

(annotated in the plot) than those of Spock, indicating that there are
still room for optimization in ROCm DL stack.
Communication Kernels Given that distributed training has became
common practice to manage ever-growing data and model sizes, the
communication kernels play increasingly important roles. For the pop-
ular data parallel training (each device has a model replica working
on different data batch, and the gradient information is exchanged
periodically), allreduce is the dominant communication pattern that
s executed each (synchronized) or a few (stale or asynchronized)
atch steps. Depending on the implementation, the allreduce can

be realized via a single API or a combination of allgather and
reducescatter, or reduce and broadcast. The performance
depends on device communication libraries (e.g., N/RCCL) and the
specific network topology of the platform.

In Fig. 9, we plot the bus bandwidth (GB/s) up to four nodes on
Summit and Spock for four commonly used communication APIs in
N/RCCL. The message size ranges from small (1 MB) to large (1 GB),
covering the gradient size for popular DL models (e.g., 100 MB for
ResNet50). For the intra-node communication, Spock shows an up to

3x lead across the board, thanks to high-bandwidth Infinity Fabric (see
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Fig. 10. The feature importance of XGBoost modeling of GEMM and CNN benchmarks
in DeepBench. The ratio of explained variance (𝑟2) is listed.

Fig. 2). In the case of inter-node, Spock seems to perform better for
allgather but lags behind in others, which is due to the slower
PCIe connection comparing to Summit’s NvLink between CPU and
GPU. It indicates that a combination of inter-node allgather and
intra-node reducescatter is the best way to realize the gradient
allreduce on this particular system. Note that the network topology
of the Frontier system will be significantly different from that of Spock.
Machine Learning on DL To further understand how the input param-
eters affect the kernel performance, we use the ML method to model
the performance data on DL kernels. Because both NCCL and RCCL are
open sourced and communication optimization typically relies on the
framework-level libraries (e.g., torch.DDP, TF.distribute, Horovod) to
overlap communication with computation, we mainly focus on the com-
pute kernels. Because the input features are well structured, XGBoost
method is used to model the relationship between input parameters
and kernel performance. As shown in Fig. 10, the feature importance
for GEMM and CNN are quite similar on both Summit and Spock,
respectively, i.e., for GEMM, since in DL operations it is often between
a squared matrix and an ill-shaped one (see example input parameters
in Table 4), the run time can be well predicted by the shape of resulted
matrix; for CNN (GEMM based), the filter size and input channel (often
strongly correlated with number of filters) are dominant factors for
run time. We can thus hypothesize that the implementations of GEMM
based convolution are similar in cuDNN and MIOpen.

4.2. Model benchmarks

Putting together the tensor/layer operations, workload benchmarks
on popular DL models show the combined performance of typical DL
workloads. Because accelerators are of primary interest here, we focus
on compute workloads and isolate them from the noise from I/O and
communication.

In Table 2, we list the operation breakdown for the candidate CNN
models. The model size ranges from 61M (AlexNet [19]) to 146M
(OverFeat [24]) parameters with the number of convolution layers
from 5 to 57. Comparing the earlier AlexNet to VGG [25], and then
to ResNet50 and GoogleNet, the trend in DL modeling favors deeper
models with relatively thin layers.

The number of parameters in a model is counted by

1. for a convolution layer with input channel c and k filters, each
of size (𝑓𝑤, 𝑓ℎ), the number of parameters is 𝑐 ∗ 𝑘 ∗ 𝑓𝑤 ∗ 𝑓ℎ + 𝑘.

2. for a recurrent layer with input size n and H hidden units,
the number of parameters is the same as a feed-forward neural

network, i.e. 𝐻 ∗ (𝐻 + 𝑛) +𝐻 .
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Table 2
CORAL-2 CNN model workloads.

Model # conv
layers

Filter
size

#
filters

#
weights

#
MACs

%
conv

AlexNet 5 3,5,11 96–384 61M 724M 92
OverFeat 5 3,5,11 96–1024 146M 2.8B 95
VGG 13 3 64–512 138M 15.5B 99
ResNet50 53 1,3,7 64–2048 25.5M 3.9B 99
GoogleNet 57 1,3,5,7 16–384 7M 1.4B ∼100

Fig. 11. The FOM for individual model workload and combined training and inference
benchmarks in CORAL-2 DLS.

The corresponding multiply and accumulation (MAC) operations follow
similar FLOPS counts discussed in Section 3. From Table 2, VGG is the
most computationally expensive model with 15.5B MAC operations.

In Fig. 11, we plot the performance comparisons for DL model
workloads. The FOM numbers are calculated from the processed sam-
ples/s with Summit being the baseline. Spock shows better performance
across the board with the best FOM (∼2.5x) for GoogleNet. To obtain
an overall view for DL training and inference, we further break down
the run time for forward pass (inference) and forward–backward pass
(training), and calculate the FOM across all workload tasks. It is shown
(See Fig. 11) that a speedup of 1.7x and 1.9x is achieved on Spock
for training and inference, respectively. Note this is with the CORAL-2
deep learning suite (DLS) baseline implementation (TensorFlow, single
precision).

4.3. Framework benchmarks

Although model workloads, as discussed in Section 4.1, already
exercise the framework on a single device, there are many other aspects
of the framework that require further examination. To this end, we
use the TF_CNN_Benchmark to perform the distributed training on
ResNet50, which is required by CORAL-2 DLS.
Functionality In terms of the performance functionalities, both Tensor-
Flow and PyTorch support automatic mixed precision, runtime compi-
lation e.g., accelerated linear algebra (XLA), etc. Frameworks operate in
single precision by default because the mixed precision requires special
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Fig. 12. The training images/s per GPU in FP32, FP16, and FP16 with XLA for
TF_CNN_Benchmarks.

Fig. 13. The scaling of distributed training throughput for TF_CNN_Benchmarks.
Images/s∗ is normalized to the number of GPUs per node for Summit (6) and Spock
(4), respectively.

care, and by automating the mixed precision support it enables easier
access to the full hardware capability. TensorFlow XLA can further
accelerate the execution by generating optimized tensor operations for
specific model rather than using the pre-built binary.

In Fig. 12, we plot the single device training performance for
ResNet50 (batch size 128) with different accelerations. Consistent with
Fig. 11, Spock has an edge at single precision, but lags behind in half
precision. The speedup due to XLA though, are more or less the same.
Scaling Another important aspect of the framework is its scalabil-
ity. Here we use a popular third-party distributed training library,
i.e., Horovod, because it supports multiple frameworks including Ten-
sorFlow and PyTorch, and is highly optimized for HPC platforms. As
shown in Fig. 13, the training images/s per GPU gradually decreases on
Spock with a scaling efficiency ∼ 89% up to four nodes, while Summit
scales almost perfectly (scaling efficiency ∼ 99%). Given N/RCCL are
used as communication backends, the results are consistent with Fig. 9.
Resource Utilization As described in Section 3, we use NVIDIA and
ROCm tools to measure the resource utilization for every training
step iteration between Summit and Spock. Fig. 14 shows the memory
used and the GPU utilization for the ResNet50 benchmark (batch size
128) in single precision. The memory used for V100s seems to be
constant across training steps, while for the MI100s it appears to vary
across steps. This behavior more likely reflects the different sample
frequencies as described in Section 3. The GPU utilization for Spock
seems to be able to keep up more with each iteration compare to
Summit, and that might reflect the fact that we get more number of
images per second for single precision on Summit, as shown in Fig. 12.

4.4. Application benchmarks

Our goal at facilities is to enable leadership-scale scientific discov-
eries, hence the performance of scientific application is of ultimate
interest. In CORAL-2, there are two sub-tasks enlisted from CANDLE
44
Fig. 14. Timeline plots for memory used and GPU utilization for
TF_CNN_Benchmarks.

Table 3
Specification of 2 sub-tasks in CANDLE benchmark.

Task Sample
size

Model Layer
type

#
layers

Hidden layer
size

#
weights

P1B1 4000 Autoencoder Dense 6 2, 600, 1000 183M
P3B1 3000 Multi-task

MLP
Dense 11 400, 1200 10M

benchmark (see Table 3): P1B1 is a regression task that use autoen-
coder to compress the gene expression; P3B1 is a classification task that
use multi-task multilayer perceptron (MLP) for data extraction from
clinic reports. Both models are based on fully connected dense layers,
so the compute is dominated by GEMM kernel operations. The input
data size is rather small (less or around 1 GB), and the impact of I/O
is negligible (no noticeable performance differences in running with or
without local storage).

In Fig. 15, the FOMs of time-to-solution are plotted for both tasks
in CANDLE. Different random seeds are used to obtain the run time to
the target reconstruction mean square error (P1B1) and classification
accuracy (P3B1), but due to using the same baseline implementation
and hyperparameter selection, it requires the same number of training
steps to converge. Spock performs better in P3B1 task while Summit
shows advantage in the other, mainly because of the performance
differences in different shapes of matrices in GEMM (See Fig. 6).

Resource Utilization Fig. 16 shows the memory used and the

GPU utilization for P1B1. The GPU utilization is higher for Spock,
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Fig. 15. The FOM of time-to-solution for 2 tasks in the CANDLE benchmarks.

Fig. 16. Timeline plots for memory used and GPU utilization for CANDLE-P1B1
benchmark.

compare to Summit and as expected for the V100s the nvidia-smi
(as mentioned in Section 3) samples less frequently than rocm-smi.
The memory used is higher for Spock compare to Summit. Compare
to ResNet50 results, as shown in Fig. 14, the memory used is higher
for Summit. We note that the model architecture is very different
(dense vs convolution layers), and also that this benchmark uses a Keras
implementation.

Fig. 17 shows the memory used and the GPU utilization for P3B1.
This benchmark implementation is a mix of Keras and TF. It shows
higher but more sparse GPU utilization for Spock, compare to Summit.
Also the memory usage appears to be higher on Summit compare to
Spock. If the nvidia-smi and rocm-smi are one-to-one comparable
we could argue that larger models, or larger input size vectors can fit
45
Fig. 17. Timeline plots for memory used and GPU utilization for CANDLE-P3B1
benchmark.

on the MI100s with this implementation, but because of the differences
in the tools, further investigation is needed.

5. Conclusion

We have presented a layered methodology and metrics to bench-
mark DL workloads at scale, involving kernels, models, frameworks,
and applications. From the perspective of HPC facilities, we argue that
understanding kernel and model level performance, and framework
level scalability are more important than application FLOP counts given
current scientific DL use cases and patterns. Using the CORAL-2 DL
benchmarks, we evaluated the performance of Spock, an early-access
testbed system for Frontier. Compared to the V100 based Summit
system with CUDA DL stack, the MI100 based Spock with ROCm DL
stack shows an edge in single precision performance for most kernel
and model benchmarking tasks. However, there is currently a gap in
its half precision performance, specifically for TensorFlow. Roofline
modeling also indicates rooms for improvement in the ROCm stack,
which is still maturing.

We also explored and demonstrated using machine learning an
approach to model the relationship between input parameters and
benchmark performance outcomes. And through a one-on-one compar-
ison of the resource utilization for the two DL stacks on the same DL
workloads, we are able to comment on the sources of performance dif-
ferences. Although these two ways of gaining insight into performance
comparisons are not conclusive in deducing underlying implementa-
tions or bottlenecks, our data does shed light on the direction for future
optimizations in the DL stacks.
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Table 4
The kernel input parameters in DeepBench [2]. RNN (vanilla) input parameters and first 20 of GEMM and Conv2D input parameters
are listed.
Index GEMM Conv2D RNN

m n k w h c N 𝑘𝑓 𝑓𝑤 𝑓ℎ 𝑝𝑎𝑑𝑤 𝑝𝑎𝑑ℎ 𝑠𝑡𝑟𝑖𝑑𝑒𝑤 𝑠𝑡𝑟𝑖𝑑𝑒ℎ H N s

0 1760 16 1760 700 161 1 4 32 20 5 0 0 2 2 1760 16 50
1 1760 32 1760 700 161 1 8 32 20 5 0 0 2 2 1760 32 50
2 1760 64 1760 700 161 1 16 32 20 5 0 0 2 2 1760 64 50
3 1760 128 1760 700 161 1 32 32 20 5 0 0 2 2 1760 128 50
4 1760 7000 1760 341 79 32 4 32 10 5 0 0 2 2 2048 16 50
5 2048 16 2048 341 79 32 8 32 10 5 0 0 2 2 2048 32 50
6 2048 32 2048 341 79 32 16 32 10 5 0 0 2 2 2048 64 50
7 2048 64 2048 341 79 32 32 32 10 5 0 0 2 2 2048 128 50
8 2048 128 2048 480 48 1 16 16 3 3 1 1 1 1 2560 16 50
9 2048 7000 2048 240 24 16 16 32 3 3 1 1 1 1 2560 32 50
10 2560 16 2560 120 12 32 16 64 3 3 1 1 1 1
11 2560 32 2560 60 6 64 16 128 3 3 1 1 1 1
12 2560 64 2560 108 108 3 8 64 3 3 1 1 2 2
13 2560 128 2560 54 54 64 8 64 3 3 1 1 1 1
14 2560 7000 2560 27 27 128 8 128 3 3 1 1 1 1
15 4096 16 4096 14 14 128 8 256 3 3 1 1 1 1
16 4096 32 4096 7 7 256 8 512 3 3 1 1 1 1
17 4096 64 4096 224 224 3 8 64 3 3 1 1 1 1
18 4096 128 4096 112 112 64 8 128 3 3 1 1 1 1
19 4096 7000 4096 56 56 128 8 256 3 3 1 1 1 1
Finally, we do note that Spock is a testbed early access system. Our
benchmarking results and comparisons are most useful to concretely
present our systematic approach to DL benchmarking. The kernels and
frameworks are maturing and will continue to evolve (particularly for
the ROCm ecosystem) and, therefore, specific observations reported in
this paper are likely to change even if it does not affect the overall
methodology that we have presented.
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Appendix. Kernel parameters

In Table 4, we list the input parameters for GEMM, Conv2D, RNN
(vanilla) kernels defined in DeepBench [2].
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A B S T R A C T

Diagnosing storage system failures is challenging even for professionals. One recent example is the ‘‘When
Solid State Drives Are Not That Solid’’ incident occurred at Algolia data center, where Samsung SSDs were
mistakenly blamed for failures caused by a Linux kernel bug. With the system complexity keeps increasing,
diagnosing failures will likely become more difficult.

To better understand real-world failures and the potential limitations of state-of-the-art tools, we first
conduct an empirical study on 277 user-reported storage failures in this paper. We characterize the issues
along multiple dimensions (e.g., time to resolve, kernel components involved), which provides a quantitative
measurement of the challenge in practice. Moreover, we analyze a set of the storage issues in depth and derive
a benchmark suite called 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘. The benchmark suite includes the necessary workloads and software
environments to reproduce 9 storage failures, covers 4 different file systems and the block I/O layer of the
storage stack, and enables realistic evaluation of diverse kernel-level tools for debugging.

To demonstrate the usage, we apply 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 to study two representative tools for debugging. We
focus on measuring the observations that the tools enable developers to make (i.e., observability), and derive
concrete metrics to measure the observability qualitatively and quantitatively. Our measurement demonstrates
the different design tradeoffs in terms of debugging information and overhead. More importantly, we observe
that both tools may behave abnormally when applied to diagnose a few tricky cases. Also, we find that neither
tool can provide low-level information on how the persistent storage states are changed, which is essential for
understanding storage failures. To address the limitation, we develop lightweight extensions to enable such
functionality in both tools. We hope that 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 and the enabled measurements will inspire follow-up
research in benchmarking and tool support and help address the challenge of failure diagnosis in general.
1. Introduction

The storage stack in the Linux kernel is witnessing a sea-change
driven by the advances in non-volatile memory (NVM) technologies
[1–13]. For example, the SCSI subsystem and the Ext4 file system,
which have been optimized for hard disk drives (HDDs) for decades,
are adding multi-queue support [14–16] and DAX support [17] for
flash-based solid state drives (SSDs) and persistent memories (PMs),
respectively. While such modifications may offer higher performance
in general, the implications on system reliability is much less measured
or understood.

One real-world example is the ‘‘When Solid-State Drives Are Not
That Solid’’ incident occurred in Algolia data center [18], where a
random subset of SSD-based servers crashed and corrupted files for
unknown reasons. The developers ‘‘spent a big portion of two weeks
just isolating machines and restoring data as quickly as possible’’. After
trying to diagnose almost all software in the stack (e.g., Ext4, Software
RAID [19]), they finally (mistakenly) concluded that it was Samsung’s
SSDs to blame. Samsung’s SSDs were criticized and blacklisted, until

∗ Corresponding author.
E-mail addresses: duozhang@iastate.edu (D. Zhang), mai@iastate.edu (M. Zheng).

one month later Samsung engineers found that it was a TRIM-related
Linux kernel bug that caused the failure [20]. Similar confusing failures
will likely increase in the foreseeable future as the system complexity
keeps increasing [21–24].

Addressing the grand challenge will require cohesive efforts from
the communities. Among others, a better understanding of real-world
failure incidents and the potential limitations of state-of-the-art tools
is critical. To this end, we first conduct an empirical study on 277
real-world storage failure issues in this paper. We characterize the
issues along multiple dimensions (e.g., time to resolve, kernel compo-
nents involved, hardware dependency), which enables us to quantita-
tively measure the reliability challenge as well as the need for better
solutions.

Moreover, we analyze a set of storage issues in depth. By ex-
amining the user reports and bug patches meticulously and experi-
menting on real storage systems, we derive the necessary conditions
(e.g., user/workload operations, library/kernel versions, system config-
urations) for triggering the failures deterministically. At the time of this
https://doi.org/10.1016/j.tbench.2021.100006
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writing, we are able to reproduce nine cases successfully, which covers
four different file systems as well as the low-level block I/O layer of
the Linux storage stack.

Based on the reproducible cases, we create a benchmark suite called
𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘, which includes a set of portable virtual machine (VM) im-
ages containing all the necessary software programs and environments
to reproduce the nine storage failures caused by kernel-level bugs.1
Complementary to existing benchmark suites which are mostly de-
signed for measuring the performance [26–29], 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 enables re-
listic evaluation on the capability of diverse reliability tools (e.g., ker-
el bug detectors [30,31], tracers [32], record & replay tools [33]),
hich is critical for identifying the potential limitations as well as the
pportunities for further improvement.

To demonstrate the usage, we leverage 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 to analyze two
epresentative tools for debugging: (1) FTrace, the Linux kernel internal
racer [32]; and (2) PANDA, a VM-based record & replay tool [33].
ifferent from existing studies which mostly measure the tools’ runtime
verhead [34], we focus on measuring the observability, which means

the observations that the tool allows the developers to make in order
to diagnose the failure symptoms [35]. While the basic concept of
observability is not new [35], we derive a set of concrete metrics to
quantitatively and/or qualitatively measure the observability based on
𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘. Our experiments demonstrate the different design tradeoffs
of the tools in terms of debugging information and space overhead.
More importantly, we find that there are multiple tricky failure cases
where both tools may fail to function properly. In other words, the
usage of the tools may introduce interference to the target storage stack
and make the failure symptom un-reproducible.

In addition, we find that neither tool can directly provide low-level
information (e.g., storage device commands) on how the persistent stor-
age states are changed, which is crucial for understanding host-device
interactions in the storage stack. To address the limitation, we explore
different ways to extend both FTrace and PANDA, and shows that it
is possible to enhance both of them with such low-level observability
without relying on special hardware (e.g., bus analyzer [36,37]).

It is well acknowledged that effective benchmark suites and tools
are essential for improving various computer systems; on the other
hand, building effective benchmark suites and tools is a long-term,
iterative process that requires cohesive efforts from broad communi-
ties [25,34,38]. To the best of our knowledge, this work is the first
effort to benchmark the observability of debugging tools with concrete
metrics. We hope the 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 prototype as well as the initial efforts
emonstrated in this paper will inspire follow-up research on bench-
arking and tool support for reliability, and help improve computer

ystems in general.2
The rest of the paper is organized as follows: in Section 2, we

escribe the background and extended motivation; in Section 3, we
haracterize real-world storage failures and derives the 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘; in
ection 4, we measure the observability of FTrace and PANDA based on
𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 and describe our extensions; in Section 5, we discuss related
ork; finally, we conclude the paper in Section 6.

. Background & motivation

.1. The storage stack & reliability challenge

Fig. 1 shows the typical storage stack,3 which traditionally includes
everal major layers such as file systems, the block I/O layer, and
evice drivers. The recent introduction of PM technologies can provide
ccess latencies less than 3X of DRAM while maintaining durability

1 Coincidentally, there is an early work on application-level BugBench [25];
we elaborate on the difference and the synergy in Section 5.

2 We release 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 publicly on GitLab: https://git.ece.iastate.edu/
data-storage-lab/prototypes/bugbench.

3 Adapted from SNIA NVM Programming Model [39].
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Fig. 1. The Storage Stack. The kernel-level software modules (green) are the major
focus of this work.
Source: Adapted from [39].

guarantee [40], which blurs the line between the storage management
and the memory management in the kernel. Consequently, the memory
management subsystem is also becoming part of the storage stack for
persistent data.

The storage system is notoriously complex and difficult to get right
despite decades of efforts [41–44]. Moreover, almost all layers in the
storage stack are being optimized aggressively in recent years. For ex-
ample, SSDs and PMs are replacing HDDs as the durable device [10–13,
18,45]; NVMe [46] and CXL [47] are redefining the host-device inter-
face; blk-mq [48] alleviates the single queue and lock contention bottle-
neck at the block I/O layer; the SCSI subsystem and the Ext4 file system
are being adapted for NVM (e.g., scsi-mq [14–16] and DAX [17]); in
addition, various NVM-oriented new designs/optimizations have been
proposed (e.g., F2FS [49], NOVA [50], Kevlar [51]), some of which
require cohesive modifications throughout the storage stack (e.g., the
TRIM support [52]). Such modifications could potentially introduce
various software bugs leading to system failures [41,53].

In practice, storage failures may occur due to various reasons includ-
ing but not limited to software bugs [41–43,53], power outages [41,
54], device errors [42,55,56], etc. Once a failure occurs, it is often
difficult to diagnose the root cause due to the complexity of the storage
stack, as demonstrated in the Algolia incident described in Section 1.
However, despite the various anecdotes, there is little quantitative
measurement or understanding of the characteristics of storage failures
occurred in the real world. We attempt to address the issue in this work.

2.2. Debugging tools

Many tools have been built to improve system reliability. For exam-
ple, testing tools (e.g., model checkers [41], fuzzers [30,31,57], fault
injectors [58–61]) focus on triggering the potential bugs in target sys-
tems in a controlled testing environment before deployment to reduce
the possibility of real-world failures. Once a system failure occurred in
practice, however, testing tools can help little for pinpointing the root
causes due to the different environments and assumptions.

Another category is debugging tools, which aims to facilitate diag-
nosing the root causes after a failure occurred in practice. While a
benchmark suite containing real world cases may be used for evaluating
both testing tools and debugging tools, we focus on debugging tools
in this paper because: (1) they are much less studied compared to
the abundant efforts on testing tools; (2) they are much needed in
diagnosing real-world failure incidents. We classify existing debugging
tools into three types as follows:

Interactive Debuggers. This category includes classic debuggers such
as GDB/KDB/KGDB [62–64], which represents the de facto way to

https://git.ece.iastate.edu/data-storage-lab/prototypes/bugbench
https://git.ece.iastate.edu/data-storage-lab/prototypes/bugbench
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diagnose software system failures. They usually support fine-grained
manual inspection (e.g., setting breakpoints at specific statements,
checking the values of specific memory bytes). However, significant
human efforts and expertise are needed to harness the power and
to diagnose the complicated storage stack efficiently. Such traditional
debugging methods are arguably not scalable, because the required
manual effort and experience will keep increasing as the system be-
comes more and more complex. More automation and/or intelligence
are probably needed to make debugging scalable.

Software & Hardware Tracers. Software tracers [32,65–69] can col-
lect various events from a running target system automatically, which
are typically implemented via dynamic instrumentation. The traced
logs can help understand the system anomalies (among other purposes),
which are often invaluable for failure diagnosis. Similarly, bus analyz-
ers [36,37] are hardware equipments that can capture the low-level
communication data (e.g., SCSI commands [70]) between the storage
software and the device. However, since they only trace bus-level
information, they cannot help much on understanding system-level
behaviors.

Record & Replay Tools. Record & replay tools [33,71] have been
applied to debugging for both user-level applications and the kernel.
Typically, these tools leverage virtual machines to run the target soft-
ware stack as a whole. Meanwhile, they record system snapshots as
well as non-deterministic events (e.g., interrupts) to ensure replaying
system execution faithfully. Developers can replay the recorded whole
system execution logs repeatedly without the needs of re-running the
workloads. Also, it is possible to integrate record & replay tools with
interactive debuggers (e.g., GDB) to perform traditional debugging
(e.g., setting breakpoints) during the replay. Additional analysis passes
may also be implemented based on the record & replay mechanism
(e.g., plugins in PANDA [33]).

Note that all of the three types of tools mentioned above are im-
portant debugging tools widely used in practice. But to the best of our
knowledge, there is little quantitative measurement of their debugging
capability. We attempt to address the deficiency in this work. We focus
on software tracers and record & replay tools because they enable
different degrees of automation for failure diagnosis, which we believe
is critically important for a scalable debugging methodology. We leave
the measurement of interactive debuggers (which requires manual ef-
fort/expertise that is difficult to quantify) and hardware tracers (which
requires special hardware) as future work.

2.3. Observability of debugging tools

A few researchers have studied and benchmarked debugging tools
[34] due to their prime importance in practice. However, existing stud-
ies mostly focus on the performance (e.g., runtime overhead) instead
of their effectiveness, largely due to the lack of reliability benchmark
suites.

Complementary to the existing efforts, we focus on the effectiveness
of failure diagnosis. Specifically, we propose to measure the observ-
ability of debugging tools, which is a concept proposed recently for
improving system reliability [35]. The observability includes three de-
sired properties (i.e., visibility, repeatability, and expressibility) for
debugging failures. Intuitively, the concept describes the observations
that a tool allows the developers to make [35], which is critically
important for debugging. While the concept of observability is well
known, there is no practical methodologies to measure it to the best
of our knowledge. We demonstrate how to measure the observability
using realistic cases and concrete metrics in this work.

3. Characterization of storage failures

In this section, we describe how we collect the storage failure
dataset (Section 3.1); the overall characteristics of the dataset (Sec-

𝑘
tion 3.2); and how we derive the 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ (Section 3.3).
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Table 1
Overview of storage issues on Bugzilla.

Group Count Avg. Avg. Comments/
(%) Days Participants

Resolved 136 (49.1%) 146.9 8/3
Unresolved 141 (50.9%) 1444.2 5/2

Overall 277 807.3 6/2

3.1. Methodology

To understand the characteristics of real-world problems of the
storage stack, we collect failure issues reported by the end users from
Linux Bugzilla [72]. We choose this platform because it is one major
venue for regular users to report encountered failures to the Linux
kernel community, and the reported issues are typically examined by
the kernel developers with detailed status updates. Since the platform
includes issues of the entire Linux kernel which is beyond the scope of
the storage stack, we apply the following methods to refine the dataset.

First, Bugzilla organizes the issues based on major kernel com-
ponents (e.g., ‘‘Process Management’’, ‘‘Networking’’), so we search
for the issues tagged with storage-related components (e.g., ‘‘File Sys-
tems’’, ‘‘IO/Storage’’, ‘‘Memory Management’’, ‘‘Drivers’’) or generic
components (i.e., ‘‘Others’’); also, the time of the issues is limited to
the recent ten years. Next, in order to identify a manageable and
important subset for study, we refine the dataset further by using a
set of keywords implying severe failure consequences (e.g., ‘‘data loss’’,
‘‘corrupt’’). Moreover, for the ‘‘Other’’ category, we further analyze
the issues manually based on our domain knowledge and only keep
storage-related ones (e.g., keeping software RAID issues but excluding
GPU buffer corruptions). The resulting dataset contains 277 issues in
total, which represents a subset of severe storage failures experienced
by Linux end users. Note that this method is similar to the keyword
search in previous studies [53,73].

Threats to validity. The characterization results presented in this
section should be interpreted with the methodology in mind. In partic-
ular, the dataset was refined via critical keywords and manual efforts,
which might be incomplete. Also, only a limited subset of Linux end
users are aware of Linux Bugzilla and only a limited subset of them
would report issues. Therefore, it is likely that there are more storage-
related issues occurred in the wild but not captured in this study. Nev-
ertheless, we believe our effort is one important step toward addressing
the challenge.

3.2. Overall characteristics

Bugzilla maintains various status tags for the issues reported (e.g.,
‘‘new’’, ‘‘closed’’). For simplicity, we classify the issues into two groups
based on their status tags: (1) Resolved, which includes issues with the
‘‘resolved’’ or ‘‘closed’’ status; (2) Unresolved, which includes issues with
‘‘new’’, ‘‘assigned’’, ‘‘reopened’’, or ‘‘verified’’ status. We summarize
the two groups in Table 1. The second column shows the number of
issues (and the percentage) in each group. The third column shows
the average duration of the issues in days. For the Resolved group, the
duration is calculated based on the report date and the date of the last
comment; for the Unresolved group, it is the period between the report
date and the time of this writing. The last column shows the average
numbers of comments and participants in resolving the issues. We make
multiple observations as follows:

First, the issues took multiple months to resolve on average (e.g., 146.9
ays for the Resolved group in Table 1), and the diagnosis process
ypically involve multiple rounds of discussions and multiple people
e.g., 8 comments and 3 participants for the Resolved group), which
uantitatively suggests the difficulty of diagnosing storage failures.

Second, the issues involve all major components in the storage software
tack. As shown in Fig. 2, both Resolved and Unresolved groups span
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Fig. 2. Distributions of Resolved (orange) and Unresolved (green) Issues across
Different Storage Components.

Fig. 3. Characteristics of Resolved Issues across Storage Components in terms of
Average Duration (green bar), Average Number of Comments (orange line) and Average
Number of Participants (gray line).

over all the five storage components studied. This implies that an ideal
debugging tool should provide the full-stack observability. In partic-
ular, ‘‘File System’’ and ‘‘Driver’’ contains the most issues reported,
which is consistent with previous studies [53].

Third, for the resolved issues, the average debugging time is consistently
long across components. As shown in Fig. 3, the average debugging time
of all five components is more than 100 days. This implies that due to
the complexity of the storage stack, no single component is particularly
easier to diagnose, which again suggests the importance of capturing
the full-stack observability for debugging tools.

Fourth, 37 out of 136 (26.3%) resolved issues involve multiple OS
distributions or kernel versions. The manifestation symptoms of the issues
often differ on different systems, which suggests that the software envi-
ronment (e.g., kernels, libraries) is critically important for reproducing
the failures for diagnosis.

Fifth, only 5 out of 136 (3.7%) resolved issues were caused by hard-
ware. This implies that software remains the major source of storage
failures, which is consistent with previous studies [74]. Also, it suggests
that observing the behavior of the storage software stack is critically
important for failure diagnosis.

3.3. 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘

To identify the limitations of state-of-the-art debugging tools as well
as the opportunities for further improvement, it is necessary to have a
set of reproducible failure cases, so that we can apply the target tools and
conduct the measurement. To this end, we analyze a set of storage fail-
ure issues in depth, identify the specific conditions required to trigger
the issues (e.g., user/workload operations, software libraries involved,
Linux kernel versions and configurations), and attempt to reproduce the
cases on our server machines. This turns out to be a challenging and
time-consuming process due to the complexity of the Linux kernel as
well as the diversity of the Linux end users’ system setups. For example,
51
the reproducing procedure typically requires finding and (re)compiling
specific versions of the Linux kernel with non-default configurations,
pulling specific software packages which may not be well maintained,
deriving workload programs to emulate various users’ inputs, etc. At
the time of this writing, we have identified 61 cases with relatively
complete information for reproducing, and we are able to reproduce
3 cases successfully in our environment. This first-hand experience
further confirms the challenge of failure diagnosis and the needs for
a readily reproducible benchmark suite.

To ensure that the cases can be reliably reproduced and to enable
easy sharing of the reproduced cases in the communities, we package
all the required software programs and system environments in VM im-
ages. We create two VM images for each of the successfully reproduced
cases: the first VM image contains the buggy storage stack and the
necessary workload programs, libraries, etc. for reproducing the case;
the second VM image contains the patched kernel (i.e., the bug in the
storage stack has been fixed by the corresponding patch) to serve as a
reference for verification.

In addition, to improve the case count as well as the diversity of
the reproducible cases, we collect additional storage-related bug cases
from the Linux mailing lists [34]. The cases reported on the Linux
mailing lists are often discovered by the developers directly during
the internal regression testing, so they may not contain the same
information as the issues reported by the end users on Bugzilla (e.g., no
user experienced consequences, user environments, or resolving sta-
tus). Such developer-discovered cases are relatively less valuable for
characterizing the real-world failure impact or diagnosis difficulty (as
in Section 3.2). However, these cases are still realistic in that they
may affect Linux distributions released earlier (i.e., before the bug
patch). In other words, if they can be reproduced readily, they are as
valuable as the Bugzilla issues for measuring debugging tools and other
reliability utilities. At the time of this writing, we are able to reproduce
6 storage-related cases from the Linux mailing list successfully. We also
create the corresponding VM images for the 6 cases to facilitate future
reproducible research.

Based on the 9 reproducible cases (i.e., 3 from Bugzilla and 6 from
the Linux mailing list), we have created a benchmark suite called
𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘, which includes a set of VM images containing all the
necessary workloads and system environments/configurations to repro-
duce the 9 cases. We summarize the 9 cases in Table 2. As shown in
the table, the current prototype of 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 covers 4 different file
systems, including 2 cases for Ext4 (i.e., ‘‘1-EXT4’’, ‘‘2-EXT4’’), 3 cases
for Btrfs file system (i.e., ‘‘3-BTRFS’’, ‘‘4-BTRFS’’, ‘‘5-BTRFS’’), 1 case
for F2FS (i.e., ‘‘6-F2FS’’), and 1 case for GFS2 (i.e., ‘‘7-GFS’’). Moreover,
there are 2 cases for the low-level block I/O layer of the storage stack
(i.e., ‘‘8-BLK’’ and ‘‘9-BLK’’).

The ‘‘Critical Function’’ column in Table 2 shows the major kernel
functions that are identified as problematic for each case. We can see
that the number of critical functions ranges from 1 to 7 (in ‘‘6-F2FS’’),
depending on the complexity of the bug fixes.

The root causes of the 9 cases can be classified into either ‘‘Se-
mantics’’ bugs (7 cases) or ‘‘Memory’’ bugs (2 cases) based on the bug
patterns defined in the literature [53,73,75]. Unlike other types of bugs
that have well-studied patterns to understand (e.g., deadlocks, data
races), ‘‘Semantics’’ bugs is among the hardest issues in practice be-
cause they typically require deep understanding of system design logic
to detect or diagnose. In other words, the cases included 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘

require sophisticated methodologies to diagnose effectively.
The ‘‘Bug Size’’ is defined as the sum of lines of insertion and

deletion code (LoC) in the bug patch, which ranges from 6 (in ‘‘2-
EXT4’) to 121 (in ‘‘4-BTRFS’’) LOC depending on the complexity of the
cases. The last column shows the language we used to implement the
bug triggering workloads. We use Bash, C, or a combination of both
to implement the workloads, depending on the input characteristics
described in the user reports (for Bugzilla cases) or bug patches (for

Linux mailing list cases).
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Table 2
Overview of reproducible cases in 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘.
Case ID OS Linux Storage Critical Bug Bug Workload

Image Kernel Component Function Type Size Language

1-EXT4 Ubuntu v5.4.0 Ext4 ext4_do_update_inode, Semantics 8 C
20.04 File System ext4_isize_set,

ext4_clear_inode_state,
cpu_to_le16,cpu_to_le32,
ext4_update_inode_fsync_trans

2-EXT4 Ubuntu v5.4.0 Ext4 parse_options Semantics 6 C & Bash
20.04 File System

3-BTRFS Ubuntu v4.4.107 BTRFS btrfs_ioctl_snap_destroy, Semantics 71 C
16.04 File System btrfs_record_snapshot_destroy,

btrfs_set_log_full_commit,
check_parent_dirs_for_sync,
btrfs_log_inode,
btrfs_release_path

4-BTRFS Ubuntu v4.4.107 BTRFS btrfs_log_trailing_hole Semantics 121 C
16.04 File System

5-BTRFS Ubuntu v5.4.0 BTRFS btrfs_log_all_parents, Semantics 13 C
20.04 File System btrfs_log_inode,

btrfs_must_commit_transaction,
btrfs_record_unlink_dir

6-F2FS Ubuntu v4.15.0 F2FS f2fs_submit_page_bio, Memory 94 C & Bash
16.04 File System f2fs_is_valid_blkaddr,

verify_block_addr,
zero_user_segment,,
validate_checkpoint,
datalock_addr

7-GFS Ubuntu v4.4.0 GFS2 gfs2_check_sb, fs_warn Memory 18 Bash
16.04 File System

8-BLK Ubuntu v5.4.0 Block blkdev_fsync, sync_blkdev Semantics 12 C
20.04 Layer

9-BLK Ubuntu v4.19.1 Block __blk_mq_issue_directly, Semantics 9 Bash
18.10 Layer blk_mq_update_dispatch_busy,

__blk_mq_requeue_request
We choose Ubuntu to reproduce the cases by default because
Ubuntu is one of the most well supported OS distributions for many
Linux tools. Also, since many utilities and packages are outdated
or even not usable on old kernels, we port the cases to the latest
kernel (i.e., v5.4.0) when possible. For 5 cases (i.e., ‘‘3-BTRFS’’, ‘‘4-
BTRFS’’, ‘‘6-F2FS’’, ‘‘7-GFS’’, ‘‘9-BLK’’), we are not able to reproduce
the cases in the latest kernel because the affected kernel structures
have been changed significantly and the original problematic functions
are no longer compatible with the latest kernel. Therefore, we have
to reproduce them in relatively old versions (e.g., v4.4.107, v4.15.0,
v4.4.0) where the cases are still reproducible.

To sum up, the current prototype of 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 includes a set
of VM images for reproducing 9 realistic storage failure cases. These
reproducible cases, including the complete software workloads and
environments encapsulated in VMs, enable us to measure and evaluate
the effectiveness of tools conveniently. We demonstrate the usage of
𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 in the context of two representative debugging tools in the
next section (Section 4).

4. Measuring the observability

In this section, we apply 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 to study FTrace and PANDA,
both of which are state-of-the-art tools widely used for debugging
(among other usages). We find that 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 can help measuring
tools with completely different design principles. Also, we find that
both FTrace and PANDA may provide useful information for the ma-
jority of the cases evaluated. On the other hand, both of them may
behave abnormally when diagnosing some tricky cases. We elaborate
on the experimental results of FTrace and PANDA in Section 4.1 and
Section 4.2, respectively. In addition, we find that both tools fall
short of providing low-level information on how the persistent states
are changed. We discuss our extensions to improve their low-level

observability in Section 4.3.
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4.1. FTrace

FTrace is the Linux kernel internal tracer that has been included in
the mainline Linux since v2.6.27 [32]. We measure the observability of
its major feature (i.e., kernel function tracing) in this subsection.

Table 3 summarizes the results of applying FTrace to diagnose the
9 cases in 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 (labeled from ‘‘1-EXT4’’ to ‘‘9-BLK’’ in the first
column). The second column (‘‘Still Reproducible’’) shows whether
the bug cases can still be reproduced when enabling FTrace to trace
the target storage stack. We can see that FTrace do not affect the
reproducibility of any case. In other words, the tool is non-intrusive
for debugging all the cases in 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘.

The third column shows the total number of functions (Func.)
traced by FTrace in each case, which may include duplicated entries
if a kernel function is invoked multiple times during the workload
execution. We run FTrace for three times and calculate the aver-
age count (e.g., ‘‘12,506’’ for ‘‘1-EXT4’’) and the range of variance
(e.g., ‘‘±4.1%’’). We can see that FTrace can generate a large amount
of functions for most cases, ranging from ‘‘6867’’ (in ‘‘8-BLK’’ case)
to ‘‘110,772,722’’ (in ‘‘9-BLK’’ case), which implies that the tool can
provide rich function-level information for diagnosing the target system
behavior.

Similarly, the fourth column shows the number of unique functions
traced in each case (i.e., excluding duplicated entries), which is gener-
ally much smaller compared to the total number of functions traced
(i.e., the third column). This implies that the same kernel functions
may be invoked many times in all the failure cases. From debugging’s
perspective, the large redundancy in the trace could exacerbate the
challenge of diagnosing system behavior.

The fifth column (‘‘Critical Func. Observed’’) measures how many
of the critical functions can be observed by FTrace in each case. As
mentioned in Section 3.3, a critical function is a problematic kernel
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Table 3
FTrace results on 9 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 cases.
Case ID Still Total # of Total # of Critical Func. Shortest Log

Reproducible? Func. Traced Unique Func. Observed Distance Size (MB)

1-EXT4 Yes 12,506 (±4.1%) 1,152 (±0.7%) 1/7 – 2.07 (±0.01)
2-EXT4 Yes 54,796 (±2.3%) 1,436 (±15.9%) 0/1 2 9.17 (±0.03)
3-BTRFS Yes 46,370 (±5.6%) 1,339 (±1.5%) 3/6 – 6.87 (±0.10)
4-BTRFS Yes 92,476 (±5.5%) 1,381 (±1.0%) 0/1 1 14.1 (±0.43)
5-BTRFS Yes 30,528 (±3.6%) 1,419 (±1.5%) 3/4 – 5.2 (±0.03)
6-F2FS Yes 0 0 0/7 – 0
7-GFS Yes 0 0 0/2 – 0
8-BLK Yes 6,867 (±2.7%) 901 (±4.3%) 1/2 – 1.1 (±0)
9-BLK Yes 110,772,722(±6.4%) 1,165(±0.8%) 2/3 – 7,496.2 (±153.1)
function that contributes to the storage failure. A failure case may
have multiple critical functions as the root cause, depending on the
complexity of the failure. We can see that although FTrace can trace
many functions, it may not be able to capture the critical functions
effectively for the cases in 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘. For example, in ‘‘1-EXT4’’, there
are 7 critical functions but only one of them can be captured by FTrace
(i.e., ‘‘1/7’’). Similarly, in four other cases (i.e., ‘‘3-BTRFS’’, ‘‘5-BTRFS’’,
‘‘8-BLK’’, and ‘‘9-BLK’’), only partial critical functions can be observed
(i.e., ‘‘3/6’’, ‘‘3/4’’, ‘‘1/2’’, and ‘‘2/3’’, respectively).

In terms of ‘‘2-EXT4’’ and ‘‘4-BTRFS’’, none of the critical functions
in the two cases can be directly observed by FTrace (i.e., ‘‘0/1’’ in
the fifth column for both cases). To measure the relevance of the
traced functions in these two cases, we further calculate the ‘‘Shortest
Distance’’ (the sixth column), which is defined by the minimum number
of function invocations needed from the traced functions to the critical
functions. We find that although FTrace misses the critical function in
‘‘4-BTRFS’’, it actually captures the parent function (i.e., the ‘‘Shortest
Distance’’ is ‘‘1’’) correctly. Similarly, it captures the parent’s parent
function of the missing critical function in ‘‘2-EXT4’’ (i.e., the ‘‘Shortest
Distance’’ is ‘‘2’’). This implies that FTrace may still be helpful for
diagnosing failures even if it may miss some specific functions.

To understand why FTrace may not be able to trace all critical func-
tions for debugging the cases in 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘, we look into the internals
of FTrace. We find that FTrace relies on a pre-defined list for identifying
traceable functions, which is stored in 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑓𝑖𝑙𝑡𝑒𝑟_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 file in
the 𝑑𝑒𝑏𝑢𝑔𝑓𝑠 of the target system. Moreover, the default list may contain
different functions on different kernel versions we evaluated. This list
fundamentally limits the observability of FTrace for debugging diverse
failure scenarios, as exposed by the incomplete critical functions in the
fifth column (‘‘Critical Func. Observed’’),

In terms of ‘‘6-F2FS’’ and ‘‘7-GFS’’, the two cases are still repro-
ducible with FTrace enabled, but FTrace cannot help much in either
case (i.e., ‘‘0’’ in ‘‘Total # of Func. Traced’’). This is because the
manifestation of the two cases is kernel panics. Under such a scenario,
FTrace cannot function normally. This result exposes a fundamental
limitation of FTrace for debugging the storage stack in the kernel:
FTrace itself depends on the probes or tracepoints embedded in the
kernel, so it cannot survive severe kernel problems (e.g., kernel panics),
let alone help diagnosing the problem in such severe scenarios.

The last column shows the size of the logs generated by FTrace
under 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘. We can see that FTrace consumes a relatively small
amount of storage space for most cases, ranging from 1.1MB (‘‘8-
BLK’’) to 14.1MB (‘‘4-BTRFS’’). Since the log size largely depends on
the amount of workload operations, the low storage overhead implies
that workloads included in 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 are concise and effective for
triggering the 7 cases.

On the other hand, the last case (‘‘9-BLK’’) incurs a relatively large
amount of storage overhead (i.e., around 7496 MB). This is because the
failure requires a relatively heavy workload to trigger. Specifically, the
workload includes pulling and installing many software packages from
the Internet via the dpkg package manager, which involves both the
network subsystem and the storage stack and leads to a large amount
of kernel functions being traced (i.e. , ‘‘110,772,722’’). Since only 3
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critical functions contribute to the failure in the ‘‘9-BLK’’ case, the
substantial amount of traced functions may dilute the debugging focus.
In other words, more intelligent methodologies are likely needed to
help derive insights from the abundant FTrace logs for debugging.

4.2. PANDA

PANDA (Platform for Architecture-Neutral Dynamic Analysis) is an
open-source platform for program analysis [33]. By leveraging virtual-
ization (i.e., QEMU [76]) and the LLVM compiler infrastructure [77],
PANDA can help understand the behavior of the entire storage software
stack. We focus on measuring its major feature (i.e., record & replay)
and 4 related plugins (i.e., Show Instructions, Taint Analysis, Identify
Processes, Process-Block Relationship) in this subsection because they
are most relevant for diagnosing storage failures.

Since PANDA records the full state of a target system hosted in
QEMU as well as all non-deterministic events in snapshots, it can
achieve full-stack, all-instruction observability by design (i.e., all ex-
ecuted instructions are observable by replaying). Therefore, we do
not calculate the function-based metrics as used in measuring FTrace
(Section 4.1). Instead, we qualitatively measure if the target features
are applicable in diagnosing failures.

Table 4 summarizes the results of applying PANDA to diagnose the
9 cases in 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘. Similar to Table 3, the second column (‘‘Still
Reproducible’’) shows whether the bug cases can still be reproduced
when using PANDA. We observe that PANDA do not introduce any
interference for the first 8 cases, similar to FTrace.

Nevertheless, PANDA fails in the last case (‘‘9-BLK’’). Specifically,
we observe that the guest VM is hanging when applying PANDA to
diagnose the ‘‘9-BLK’’ case. Multiple factors may contribute to the hang.
First, as mentioned in Section 4.1, the workload requires installing
many packages which are pulling from the Internet via dpkg. In other
words, this workload involves the network subsystem and tends to
generate many non-deterministic events within the kernel. Secondly,
the QEMU-based PANDA needs to record all such events in order to
ensure a successful replay, which incurs significant overhead in the
critical path of QEMU’s translation of guest instructions. As a result,
QEMU is overloaded by PANDA’s event recording, and cannot finish the
translation of guest instructions on time. Eventually, the guest kernel
(to be diagnosed) hangs in the QEMU VM. This result suggests that
the state-of-the-art record & replay mechanisms may not be lightweight
enough for diagnosing tricky storage failures.

For the remaining 8 cases, we find that PANDA’s major record
& replay feature and the 4 relevant plugins can all work normally
(i.e., ‘‘✓’’) to support full-stack observability. On the other hand, the
full-stack, all-instruction observability comes at the cost of overhead.
The last column shows that PANDA incurs hundreds of MB storage
overhead for its snapshots and event logs in most cases, which is orders
of magnitude larger than the logs generated by FTrace on the same
cases (Table 3).

Note that in terms of ‘‘6-F2FS’’ and ‘‘7-GFS’’ where FTrace fails due
to kernel panics, PANDA can still work properly. This suggests a unique
advantage of VM-based debugging tools like PANDA: by isolating the
target storage software stack in the guest VM, the tool itself can survive
severe problems of the target system and still provide effective support

for diagnosing the problem.
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Table 4
PANDA results on 9 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 cases.
Case ID Still Repro-

ducible?
Record &
Replay

Plugin Log Size
(MB)

Show Taint Identify Process-Block
Instructions Analysis Processes Relationship

1-EXT4 Yes � � � � � 659.9
2-EXT4 Yes � � � � � 671.9
3-BTRFS Yes � � � � � 380.7
4-BTRFS Yes � � � � � 811.7
5-BTRFS Yes � � � � � 683.1
6-F2FS Yes � � � � � 451.7
7-GFS Yes � � � � � 408.7
8-BLK Yes � � � � � 658.7
9-BLK No N/A N/A N/A N/A N/A N/A
Fig. 4. An Example of Augmented FTrace Log for 8-BLK.

4.3. Enhancing low-level observability

Through the experiments with 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘, we find that neither
FTrace nor PANDA can provide direct observability on the lowest
level of information communicated between the storage software and
the storage device, i.e., the device commands (e.g., SCSI [70]). Such
command-level information is valuable in diagnosing storage failures
because the persistent storage states are changed by the device com-
mands directly. Traditionally, bus analyzers [36,37] are used to capture
such command-level information. But as mentioned in Section 2.2, bus
analyzers are hardware-based tools which are not as convenient as soft-
ware tools. We introduce software extensions to capture bus-analyzer-
like command information and enhance the low-level observability of
both FTrace and PANDA in this subsection.

FTrace Extension. To avoid introducing unnecessary complexity
to FTrace’s probe mechanism in the kernel, we use an indirect way
to extend FTrace. Specifically, we use a customized iSCSI driver [78]
to collect device commands with timestamp, and align the collected
device commands with the original FTrace logs based on timestamp.
In doing so, the kernel functions are augmented with low-level device
commands under the corresponding critical I/O paths.

We have verified that this extension method works for all the cases

where FTrace can work normally without the extension. As an example,
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Fig. 5. An Example of Augmented QEMU Log for 8-BLK.

Fig. 4 shows a simplified version of the extended FTrace logs for the ‘‘8-
BLK’’ case. The traced kernel functions are augmented with additional
SCSI commands (bolded) based on timestamp. Fig. 4(a) shows the
augmented log of an abnormal run (i.e., the bug is triggered), where
we can see that the function 𝑏𝑙𝑘𝑑𝑒𝑣_𝑓𝑠𝑦𝑛𝑐 eventually generates a write
command to the device (‘‘SCSI-CMD: WRITE’’). This is problematic
because the high-level sync function (i.e., 𝑏𝑙𝑘𝑑𝑒𝑣_𝑓𝑠𝑦𝑛𝑐) should gen-
erate a low-level sync operation (instead of simply a regular write
operation) at the device command level. Fig. 4(b) shows the augmented
log of a corresponding normal run. We can see that an additional sync
command (‘‘SCSI-CMD: SYNC_CACHE’’) is actually generated within the
scope of the 𝑏𝑙𝑘𝑑𝑒𝑣_𝑓𝑠𝑦𝑛𝑐 function, which is expected.

Essentially, our extension combines the features of FTrace and the
traditional hardware-based bus analyzer [36,37]. By extending FTrace
logs with the command-level information in this way, we enhance the
low-level observability of FTrace without using special hardware.

PANDA Extension. As mentioned in Section 4.2, PANDA uses
QEMU to host the entire storage software stack in the guest VM,
so the iSCSI driver solution for FTrace does not work for PANDA.
Instead, we modify QEMU to capture all command-level information
and leverage QEMU’s internal logging mechanism to align commands
with instructions.

Specifically, in QEMU, the guest OS kernel communicates with a
SCSI device by sending Command Descriptor Blocks (CDBs) over the
bus. QEMU maintains a ‘struct SCSICommand’ for each SCSI command,
which contains a 16-byte buffer (‘SCSICommand->buf’) holding the
CDB. Every SCSI command type is identified by the opcode at the
beginning of the CDB, and the size of CDB is determined by the opcode.
For example, the CDB for the WRITE_10 command is represented by
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the first 10 bytes of the buffer. For simplicity, we always transfer
16 bytes from the buffer to the command log and use the opcode
to identify valid bytes. QEMU classifies SCSI commands into either
Direct Memory Access (DMA) commands (e.g., READ_10) or Admin
commands (e.g., VERIFY_10), and both are handled in the same way
in our extension since they share the same data structure.

As an example, Fig. 5 shows a simplified version of the augmented
QEMU log for the ‘‘8-BLK’’ case. The two bold lines (i.e., ‘‘SCSI-CMD
...’’) are the added device command information. and the remain-
ing lines are the original QEMU log which includes both instructions
(i.e., lines starting with addresses ‘‘0x5649e2...’’ etc.) and interrupts
(e.g., ‘‘Servicing hardware INT=0xec’’). The dash lines show the trans-
lation iteration of QEMU, each of which includes one basic block
of instructions and the relevant device commands (if any). Similar
to the FTrace extension, we enhance the low-level observability of
PANDA/QEMU log without relying on special hardware.

4.4. Summary & discussion

To sum up, we have measured and evaluated the debugging observ-
ability of FTrace and PANDA via 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘. Through the experiments,
it is clear that FTrace and PANDA have different design tradeoffs and
provide different level of observability. Moreover, we have demon-
strated that it is possible to enhance their low-level observability via
different lightweight extensions without hardware.

In particular, the results of FTrace suggest that tracing-based tools
may be fundamentally limited for diagnosing storage failures in two
aspects: (1) they may trace too many functions/events most of which
may not be relevant to the root cause; (2) they may fail to function
properly when the target storage system is malfunctional severely
(e.g., kernel panics as in ‘‘6-F2FS’’ and ‘‘7-GFS’’).

On the other hand, the results of PANDA suggest that VM-based
tools may be more viable for diagnosing storage failures because they
can isolate the entire storage software stack from the core debugging
functionality. However, in complicated failure scenarios, the events
monitored may overwhelm the virtualization layer (e.g., ‘‘9-BLK’’ for
PANDA), which suggests that more lightweight and less intrusive meth-
ods are needed to leverage virtualization for debugging.

We focus on measuring the observability of the debugging tools
in this work because this is one of the most important metrics for
debugging failures [35]. We envision many opportunities for further
improvements based on the initial effort. For example, we recognize
that observability is only one desired property proposed recently for
improving system reliability [35]. There are other important properties
and tools which may be measured by using 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 (e.g., runtime
overhead of debugging tools, false positive rates of bug detection tools).
Also, the current prototype of 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 only contains 9 reproducible
cases due to the difficulty of reproducing real-world storage failures
with incomplete information (as discussed in Section 3.3). And unfor-
tunately, based on our investigation, none of the 277 issues collected
in our dataset (Section 3) are directly related to the PM modules
introduced to the storage stack recently. In terms of debugging tools,
we only measure the core features of FTrace (i.e., kernel function
tracing) and PANDA (i.e., record & replay and 4 related plugins) in
our experiments. In fact, both FTrace and PANDA provide a rich set of
additional features which might also be helpful for failure diagnosis.
For example, FTrace allows users to add additional events tracing
based on tracepoints [32]. Similarly, PANDA has additional plugins
built on top of its record & replay framework. We leave reproducing
PM-specific cases, deriving additional metrics, and measuring other
debugging features and tools as future work.

While we only touch the observability of diagnosing the storage
stack in this paper, the concept is also applicable in other contexts.
In particular, researchers and practioners have recognized the critical
importance of observability in the Cloud Native environment [79],
where various components have been developed to enhance the observ-
ability to meet service-level objectives (SLOs) [79]. However, different
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from the modern Cloud-Native environment which supports loosely-
coupled microservices and enables flexible integration of monitoring,
tracing, logging, etc. services for observability, the storage stack in
the monolithic Linux kernel has more constraints. How to improve
the observability for the monolithic kernel with minimal intrusion
remains an open question. Our effort on measuring the observability of
state-of-the-art tools is one first step toward addressing the challenge.

Finally, we would like to point out that our goal of measuring
the observability of different debugging tools in this work is not to
imply which one is better. Instead, we hope to identify the potential
limitations of the state-of-the-art tools in the context of diagnosing
realistic storage failures, and inspire further improvements to address
the debugging challenge. And as shown in our experiments, although
the total number of reproducible cases is relatively small, 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘
and the associated metrics have already exposed the limitations of the
state-of-the-art tools evaluated, which suggests the needs and opportu-
nities for more advanced diagnosis support. We hope that our initial
𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 effort and the proof-of-concept extensions can inspire more
ollow-up research efforts in the communities, and contribute to the
evelopment of benchmarking for system reliability in general.

. Related work

In this section, we discuss four categories of related work that have
ot been covered sufficiently in the previous sections.

enchmarking Storage Systems. Great efforts have been made to
enchmark and measure various storage systems [25–28,80,81]. For
xample, FIO [27] allows specifying diverse I/O patterns (e.g., sequen-
ial/random/mixed read or write operations) in multiple threads or
rocesses. WHISPER [80] includes ten PM applications covering three
ypes of access interfaces to PM, which enables analyzing the charac-
eristics of PM applications (e.g., percentage of writes to PM, number
f ordering points). Complementary to these existing benchmarking
fforts which mostly focus on measuring the performance metrics, we
ntroduce 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 and a set of metrics to enable quantitative and
ualitative measurement of debugging observability.

Coincidentally, there is an early work by Lu et al. which is called
ugBench [25]. The authors collected 17 bug cases in C/C++ ap-
lications, and proposed to evaluate bug detections tools based on
he bug cases. Different from BugBench which includes application-
evel bug cases, 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 includes buggy OS kernels covering major
omponents of the storage stack (e.g., multiple file systems, and low-
evel block I/O software), which are arguably more difficult to package,
eproduce, or diagnose compared to user-level applications. Also, dif-
erent from BugBench which focuses on evaluating user-level testing
ools, we focus on evaluating the debugging tools for diagnosing
ailures, which is critically important for resolving failures in the real
orld but unfortunately is much less investigated compared to the
bundant research on bug detection [30,31]. On the other hand, both
ugBench and 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 focus reliability-oriented metrics (e.g., false
ositive rates, observability) and aims to improve the system robust-
ess, which is different from traditional performance-oriented metrics.
herefore, we view the two efforts as complementary to each other.
e hope that by reviving the concept of benchmarking for observ-

bility and other important reliability-oriented properties of computer
ystems, this work will inspire follow-up research and help improve the
obustness of systems in general.

tudies of Software Bugs and Failures. Many researchers have per-
ormed empirical studies on bugs or failures in software systems [73–
5,82–84]. For example, Lu et al. [75] studied 5079 patches from
Linux file systems and identified evolution trends; Lu et al. [73]

tudied 105 concurrency bugs from 4 applications and identified a
umber of common bug patterns (e.g., atomicity-violation and order-
iolation); Duo et al. [53] studied 1350 PM-related kernel patches
nd identified a number of PM bug characteristics including PM patch
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categories, PM bug patterns, consequences, and fix strategies; Gunawi
et al. [85] studied 597 cloud service outages and derived multiple
lessons including the outage impacts, causes, etc; Liu et al. [86] studied
hundreds of incidents in Microsoft Azure.

Generally, our work is complementary to the existing ones as we
focus on bugs in the entire storage stack experienced by the end users,
which has a different scope compared to most of the existing studies.
Moreover, we reproduce a set of cases and derive a 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 to
measure representative debugging tools, which is beyond the scope of
existing empirical studies.

Characterizing Storage Devices. Many researchers have studied the
behaviors of storage devices in depth, including both HDDs [87–89]
and SSDs [1,55,56,59,90–96]. For example, Bairavasundaram et al. [88]
analyze the data corruption and latent sector errors in production
systems containing 1.53 million HDDs; Maneas et al. [56] study the
reliability of 1.4 million SSDs deployed in NetApp RAID systems.
Schroeder et al. [89] analyze the disk replacement data of seven pro-
duction systems over five years. Generally, these studies may provide
valuable insights for reasoning complex storage failures caused by
device. Different from these device-level studies, we analyze the storage
failures at the system level involving different kernel components,
which is complementary to the existing work.

Testing Storage Software. Great efforts have been made to test various
storage software systems [41,54,58,60,61,97–101], with the goal of
exposing bugs that could lead to failures. For example, EXPLODE [41]
uses modeling checking to find storage system bugs [41], and B3

applies bounded black-box testing to detect crash-consistency bugs in
file systems [58]. However, testing tools are generally not suitable
for diagnosing system failures because they typically require a well-
controlled environment (e.g., a highly customized kernel [41,58]),
which may be substantially different from the storage stack that need
to be diagnosed. While the goal of this work is not to develop a new
bug detection tool, the 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 created in this work may be used
to evaluate such tools as well (e.g., false positive rate on detecting the
reproducible bugs), which we leave as future work.

6. Conclusions

We have studied 277 real-world storage failures to quantitatively
understand their characteristics. Based on the characterization, we
derived a 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 which includes the necessary workloads and
software environments to reproduce 9 realistic storage failure cases. We
applied 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 to study two representative open source tools and
derived concrete metrics to quantitatively/qualitatively measure their
debugging observability. Moreover, we demonstrated that it is possible
to enhance the observability of the state-of-the-art tools via lightweight
extensions.

To the best of our knowledge, this work is the first effort to measure
the observability of debugging tools. The work demonstrated in this
paper suggests many opportunities for further improvements such as
reproducing and packaging other types of bugs cases, deriving addi-
tional metrics for other desirable system properties, and measuring
other tools or features, which we leave as future work. We hope that
our initial effort will inspire follow-up research in the communities
and help measure and improve the robustness of computer systems in
general.
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A B S T R A C T

In this study, we present an efficient parallel sparse approximate inverse (SPAI) preconditioning algorithm
based on MPI and CUDA, called HybridSPAI. For HybridSPAI, it optimizes a latest static SPAI preconditioning
algorithm, and is extended from one GPU to multiple GPUs in order to process large-scale matrices. We
make the following significant contributions: (1) a general parallel framework for optimizing the static SPAI
preconditioner based on MPI and CUDA is presented, and (2) for each component of the preconditioner,
a decision tree is established to choose the optimal kernel of computing it. Experimental results show that
HybridSPAI is effective, and outperforms the popular preconditioning algorithms in two public libraries, and
a latest parallel SPAI preconditioning algorithm.
1. Introduction

It has proved that sparse approximate inverse (SPAI) precondi-
tioners can effectively accelerate the convergence rate of Krylov sub-
space methods, such as the generalized minimal residual method (GM-
RES) [1] and the biconjugate gradient stabilized method (BiCGSTAB)
[2]. Moreover, compared with the incomplete factorization precon-
ditioners [3–6] and the factorized sparse approximate inverse (FSAI)
preconditioners [7–10], SPAI preconditioners neither require exces-
sively sparse matrix–vector multiplication operations nor take care of
the risk of breakdowns that can be encountered by FSAI precondi-
tioners [11]. Consequently, SPAI preconditioners have attracted much
attention [12–17].

In recent years, graphic processing units (GPUs) have become an
important resource for scientific computing because of their many core
structures and powerful computation efficiency, and have been used as
tools for high-performance computation in a lot of fields [18–21]. As we
know, the cost of constructing SPAI preconditioners is commonly very
expensive for large-scale matrices, because the memory requirements
to store them, and the computation requirements to calculate them are
approximately the scale with the square to third power of the number
of nonzeros in each row.

With the emerging of graphic processing units (GPUs), many studies
have been conducted to accelerate the construction of SPAI precon-
ditioners on the GPU architecture, and many parallel preconditioning
algorithms [11,22–26] are proposed. Based on the degree of freedom
used, SPAI preconditioner generation is classified as static (a priori)

✩ The research has been supported by the Natural Science Foundation of China under grant number 61872422, and the Natural Science Foundation of Jiangsu
Province, China under grant number BK20171480.
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or adaptive. In this paper, we focus on optimizing a latest static SPAI
preconditioning algorithm and extend it from one GPU to multiple
GPUs. There has existed some work about static SPAI preconditioners
on GPU [11,27], but the detailed implementations never be given
and the source code is not public. Furthermore, He and Gao et al.
propose two static SPAI preconditioning algorithms on GPU, called
SPAI-Adaptive [28] and GSPAI-Adaptive [29], and give their imple-
mentation details. The two algorithms are verified to be effective for
large-scale matrices. In this study, inspired by Gao’s work, we further
investigate how to highly optimize the static SPAI on multi-GPUs
instead of only single GPU in this paper. We propose an optimized
SPAI preconditioning algorithm based on MPI and CUDA, called Hy-
bridSPAI. Compared to a latest static SPAI preconditioning algorithm,
the proposed algorithm has the following distinct characteristics. First,
a general parallel framework based on MPI and CUDA is presented
to optimize the static SPAI preconditioner, and is extended from one
GPU to multiple GPUs. For each GPU, it operates same procedures as
shown in Section 3.3, such as finding indices I and J, constructing the
local submatrix, decomposing the local submatrix into QR, and solving
the upper triangular linear systems. For MPI, it provides a simple and
easy-to-use parallel controlling capability on multicore CPUs, which
dedicates one thread for controlling one GPU. Second, when a sparsity
pattern of the preconditioner is given, we use the thread-adaptive
allocation strategy to choose the optimized number of threads for
each column of the preconditioner, and construct the decision tree to
choose the optimization kernel to calculate each one of components
https://doi.org/10.1016/j.tbench.2021.100007
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Fig. 1. A CPU–GPU hybrid parallel computing model based on MPI.

of the preconditioner. Experimental results show that HybridSPAI is
effective, and is advantageous over the popular incomplete LU fac-
torization algorithm in the CUSPARSE library [30], the static SPAI
preconditioning algorithm in the ViennaCL library [24], and the latest
GSPAI-Adaptive [29].

The main contributions in this paper are summarized as follows.

∙ A general parallel framework based on MPI and CUDA is pre-
sented for optimizing the static SPAI preconditioner, and is
extended from one GPU to multiple GPUs, also the CPU and GPU
tasks are designated.

∙ A strategy is presented to choose the optimal number of threads
for each column of the preconditioner.

∙ On the basis of the parallel framework and proposed strategy,
an optimization SPAI preconditioning algorithm based on MPI
and CUDA, called HybridSPAI, is presented. In HybridSPAI,
finding indices, constructing local submatrix, decomposing the
local submatrix into QR, and solving the upper triangular linear
system are computed in parallel, and the kernels of calculating
them are selected by the decision tree optimization.

The rest of this paper is organized as follows. Section 2 describes the
SPAI preconditioning algorithm, Section 3 gives the detailed implemen-
tation of HybridSPAI, Section 4 presents the experimental analysis and
evaluation, and Section 5 contains our conclusions and points to our
future research directions.

2. SPAI algorithm

The basic idea of the SPAI procedure [22] is described as follows:
Use a sparse matrix M, known as the preconditioner, to approximate
the inverse of A, and M is computed by the following formula:

min ‖𝐴𝑀 − 𝐸‖

2
𝐹 . (1)

wing to the independence of the columns of M, the equation men-
ioned above can be separated into the following n independent least
quares problems

in
𝑚𝑘

‖

‖

𝐴𝑚𝑘 − 𝑒𝑘‖‖
2
2 , 𝑘 = 1, 2,… , 𝑛 (2)

here 𝑒𝑘 is the kth column of the identity matrix and 𝑚𝑘 represents
olumn k in matrix M. For a description of the implementation details
f SPAI, we refer to the literature [27].

. Optimizing SPAI on GPUs

We present an optimization SPAI preconditioning algorithm based
n CPU–GPU platforms, called HybridSPAI. The hybrid parallel com-
uting model is illustrated in Fig. 1. and the parallel framework of Hy-
ridSPAI is shown in Fig. 2, which includes the following three stages:
re-HybridSPAI stage, Compute-HybridSPAI stage, and Post-HybridSPAI
tage.
60
Fig. 2. Parallel framework of HybridSPAI.

3.1. Hybrid parallel programming based on MPI and CUDA

A hybrid parallel programming model must be designed for the
architectures of GPU and CPU to improve the computing performance,
and has the characteristics of extending to more devices. In our pro-
posed model, as a device in CUDA, GPU can be controlled by each
thread of multicore CPU, also can be controlled by each individual CPU.
In addition, the data is transferred from the host memory to the GPU
device memory, then the CPU launches the calculation process on the
GPU by calling the kernel function.

MPI provides a simple and convenient parallel computing capability
of multi-threads on multicore CPUs [31]. The hybrid parallel computing
model is illustrated in Fig. 1, where 𝐴1, 𝐴2, . . . , 𝐴𝑖3, 𝐴𝑖4,are submatrices
which are stored in the host memory, and Thread are multi-threads
which are assigned to cores of CPUs.

Note that when using this model, a computing matrix will be di-
vided into multiple submatrices which corresponding with the number
of calling threads of CPUs, so that these submatrices are assigned to
each GPU to perform respectively.
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Table 1
Arrays in HybridSPAI.

Array Size Type

AData nonzeros Double
AIndex nonzeros Integer
APtr n Integer
I ns × n1max Integer
atmoic n Integer
J ns × n2max Integer
jPTR ns Integer
�̂� ns × n2max Double
�̂� ns × n1max × n2max Double
R ns × n1max × n2max Double
iPTR ns Integer

3.2. Pre-HybridSPAI Stage

In this paper, we summarize the sparsity of M in advance with the
main method in [25]. M(i,j) is considered a nonzero if

|𝐴(𝑖, 𝑗)| > (1 − 𝜏) max
𝑗

|𝐴(𝑖, 𝑗)|, 0 ⩽ 𝜏 ⩽ 1 (3)

is satisfied, where 𝜏 is a user defined tolerance parameter (the main
diagonal is always included).

Next, A is stored in host memory using the compressed sparse
column(CSC) storage format, and M is also stored in columns. The
dimensions of local submatrices (𝑛1𝑘, 𝑛2𝑘) are usually distinct for
different k, (k = 1, 2, . . . ,n). To simplify the accesses of data in memory
and increasing the coalescence, the dimensions of all local submatrices
are uniformly defined as (𝑛1𝑚𝑎𝑥, 𝑛2𝑚𝑎𝑥), where 𝑛1𝑚𝑎𝑥 = max𝑘{𝑛1𝑘}
and 𝑛2𝑚𝑎𝑥 = max𝑘{𝑛2𝑘}.

Finally, the thread-adaptive allocation strategy is proposed. For any
matrix, the number of threads 𝑧 for each column of the preconditioner
is calculated by the following formulas:

𝑧 = min
(

2𝑙 , 𝑛𝑡
)

(4)

s.t. 2𝑙−1 < 𝑛2 𝑚𝑎𝑥 ⩽ 2𝑙 . (5)

In Eqs. (4), 𝑛𝑡 is a fixed thread block size. 𝑧 threads are grouped into a
thread group, which is assigned to compute the kth column of M. The
lowercase ‘‘L’’ in the Eqs. (4) was required to compute the suitable 𝑧
threads. Note that we used a 1D array of the thread blocks to organize
the compute grid in this paper, and used a 1D array of threads to
organize the thread block as well.

3.3. Compute-HybridSPAI Stage

In the Compute-HybridSPAI stage, the allocations of every GPU
global memory are shown in Table 1. Based on the characteristics
of message interface, MPI is very convenient to scatter and gather
data between the multiple threads of CPU. The following steps are
implemented to compute M.

Finding 𝐽 and 𝐼 : In all blocks, each thread-group block size that is
used to find J and I is same, and each thread group (warpSize threads)
is assigned to find one subset of J and I, which making many subsets
of J and I can be simultaneously obtained. Furthermore, parallelism
is also exploited inside each thread group. For the kernel that finds
J, the threads inside each warp (thread group) read one column of M
in parallel, and store them to shared memory using atomic operation.
For the kernel that finds I, a decision tree is established and for any
given 𝑛2𝑚𝑎𝑥 and 𝑛1𝑚𝑎𝑥, this optimized kernel can be effective. Fig. 3
shows a segment of the decision tree for finding I. When 4 < n2max ≤
8, cuFindIBySharedMemory kernel with shared memory of sharedSize
size or cuFindI kernel with global memory will be selected according
to different the 𝑛1𝑚𝑎𝑥. Here sharedSize = number of computing columns
of the preconditioner ×upper boundary closest to 𝑛1𝑚𝑎𝑥. Fig. 4 shows

the main procedure of cuFindIBySharedMemory kernel. Each thread s

61
Fig. 3. A segment of the decision tree of find 𝐼 .

Fig. 4. Main procedure of cuFindIBySharedMemory kernel.

group finds one subset of I, e.g., 𝐼𝑘. First, the row indices of the first
column referenced in one subset of J, e.g., 𝐽𝑘 are loaded to shared
memory 𝑠𝐼 with the threads in the thread group. Then the index vectors
of successive columns referenced by 𝐽𝑘 are compared in parallel with
values in 𝑠𝐼 and new indices are appended to 𝑠𝐼 by utilizing the atomic
operations. Second, inside the thread group, the indices of 𝑠𝐼 are sorted
in ascending order in parallel. Finally, the indices of 𝑠𝐼 are copied to
𝐼𝑘. When n1max > 256, cuFindI kernel is executed on global memory
instead of shared memory, which is similar to cuFindIBySharedMemory
kernel.

Constructing the local submatrix:Using J and I obtained above,
the local matrix set �̂�, is computed by kernel with shared memory or
kernel with global memory according to the established decision tree.
Fig. 5 shows a segment of the decision tree for constructing �̂�. When 4
< n2max ≤ 8, cuComputeTildeABySharedMemory kernel with shared
memory of sharedSize size or cuComputeTildeA kernel with global
memory will be selected according to different 𝑛1𝑚𝑎𝑥. Fig. 6 shows the
main procedure of cuComputeTildeABySharedMemory kernel. For the
thread group on each GPU that calculates 𝐴𝑘, all threads in the thread
roup first read values in 𝐼𝑘 into shared memory 𝑠𝐼 in parallel, and 𝐴𝑘
s constructed on global memory by loading columns indexed in 𝐽𝑘 and
atching them to 𝐼𝑘 in parallel. When n1max > 256, cuComputeTildeA

ernel is executed on global memory instead of shared memory, which
s similar to cuComputeTildeABySharedMemory kernel.
Decomposing the Local Submatrix into QR:The thread-group size

f decomposing the local submatrix into QR is same in all blocks. Being
imilar with above two steps, the constructed decision tree is used again
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Fig. 5. A segment of the decision tree to construct �̂�.

Fig. 6. Main procedure of cuComputeTildeABySharedMemory kernel.

Fig. 7. A segment of the decision tree to decompose the local submatrix into QR.

to decompose local submatrix. Fig. 7 shows a segment of the decision
tree for decomposing the local submatrix into QR. When 4 < n2max ≤
8, cuQRByQRSharedMemory kernel with shared memory of sharedSize
size and sharedQ size or cuQRByRSharedMemory kernel with shared
memory of sharedR size will be selected according to different n1max.
Fig. 8 shows the main procedure of cuQRByQRSharedMemory kernel.
In addition, Eeach thread group is responsible for one QR decomposi-
tion. For a description of its detailed implementation, please refer to
the literature [25]. In a thread group, the local submatrix, e.g., 𝐴𝑘, is
decomposed into QR by the following four steps at each iteration i. In
62
Fig. 8. Main procedure of cuQRByQRSharedMemory kernel.

Fig. 9. A segment of the decision tree to solve the upper triangular linear system.

he first step, the ith column of 𝑄𝑘 are read into shared memory sQ in
arallel. In the second step, the threads computed the ith row of the
pper triangle matrix 𝑅𝑘 in parallel and put into shared memory sR. In

the third step, the column i of 𝑄𝑘 and sQ are concurrently normalized,
and the projection factors 𝑅𝑘 and sR are calculated. In the fourth step,
the values of all columns of 𝑄𝑘 are updated by using shared memory sQ
and sR in parallel. When n1max > 128. cuQRByRSharedMemory kernel
is executed by utilizing shared memory sR instead of shared memory
sQ, which is similar to cuQRByQRSharedMemory kernel.

Solving the Upper Triangular Linear System:In this section, one
subset of 𝑚𝑘 = 𝑅−1

𝑘 𝑄𝑇
𝑘 𝑒𝑘 are computed by solving an upper trian-

gular linear system. Fig. 9 shows a segment of the decision tree for
solving an upper triangular linear system. For any given n2max value,
cuSolverBySharedMemory with shared memory of 256 size and thread-
group size of warpSize, is chosen. For example, when 4 < n2max ≤ 8,
cuSolverBySharedMemory kernel with shared memory of 256 size and
thread-group size of 8 is selected. Fig. 10 shows the main procedure
of cuSolverBySharedMemory kernel. For each thread group,T the steps
to compute �̂�, e.g., 𝑚𝑘, include: (1) 𝑄𝑇

𝑘 𝑒𝑘 is calculated in parallel and
saved to the shared memory 𝑥𝐸, and (2) the values of 𝑚 are obtained
𝑘
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Fig. 11. Assemble M.

Table 2
Descriptions of test matrices.

Name Kind Rows Nonzeros avg max min

venkat01 CFD sequence 62,424 1,717,792 27.52 44 16
imagesensor Semiconductor device 118,758 1,446,396 12.18 21 2
cfd2 CFDproblem 123,440 3,085,406 25.00 30 8
apache2 Structural 715,176 4,817,870 6.74 8 4
t2em Electronmagnetics 921,632 4,590,832 4.98 5 1
thermal2 Thermal 1,228,045 8,580,313 6.99 11 1
G3_circuit Circuitsimulation 1,585,478 7,660,826 4.83 6 2

by solving the upper triangular linear system, 𝑅𝑘𝑚𝑘 = xE, in parallel
using shared memory.

3.4. Post-HybridSPAI Stage

The Post-HybridSPAI Stage is to assemble M in the CSC storage
format from multiple GPUs. Fig. 11 illustrates the procedure of as-
sembling MPtr, MIndex and MData arrays on each GPU. First, MPtr
is assembled utilizing jPTR. Second, �̂� and J are utilized to assemble
MIndex and MData. Finally, MData arrays on each GPU are transferred
to the respective threads of CPU according to the device ID of GPUs.
On the CPU, each thread utilize the function MPI_Gatherv() of MPI to
gather the MData into a complete array in parallel.

4. Evaluation and analysis

We evaluate the performance of HybridSPAI in this section. The test
matrices in Table 2 are used to evaluate the performance of NVIDIA
GTX 1080 Ti GPUs, which are selected from University of Florida Sparse
Matrix Collection. The source codes are compiled and executed using
the CUDA toolkit 10.1.

4.1. Effectiveness analysis

For each test matrix, GPUPBICGSTAB are called to solve Ax=b on
GTX 1080 Ti, where all values of b are 1 and the produced M is used as
the preconditioner. They stop when the residual error is less than 1𝑒−7,
or the number of iterations exceeds 10,000. Table 3 shows the results,
and the time unit is second (s).

In addition, we take GTX 1080 Ti to investigate the effort of single
GPU and increasing the number of threads on the execution time of Hy-
bridSPAI and GPUPBICGSTAB with HybridSPAI. Table 4 demonstrates
63
Table 3
Iterations and execution time of GPUBICGSTAB on GTX 1080 Ti.

Matrix GPUBICGSTAB GPUPBICGSTAB

Iterations Execution time Iterations Execution time

venkat01 10000 / 35 1.312
imagesensor 10000 / 52 1.036
cfd2 7768 5.167 1613 3.518
apache2 5813 8.061 1106 3.032
t2em 1661 3.122 768 2.338
thermal2 4095 9.771 2584 9.748
G3_circuit 10000 / 475 2.53

Table 4
Execution time of HybridSPAI and GPUPBICGSTAB.

Matrix GPU 1 thread 2 thread 4 thread 8 thread

venkat01
0.506 0.501 0.262 0.151 0.102
0.806 0.771 0.761 0.736 0.715
1.312 1.272 1.023 0.887 0.817

imagesensor
0.228 0.227 0.179 0.103 0.104
0.808 0.785 0.767 0.745 0.713
1.036 1.012 0.946 0.848 0.817

cfd2
1.187 1.191 0.631 0.356 0.224
2.331 2.231 2.294 2.178 2.101
3.518 3.422 2.925 2.534 2.325

apache2
0.226 0.219 0.126 0.101 0.133
2.806 2.761 2.746 2.734 2.838
3.032 2.980 2.872 2.835 2.971

t2em
0.075 0.070 0.060 0.064 0.103
2.263 2.253 2.241 2.231 2.268
2.338 2.323 2.301 2.295 2.371

thermal2
0.332 0.329 0.201 0.165 0.164
9.416 9.443 9.367 9.369 9.187
9.748 9.772 9.568 9.534 9.351

G3_circuit
0.167 0.156 0.113 0.094 0.115
2.363 2.302 2.321 2.329 2.290
2.530 2.458 2.434 2.423 2.405

the execution time of this. For each matrix and given number of threads,
the first row and second row are respectively the computing time of
HybridSPAI and GPUPBICGSTAB, and the third row is the sum of time
of the first two row. GPUPBICGSTAB stops while the residual error is
less than 1𝑒−7. The minimum values of the second and third rows for
each matrix both are marked in the red font. In addition, we observe
that when the time of computing the preconditioner keeps less than
228 ms on single GPU, increasing the number of GPU cannot provide
significant acceleration.

4.2. Performance comparison

We test the HybridSPAI performance by comparing it with a pop-
ular preconditioning algorithms: CSRILU0 in CUSPARSE (denoted by
CSRILU) [32], a static sparse approximate inverse preconditioning
algorithm in ViennaCL (denoted by SSPAI-VCL) [33], and a latest paral-
lel SPAI preconditioning algorithm(denoted by GSPAI-Adaptive) [29].
Table 5 demonstrate the comparison results on GTX 1080 Ti GPUs.
For each matrix and the preconditioner, the first row is the computing
time of these four preconditioning algorithms, and the second row
and the third row are respectively the execution time and the number
of iterations of GPUPBICGSTAB while the residual error is less than
1𝑒−7. Note that ‘‘/’’ represents the number of iterations for HybridSPAI
exceeds 10,000, and all the other rows for each matrix will be denoted
except that the third row is denoted by ‘‘> 10000’’. The minimum value
of the fourth row for each matrix is marked in the red font.

From Table 5, we observe that on GTX 1080 Ti, the total time
of HybridSPAI and GPUPBICGSTAB with HybridSPAI is the smallest
among all algorithms for any matrices. This displays that Hybrid-
SPAI outperforms CSRILU and SSPAI-VCL, and is advantageous over
GSPAI-Adaptive.
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Table 5
Execution time of all preconditioning algorithms and GPUPBICGSTAB on GTX 1080 Ti

Matrix CSRILU SSPAI-VCL GSPAI-Adaptive HybridSPAI

venkat01

1.835 38.856 0.506 0.102
1.574 0.036 0.806 0.715
11 48 35 35
3.427 38.892 1.312 0.817

imagesensor

/ / 0.228 0.104
/ / 0.808 0.713
10000 10000 52 52
/ / 1.036 0.817

cfd2

/ / 1.187 0.224
/ / 2.331 2.101
10000 10000 1613 1613
/ / 3.518 2.325

apache2

3.386 43.532 0.226 0.101
6.776 2.995 2.806 2.734
475 2503 1106 1106
10.162 46.527 3.032 2.835

t2em

19.884 / 0.075 0.064
2998.63 / 2.263 2.231
427 10000 768 768
3018.514 / 2.338 2.295

thermal2

5.502 / 0.332 0.164
45.008 / 9.416 9.187
1619 10000 2584 2584
50.510 / 9.748 9.351

G3_circuit

5.245 / 0.167 0.115
12.475 / 2.363 2.290
257 10000 475 475
17.720 / 2.530 2.405

5. Conclusion

We present an efficient parallel sparse approximate inverse precon-
ditioning algorithm on multi-GPUs in this paper, which is based MPI
and CUDA, called HybridSPAI. In our proposed HybridSPAI, a general
parallel framework is embraced for optimizing the static SPAI on multi-
GPUs, and a decision tree is established to choose the optimal kernel
for computing it. The experimental results demonstrate a noticeable
performance and high effectiveness of our proposed HybridSPAI.
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A B S T R A C T

With the widespread application of artificial intelligence technology in the field of biomedical images, the deep
learning-based detection of vaginal discharge, an important but challenging topic in medical image processing,
has drawn an increasing amount of research interest. Although the past few decades have witnessed major
advances in object detection of natural scenes, such successes have been slow to medical images, not only
because of the complex background and diverse cell morphology in the microscope images, but also due to
the scarcity of well-annotated datasets of objects in medical images. Until now, in most hospitals in China,
the vaginal diseases are often checked by observation of cell morphology using the microscope manually, or
observation of the color reaction experiment by inspectors, which are time-consuming, inefficient and easily
interfered by subjective factors. To this end, we elaborately construct the first large-scale dataset of microscopic
vaginal discharge images, named MVDI25K , which consists of 25,708 images covering 10 cell categories
related to vaginal discharge detection. All the images in MVDI25K dataset are carefully annotated by experts
with bounding-box and object-level labels. In addition, we conduct a systematical benchmark experiments on
MVDI25K dataset with 10 representative state-of-the-art (SOTA) deep models focusing on two key tasks, i.e.,
object detection and object segmentation. Our research offers the community an opportunity to explore more
in this new field.
1. Introduction

Obstetrics and gynecology infectious diseases, such as vaginitis,
cervicitis, and endometritis, often trouble women’s health. It is reported
in [1] that, the incidence of obstetrics and gynecology infectious dis-
eases accounts for about 40% of the female population in China. The
vaginal discharge examination is the most direct and effective way to
detect the above diseases. For instance, the presence of trichomonas
in the secretions can be used to determine whether a patient has tri-
chomonas vaginitis, the presence of clue cells indicates that the patient
has bacterial vaginosis, and the presence of candida albicans determine
whether the patient has vulvovaginal candidiasis. As mentioned in [2],
an increase in the number of leukocytes in vaginal secretions is a strong
predictor of bacterial vaginosis or cervical infection. Besides, whether
there are epithelial cells in the secretions is also a sign to judge whether
the secretion sampling is qualified.

For a long time, manual inspection methods, observing the smear
through a high-power microscope to conduct the diagnose, have domi-
nated. As it is known, however, they suffer from some defects, such as
time-consuming, labor-intensive, inefficient, and easy to be interfered
by subjective factors. Recently, deep learning has prospered in object

∗ Corresponding authors.
E-mail addresses: maksimljc@163.com (X. Wang), tianzhu.xiang19@gmail.com (T.-Z. Xiang).

detection of natural scenes, indicating its great potential in the detec-
tion of vaginal discharge. However, there is a long way to go, which
can be attributed to two key aspects. Firstly, there are considerable dif-
ferences in the morphology, number, and distribution of cells in vaginal
secretions, due to the differences between not only individuals but also
different life stages of the same person. Obviously, it poses numerous
difficulties for automatic and robust vaginal discharge detection, such
as complex background, scale variations, extremely nonuniform object
densities, large aspect ratios, and nonrigid changes of cell shape, as
shown in Fig. 1. Most importantly, deep learning greatly relies on the
large-scale well-annotated datasets, which has long been lacking in the
medical community and thus hinder further research in this field.

To facilitate the study of vaginal discharge detection, we provide
two contributions. First, we elaborately constructed a novel large-
scale dataset of microscopic vaginal discharge images, called MVDI25K,
which contains 25,708 microscope images covering 10 object classes of
cells related to vaginal discharge detection. To the best of our knowl-
edge, MVDI25K is the first large-scale dataset for vaginal discharge
detection. It has several distinctive features:
https://doi.org/10.1016/j.tbench.2021.100008
Received 6 August 2021; Received in revised form 11 October 2021; Accepted 20 O
Available online 11 November 2021
2772-4859/© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Various examples of challenging images from MVDI25K dataset. The objects labeled with green bounding boxes are all impurities, including cell debris (such as epithelial
ell debris), naked nucleus (no cytoplasm and cell membrane), drugs, crystals, starch granules, oil drop, etc. In (a), excessive impurities make the complex background, and bring
arious interferences to object detection. (b) shows the objects with different aspect ratios. Pink bounding boxes label the four types of candida, i.e., candida1, candida2, candida3
nd hyphae, among which the longest is hyphae. In (c), the epithelial cells labeled with red bounding boxes show the changeable cell morphology, and the large scale variations
ompared to the candida cells with pink bounding boxes.
• Hierarchical categories. All objects in the microscopic images are
labeled into ten cell classes related to vaginal discharge detection,
e.g., epithelial cell, clue cell, leukocyte, and lactobacillus, etc.
Specially, considering the diverse morphology of candida, we
annotated them into four sub-classes according to morphological
differences. The hierarchical categories could benefit the accurate
and fine-grained object detection.

• Diverse annotations. The objects in MVDI25K dataset are hierar-
chically annotated with category labels, bounding boxes labels,
and object-level masks, which can greatly facilitate different med-
ical image processing tasks, such as object localization, object
detection and object/cell segmentation.

• High quality. All the images in the dataset are collected by Leica
and Olympus phase-contrast microscopes and megapixel dedi-
cated medical Basler cameras with the size from 1536 × 1536
to 2064 × 3088. The phase-contrast microscope facilitates the ac-
quisition of clearer and more realistic cell images. Moreover, cross
checking by multiple experts and volunteers is conducted to main-
tain accuracy, reliability and consistency during the whole an-
notation process. These high-quality data and annotations could
help providing deeper insight into the performance of algorithms.

Second, based on the established MVDI25K, we present a compre-
ensive study on 10 state-of-the-art baselines for vaginal discharge
etection. We provide detailed experimental analyses in two scenarios,
.e., object detection and object segmentation. Based on the evaluation
esults, we find that vaginal discharge detection is very challenging and
till far from being solved, leaving much room for improvement. We
ope that our research will give a strong boost to growth in this new
ield.

The remainder of the paper is organized as follows. We review the
urrent medical datasets, medical object detection, and medical object
egmentation in Section 2. In Section 3, we present details on the
roposed MVDI25K dataset, including collection manner, annotation
ipeline, and data statistics. Then, we describe benchmark experi-
ents from the aspects of object detection and object segmentation,

nd provide both quantitative and qualitative experimental analysis in
ection 4. Finally, we draw conclusions in Section 5.

. Related work

In this section, we briefly review some closely related works, in-
luding current medical datasets, medical object detection, and medical
bject segmentation.

.1. Medical image dataset

In general, X-rays, Computed Tomography (CT), Magnetic Reso-
ance Imaging (MRI), and Positron Emission Computed Tomography
PET) are the four most widely used image-assisted means to help
66
Fig. 2. Examples of 10 classes of cell images in MVDI25K dataset.

clinicians diagnose diseases, assess prognosis, and plan operations.
Thus, a series of corresponding medical image datasets are constructed.
Table 1 summarizes their details.

As is known to all, the well-annotated dataset plays an important
role in data-driven medical image processing research. However, to the
best of our knowledge, there is few datasets collected from microscope
imaging for vaginal discharge research, which may hinder further
research in this field. To this end, in this paper, we constructed the
first large-scale dataset of vaginal discharge images providing profes-
sional annotations. Compared with Peng’s dataset [11], the proposed
MVDI25K provides more images with diverse and rich annotations. It
is worth noting that collecting the microscopic image dataset is more
difficult than datasets of other medical imaging equipment, because
the image quality of microscope imaging is greatly affected by various
factors, e.g., focus adjustment.

2.2. Deep models for medical object detection

Object detection, to identify and locate objects in an image or
video, is a longstanding problem in computer vision. Recently, with the
development of deep learning, many researchers in the medical image
processing community have adapted deep object detectors developed
for natural images to medical images.

As suggested in [12,13], object detection can be roughly divided
into two categories: two-stage algorithms, such as R-CNN [14] and its
variants, and one-stage algorithms, such as YOLO [15] and SSD [16].
Due to its high efficiency and good performance, YOLO and its variants

have attracted extensive attention in the medical imaging community.
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Table 1
Medical image datasets.

Dataset Object Year Number X-ray CT MRI PET MImg BBox. Obj. Cate.

ABIDE [3] Brain 2013 1,112∗ ✓ ✓ ✓

OASIS-3 [4] Brain 2019 3,776 ✓ ✓ ✓ ✓

DDSM [5] Breast 2000 10,239 ✓ ✓ ✓

MURA [6] Upper Limb 2018 40,561 ✓ ✓

LIDC-IDRI [7] Lung 2006 244,527 ✓ ✓ ✓ ✓

LUNA16a Lung 2016 888 ✓ ✓ ✓

NSCLC [8] Lung 2018 1,355 ✓ ✓ ✓ ✓

DeepLesion [9] Lung etc. 2018 928,020 ✓ ✓ ✓ ✓ ✓

ChestX-ray14 [10] Chest 2017 112,120 ✓ ✓ ✓

Peng’ Dataset [11] Vaginal Dis. 2021 3,645 ✓ ✓

MVDI25K (Ours) Vaginal Dis. 2021 25,708 ✓ ✓ ✓ ✓

BBox.: Bounding-box annotation. Obj.: Object-level annotation. Cate.: Categories. MImg: Microscopic image. Vaginal Dis.: Vaginal discharge. ∗: number of sub-datasets.
ahttps://luna16.grand-challenge.org/.
Based on the chest CT scans from Lung Image Database Consortium,
YOLO-based model was applied to efficiently and accurately identify
lung nodules in [17]. The high-quality gallstone CT image dataset
was established in [18], and YOLO-v3 achieved good performance
on the detection of granular gallstones and muddy gallstones. To ef-
fectively fighting against COVID-19, an improved model based on
YOLOv2 and ResNet-50 was designed to detect medical masks with
high accuracy [19].

2.3. Deep models for medical object segmentation

In the past few years, convolutional neural networks have been the
most commonly-used architecture in state-of-the-art models for medi-
cal image segmentation, such as FCN [20], U-Net [21], and Deeplab
series [22].

Among them, the U-net plays an important role and has been
applied to numerous fields, such as using NAS-Unet to segment Mag-
netic Resonance Imaging (MRI), Computed Tomography (CT), and
ultrasound with high quality [23], and medical object segmentation
including liver, brain and lung tissue and tumor segmentation [24–26],
cell segmentation [27], optic disc segmentation [28], etc.

Another related topic that deserves attention is camouflage object
detection [29,30], which is to segment objects which have a similar
pattern (e.g. texture, color and direction) to their natural or man-
made environment. In our vaginal discharge detection, trichomonas
has a strong camouflage compared to other cell morphologies. Thus
camouflage object detection could shed new light on trichomonas
detection.

3. Proposed dataset

Our MVDI25K dataset contains 25,708 microscopic images belong-
ing to ten object/cell classes related to vaginal discharge detection.
The images are carefully selected to cover diverse challenging cases,
e.g., complex background, large-scale variation, and nonuniform object
density. Examples can be found in Figs. 1 and 2. We will describe
the details of MVDI25K in terms of three aspects, i.e., data collection,
annotation pipeline, and data statistics, as follows.

3.1. Data collection

We build a high-quality dataset, MVDI25K, images of which are
collected from the HJ500 Discharge Analysis Workstation with two
sources. One is directly photographed from the fresh samples collected
by many hospitals across the country, and the other is captured by our-
selves using the specimens we collected from other partner hospitals.
The images are acquired by Leica and Olympus phase-contrast micro-
scope and the megapixel dedicated medical Basler camera. Our dataset
covers 315 hospitals distributed in more than 20 provinces in China,

and 26 of them are tertiary hospitals including Beijing Tiantan Hospital
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and Hubei Maternity and Child Health Hospital. The entire collection
work last nearly 9 weeks. We just use the devices to collect the image
data independently, and do not collect any patient information. The
images are free from copyright and loyalties and will be available at:
https://zenodo.org/record/5523661.

Besides, the images are acquired by two types of microscopes, Leica
and Olympus microscope. Both microscopes adopt a phase contrast
field of view, which is more suitable for microscopy examination than
ordinary optical microscopes, and even unstained cells can be observed
more clearly and brighter.

3.2. Professional annotation

To facilitate the study of vaginal discharge detection, we pro-
vide bounding-box and object-level annotations for each image in our
MVDI25K dataset. We hire seven professional annotators, and six of
them are divided into three groups. Each group is responsible for the
annotation and meantime they need to cross-check the label results
from other groups. After finishing the annotation process, the team
leader (the seventh annotation expert) will carefully conduct the final
validation to ensure high-quality annotation.

3.2.1. Categories
We establish a hierarchical taxonomic system for the proposed

dataset. We first choose seven major cell categories such as epithe-
lial cell, clue cell, leukocyte, candida, red blood cell, lactobacillus, and
trichomonas. Considering the large morphology differences of candida
cells, shown in the first row of Fig. 2, we divided the candida into four
sub-classes, namely candida1, candida2, candida3, and hyphae. Finally,
we integrate these classes into 10 cell/ object classes. The taxonomic
structure of our MVDI25K is given in Fig. 3(a). The example of the
word cloud is shown in Fig. 3(b). We believe that the fine-grained
classification of candidas would play a positive role in accurate vaginal
discharge detection.

3.2.2. Bounding-box annotation
Bounding box is widely used in object detection and localization. To

extend MVDI25K for the object proposal task, we carefully annotate the
bounding boxes around the objects in each image. Finally, we obtained
total 718,497 object instances from 25,708 microscopic images. Some
examples of annotated patches are shown in Fig. 4(a).

3.2.3. Object-level annotation
High-quality pixel-level annotations are necessary for MVDI25K

dataset. Here we focus on the Trichomonas category, the disease who
causes is one of the most common obstetrics and gynecology infectious
diseases.1 Besides, the Trichomonas cell is usually active and thus dif-
ficult to be observed clearly from vaginal secretion microscope sample,

1 https://news.un.org/en/story/2019/06/1039891.

https://luna16.grand-challenge.org/
https://zenodo.org/record/5523661
https://news.un.org/en/story/2019/06/1039891
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Fig. 3. Categories of MVDI25K.
Fig. 4. Annotations of MVDI25K.
Fig. 5. Multiple Objects. The number of each object in each image.

which poses a challenge for data collection. Through observation, we
found that most of the Trichomonas cells seem to have a similar pattern,
e.g., texture, color and shape, to other cells in the background, that
is, they have a certain degree of concealment, which is easy to cause
confusion to the detector. What is more, by data annotation, it can be
seen that the Trichomonas cell generally has the following challenging
attributes: (1) dense objects: more than 10 objects in a single image; (2)
small object: too small size compared with its large background; (3)
occlusion/overlap: incomplete object contour due to the occlusion of
other cells or impurities and multiple cells overlap; (4) irregular shape:
cell contains tiny parts (e.g. small tails). As a result, it may become a
hot potato when using deep models to detect this type of cells.
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To this end, Trichomonas detection deserves more effort and thus
we provide meticulous object-level annotations for Trichomonas. We
adopt Photoshop as the annotation tool to label the object-level masks.
In this way, we obtain a total of 2,550 object-level annotations from
912 Trichomonas images. Some examples can be seen in Fig. 4(b).

3.3. Dataset features and statistics

To provide deeper insights into our MVDI25K, we present its several
important characteristics in below.

3.3.1. Multiple objects
In this paper, we define multiple objects as cells of the same type in

one image with a number equal to or greater than two. Note that the
multi-object value is the total number of a certain type of object divided
by the number of images containing this object. As shown in Fig. 5,
hypha is with the low multi-object attribute value 1.07, while the other
cell classes are larger than 3. The top-3 is the Lactobacillus, red blood
cell, and Leukocyte, which are 37.27, 30.82, and 23.75, respectively.

3.3.2. Small object
Small objects, As we know, is defined as (a) the objects whose

absolute size is less than 32 × 32, or (b) the objects whose width and
height are less than 1/10 of the width and height of the whole image.
Generally speaking, the small object is easily overwhelmed by the noisy
background. In addition, for deep models, its feature information will
disappear when the network gradually goes deeper, which lets many
deep models be cast into the shade. Thus, detection of small objects is
a challenging issue.
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Fig. 6. The attribution analysis of small object in the proposed MVDI25K.
Fig. 7. Annotations of MVDI25K.
We counted these two small target attributes in the MVDI-25K
dataset, shown in Fig. 6(a). It shows the number of cells whose absolute
pixel is less than or equal to 1000. A total of 51,549 small objects are
labeled in the proposed dataset, accounting for 7.17%. Fig. 6(b) shows
the mean area of each type of cells and the mean ratio of their area in
one images. Obviously, except for hyphae, clue cell and epithelial cell,
the area ratio of other classes of cells are far less than 1%, the threshold
of small objects.

3.3.3. Resolution distribution
High-resolution images generally provide more object details for

deep model training and thus facilitate to yield outstanding detec-
tion performance when testing [31]. When collecting data, we care-
fully adjusted the microscope settings to obtain high-resolution images.
Fig. 7(a) shows the resolution distribution of our dataset. Specifically,
the four resolutions of the images are: 1536 ×1536, 1536 × 2048, 1792 ×
1792, 2064× 3088, and their proportions are: 30.03%, 0.47%, 42.94%,
26.56%.

3.3.4. Dataset splits
To provide a large quantity of training data for learning-based

approaches, we divided 25,708 images into training set, validation set
and test set, with a ratio of 6:2:2. It should be noted that it is impossible
to split the dataset based on cell class and then select randomly from
each class, because each image contains at least 2 or 3 classes of cells. In
order to ensure the same distribution of the training set, the validation
set, and the test set, we first select the images with the least number
of cells (hyphae), and then select them randomly. Then the images
containing the second-fewest cell classes (Trichomonas) are selected at
random. Follow this rule until all types of cells have been split. Fig. 7(b)
presents the final split results of different cell categories. Consequently,
the dataset split satisfies the same distribution of training set, validation

set and test set.
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4. Benchmark experiments

Based on the established MVDI25K, we systematically benchmark
10 representative models on two key tasks, object detection and object
segmentation. From the evaluation results, we conduct some in-depth
analysis and present several insightful conclusions which may inspire
further research.

4.1. Object detection experiments

4.1.1. Dataset settings
Based on the data split rules described in Section 3.3.4, we split the

whole images into 15,428 training set, 5,143 validation set, and 5,137
test set, respectively, with corresponding bounding box ground-truth.

4.1.2. Training protocols
In this benchmark experiment, we collect the released codes of three

representative object detection models, that is YOLOv5-s, YOLOv5-m,
and YOLOv5-x [32], and re-train these models with the training set of
MVDI25K. The images are set to 640 × 640 as model input. The initial
learning rate is 1e-2, and GIoU loss gain is 0.05, and class loss gain is
0.5. For optimizer, the momentum is set to 0.937, and weight decay is
set to 0.0005. The batch size of YOLOv5-s, YOLOv5-m and YOLOv5-x
are set to 36, 24 and 8 respectively. The total training is 300 epoch on
a NVIDIA GeForce RTX 2080Ti with 11 GB memory.

4.1.3. Evaluation metrics
We apply three widely-used metrics to evaluate object detection

performance. These metrics include precision (P), recall (𝑅), and mean
average precision (mAP).

𝑃 is the accuracy rate, that is the percentage of the correct positive

classes account for all positive classes detected, i.e., P=TP/(TP+FP).



L. Li, J. Liu, F. Yu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100008
Table 2
Quantitative results of object detection on our MVDI25K dataset. Cls1-10: Candida1, Candida2, Candida3, Hyphae, Epithelial Cell, Clue Cell, Trichomonas, Leukocyte, Red Blood
Cell, and Lactobacillus. The first three categories with the worst performance are shown in red, blue, and green fonts.

Models Metric All 𝐶𝑙𝑠1 𝐶𝑙𝑠2 𝐶𝑙𝑠3 𝐶𝑙𝑠4 𝐶𝑙𝑠5 𝐶𝑙𝑠6 𝐶𝑙𝑠7 𝐶𝑙𝑠8 𝐶𝑙𝑠9 𝐶𝑙𝑠10

P 0.464 0.480 0.407 0.409 0.198 0.690 0.267 0.473 0.596 0.643 0.480
YOLOv5-s [32] R 0.894 0.966 0.942 0.950 0.476 0.982 0.811 0.915 0.985 0.961 0.956

mAP@.5 0.801 0.882 0.853 0.860 0.307 0.964 0.572 0.825 0.942 0.936 0.872
mAP@.5:.95 0.560 0.520 0.540 0.557 0.185 0.809 0.417 0.599 0.715 0.754 0.502

P 0.502 0.507 0.449 0.458 0.202 0.747 0.287 0.536 0.648 0.678 0.513
YOLOv5-m [32] R 0.905 0.971 0.959 0.967 0.548 0.976 0.831 0.908 0.980 0.957 0.957

mAP@.5 0.820 0.891 0.897 0.899 0.370 0.965 0.573 0.840 0.945 0.939 0.879
mAP@.5:.95 0.588 0.541 0.590 0.613 0.243 0.816 0.430 0.618 0.732 0.773 0.521

P 0.493 0.512 0.476 0.495 0.183 0.717 0.263 0.505 0.629 .657 0.487
YOLOv5-x [32] R 0.919 0.977 0.971 0.972 0.619 0.979 0.843 0.915 0.983 0.962 0.967

mAP@.5 0.837 0.901 0.920 0.919 0.434 0.966 0.605 0.851 0.947 0.941 0.883
mAP@.5:.95 0.607 0.561 0.617 0.640 0.266 0.819 0.465 0.650 0.741 0.782 0.532
Noted TP means that both the predicted value and the true value are
both 1, and FP denotes that the true value is 0 and the predicted value
is 1.

𝑅 is the recall rate, that is the percentage of the correct positive class
accounts for all the true positive classes, i.e., R=TP/(TP+FN). Noted FN
means that the true value is 1 and the predicted value is 0.

AP is the area under the P-R curve, and mAP is the average of AP
of each category. We adopt mAP@.5 where ‘‘.5’’ indicates the threshold
for judging IoU as a positive or negative sample, and mAP@0.5:0.95
which means the AP average under a series of thresholds that start at
0.5 and increase to 0.95 in steps of 0.05.

4.1.4. Quantitative evaluation
As can be seen in Table 2, from the ‘‘all’’ column, the overall missed

detection rate of the outstanding YOLOv5-x model is only 8.1%(i.e., 1-
91.9%), but its cost exceeds that of the YOLOv5-m model. False positive
samples accounted for 50.7% (i.e., 1-49.3%), which means that the
number of false positive cells detected is almost the same as the number
of true cells. In fact, the requirements for accurate cell identification in
medical images are relatively high. Even if 𝑅 and 𝑚𝐴𝑃 have reached a
high level, the low 𝑃 metrics means too many false positive samples,
which is a very important but still challenging problem in medical
image detection.

As shown in Table 2, in all evaluation items, the fourth (Hyphae)
and sixth classes (Clue Cell) are the two worst performing categories.
Objectively speaking, in our MVDI25Kdataset, the numbers of images
containing hyphae and clue cells are very small, especially only 213
images contain hyphae. For the seventh classes cell (Trichomonas), due
to the small number of images, and sometimes the similar appearance
to leukocyte, it is also a difficult class in object detection. As we all
know, different types of objects are inherently unevenly distributed
in nature. It can also be seen from this experiment that the object
detection of unbalanced categories is a very important but challenging
issue, which is worthy of further study.

4.1.5. Qualitative evaluation
Five representative detection results are shown in Fig. 8. In the first

line, the epithelial cell in the middle left is disturbed by the complex
background, causing the failed detection for three models. In addition,
three models misjudged its left cell as Trichomonas. The second row
contains two types of typical red blood cells, dark side and bright
side, as well as intact and broken white blood cells. At the same time,
leukocytes in complete and fragmented form. YOLOv5-m model is the
best for detecting multiple leukocytes in the upper left corner of the
image. The image in the third row is a typical environment where a
large number of lactobacillus exist. From the perspective of confidence,
YOLOv5-m performed slightly better than YOLOv5-x. The difficulty in
the identification of the fourth line of pictures is that the morphology
of Trichomonas and some leukocytes are very similar, especially the
three adjacent cells in the upper right corner. None of the three models
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can completely accurately identify leukocytes and Trichomonas. The
last image contains intact epithelium and deformed epithelium. It is
difficult to identify deformed epithelium, and all three models are
missed.

4.2. Object segmentation experiments

4.2.1. Dataset settings
In this benchmark experiment, our dataset provides a total of 2550

object-level annotations from 912 Trichomonas images. We split these
images into 730 images for training and 182 for testing, with corre-
sponding object-level ground-truth.

4.2.2. Training protocols
In this study, we evaluate eight representative, recently published

and state-of-the-art deep models for object segmentation or concealed
object detection, including BASNet [33], CPD [34], SCRN [35], U2Net
[36], F3Net [37], GateNet [38], PraNet [39], and SINet [29]. We collect
the released codes of these models and re-train them on our dataset
with 50 epochs on a NVIDIA GeForce RTX 2080Ti GPU. During the
training stage, the batch size is set to 20, and the maximum learning
rate is 0.05. For the Adam optimizer, the momentum is 0.9 and the
weight decay is 5e-4. When the memory is insufficient, the batch size
and epoch are changed to 10 and 100, respectively.

4.2.3. Evaluation metrics
To provide a comprehensive evaluation, six widely-used metrics are

employed to quantitatively compare the eight deep models for object
segmentation on the proposed MVDI25K, with the evaluation toolbox
provided by [39], including structural similarity measure (𝑆𝛼 , with 𝛼
=0.5) [40], enhanced-alignment measure (𝑚𝑒𝑎𝑛𝐸𝜙 and 𝑚𝑎𝑥𝐸𝜙), and 𝐹𝛽
measure (𝑤𝐹𝛽 , 𝑚𝑒𝑎𝑛𝐹𝛽 and 𝑚𝑎𝑥𝐹𝛽).

- S-Measure calculates the structure similarities from the object-
aware and region-aware aspects, between objects in ground-
truth (GT) maps and predicted maps:

𝑆𝛼 = 𝛼 ∗ 𝑆𝑜 + (1 − 𝛼) ∗ 𝑆𝑟, (1)

where

𝑆𝑜 =
2 ∗ 𝐸(𝑝𝑟𝑒)

𝐸(𝑝𝑟𝑒)2 + 1 + 𝜎 + 𝑒
, (2)

𝑆𝑟 indicates that the four regions are cut into four regions
according to the position of the center of gravity, and the area
of the entire image occupied by the pixels of the four regions is
used as the weight, and the weighted average of the structure
similarities of the four regions is calculated.
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Fig. 8. Qualitative examples of object detection with three representative YOLO models evaluated on our MDVI25K dataset.
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- E-Measure is a cognitive vision-inspired metric, which mea-
sures both the local and global similarities between two binary
maps [41]. It combines local pixel values and image-level aver-
age values to capture both image-level statistics and local pixel
matching information. Specifically, it is defined as:

𝐸𝜙 = 1
𝑤 ∗ ℎ

𝑤
∑

𝑥=1

ℎ
∑

𝑦=1
𝜙𝐹𝑀(𝑥, 𝑦) (3)

where w and h are the width and the height of the map,
respectively. 𝜙𝐹𝑀 = 𝑓 (𝜉𝐹𝑀), the value of 𝜉𝐹𝑀 depends on the
similarity between feature map and ground truth, 𝑓 (𝑥) = 1

4
(1 +

𝑥)2. The rest of the specific derivation procedure is given by [41].
Here, we introduce mean/maximal E-measure, i.e., 𝑚𝑒𝑎𝑛𝐸𝜙 and
𝑚𝑎𝑥𝐸𝜙, to provide a more comprehensive evaluation.

- F-measure is essentially a region-based similarity metric, which
is based on weighted precision and recall values.

𝐹𝛽 =
(1 + 𝛽2)𝑅 ∗ 𝑃

𝑅 + 𝛽2𝑃
, (4)

where 𝛽2 is a parameter to trade-off recall and precision, and it
is usually set to 0.3. Here, Here, we introduce 3 variants of this
metric, namely 𝑤𝐹𝛽 , 𝑚𝑒𝑎𝑛𝐹𝛽 and 𝑚𝑎𝑥𝐹𝛽 , for a comprehensive
evaluation.

.2.4. Quantitative evaluation
Table 3 shows the evaluation results of all models on our dataset.

verall, PraNet is the best performing models compared to the others.
raNet obtained the best results on four metrics, 𝑆𝛼 , 𝑤𝐹𝛽 , 𝑚𝑒𝑎𝑛𝐹𝛽 and
𝑎𝑥𝐹𝑤

𝛽 , especially on 𝑆𝛼 . Its value for the 𝑆𝛼 metric is 0.159 above the
ean (0.648) and 0.014 above the second place (0.793). BASNet and
 a
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2Net performed the best on metrics 𝑚𝑒𝑎𝑛𝐸𝜙 and 𝑚𝑎𝑥𝐸𝜙, respectively.
he 𝑚𝑒𝑎𝑛𝐸𝜙 of BASNet was 0.158 higher than the average (0.711) and
he 𝑚𝑎𝑥𝐸𝜙 of U2Net was 0.043 higher compared to the average (0.852).

Although some deep models have achieved seemingly-good results
n some metrics, they are still far from obtaining satisfactory per-
ormance. In addition, trichomonas is extremely active in microscope
amples, so when observed with a microscope, trichomonas usually has
wo states of blur and clarity. Our current dataset is mainly focused
n labeling clear trichomonas. We will continue to label the active
nd non-clearly trichomonas to construct an increasingly challenging
ataset.

.2.5. Qualitative evaluation
Fig. 9 shows seven representative results, including original im-

ges, ground truth, and object segmentation results of deep models.
pecifically, our images contain multiple dense objects (first row),
ransgressions (second row), overlaps (third row), partial occlusion
4th and 5th rows), complex shapes (5th row), small objects and cases
ith extremely high similarity between objects and backgrounds, which
ring many difficulties for object segmentation. From the segmentation
ap, it can be seen that the these models are in a less favorable

ituation for trichomonas edge recognition.
Obviously, the segmentation results in the first row are angular

nd ambiguous. For trichomonas that are partially occluded by other
bjects (more than 30% of their own area), there is a tendency to miss
etection. For example, the trichomonas near the middle-left position
n the fourth row, all deep models failed to detect it. Meanwhile, most
f the above models cannot accurately capture the complex shape of the
bject. Trichomonas in the upper left corner of the fourth row and the
iddle right of the fifth row cannot be clearly and completely identified

nd all models miss their small tails or flagella. In addition, for objects
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Table 3
Quantitative results of object segmentation on our MVDI25K dataset. ‘‘↑’’ indicates the higher the score the
better. The best results are in boldface.
Models 𝑆𝛼 ↑ 𝑚𝑒𝑎𝑛𝐸𝜙 ↑ 𝑚𝑎𝑥𝐸𝜙 ↑ 𝑤𝐹𝛽 ↑ 𝑚𝑒𝑎𝑛𝐹𝛽 ↑ 𝑚𝑎𝑥𝐹𝛽 ↑

2019 BASNet [33] 0.793 0.868 0.890 0.585 0.634 0.653
2019 CPD [34] 0.616 0.608 0.716 0.253 0.328 0.400
2019 SCRN [35] 0.641 0.771 0.893 0.217 0.517 0.587
2020 U2Net [36] 0.691 0.739 0.895 0.344 0.489 0.612
2020 F3Net [37] 0.791 0.856 0.881 0.557 0.623 0.661
2020 PraNet [39] 0.807 0.856 0.880 0.613 0.658 0.677
2020 SINet [29] 0.520 0.726 0.868 0.044 0.472 0.578
Fig. 9. Qualitative examples of object segmentation with the existing representative models evaluated on our MDVI25K dataset.
ith similar colors and shapes (such as leukocytes and trichomonas),
ost of models tend to confuse them.

. Conclusion

In this paper, we have presented the first comprehensive benchmark
tudy on vaginal discharge detection. Specifically, we have constructed
he first large-scale and challenging dataset of microscopic vaginal
ischarge, MVDI25K, containing 25,708 images with diverse and high-
uality annotations. Then, we conducted a systematical benchmark
xperiments on 10 representative SOTA deep models on two key tasks,
.e., object detection and object segmentation, and provided some in-
ightful discussions. The benchmark indicates that vaginal discharge
etection is far from being solved. We hope the studies presented in
his work would facilitate the development of this field.
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A B S T R A C T

The huge storage and computation cost of convolutional neural networks (CNN) make them challenging to
meet the real-time inference requirement in many applications. Existing channel pruning methods mainly focus
on removing unimportant channels in a CNN model based on rule-of-thumb designs, using reduced floating-
point operations (FLOPs) and parameter numbers to measure the pruning quality. The inference latency of
pruned models is often overlooked. In this paper, we propose a latency-aware automatic CNN channel pruning
method (LACP), which aims to search low latency and accurate pruned network structure automatically. We
evaluate the inaccuracy of measuring pruning quality by FLOPs and the number of parameters, and use the
model inference latency as the direct optimization metric. To bridge model pruning and inference acceleration,
we analyze the inference latency of convolutional layers on GPU. Results show that the inference latency of
convolutional layers exhibits a staircase pattern along with channel number due to the GPU tail effect. Based
on that observation, we greatly shrink the search space of network structures. Then we apply an evolutionary
procedure to search a computationally efficient pruned network structure, which reduces the inference latency
and maintains the model accuracy. Experiments and comparisons with state-of-the-art methods on three image
classification datasets show that our method can achieve better inference acceleration with less accuracy loss.
1. Introduction

Convolutional Neural Networks (CNNs) have demonstrated state-of-
the-art achievements in various tasks, such as image classification [1],
object detection [2], and image segmentation [3]. Such a success is
built upon a large number of model parameters and convolutional op-
erations. As a result, the huge storage and computation cost make these
models difficult to be deployed on resource-constrained devices, such
as phones and robots. To address this problem, a common approach is
to use model compression techniques, including quantization [4], dis-
tillation [5], and pruning [6–9]. Among them, neural network pruning
has been recognized as one of the most effective tools for compressing
CNNs.

Neural network pruning methods aim to remove redundant weights
in a dense model. According to the pruning granularity, these methods
can be categorized into either weight pruning or channel pruning. In
weight pruning, individual weights are zeroed out, leaving a sparse
set of weight tensors. Weight pruning can significantly reduce the
model size, but it also introduces irregular memory access, leading
to very limited or even negative speedups on general-purpose hard-
ware (e.g. CPU, GPU) [10]. Differing from weight pruning, channel
pruning methods remove entire channels to compress the model. Since
channel pruning only changes the dimension of weight tensors, the
pruned model still adopts a dense format, which is well-suited to

∗ Corresponding author.
E-mail addresses: jqliu42@mail.ustc.edu.cn (J. Liu), sunjw@ustc.edu.cn (J. Sun), xuzt@mail.ustc.edu.cn (Z. Xu), gzsun@ustc.edu.cn (G. Sun).

general-purpose hardware and off-the-shelf libraries. As a result, chan-
nel pruning can achieve better acceleration on inference performance
than weight pruning.

Due to the promising performance improvement in model compres-
sion, channel pruning methods have been widely studied for many
years. Existing methods use the reduced floating-point operations
(FLOPs) and parameter numbers to measure the pruning quality by
default. However, the inference latency of neural network is influenced
by many factors, such as the network architecture, the implementa-
tion of operators, and the hardware property. Therefore, using FLOPs
or the number of parameters as a proxy for inference latency is
insufficient, and may lead the algorithm to sub-optimal result. For
instance, Fig. 1 shows the relationship between FLOPs, model size, and
inference latency of VGG16 network. We randomly prune channels in
convolutional layers, then measure the pruned model’s FLOPs, number
of parameters, and inference latency. Results show that FLOPs or
parameter reduction does not necessarily result in latency reduction.
For example, the pruned model A has smaller FLOPs than model B, but
shows larger inference latency. The same for model C and model D,
the smaller model C shows larger inference latency. This observation
motivates us to investigate a latency-aware channel pruning method,
instead of only focusing on FLOPs or parameter numbers.
https://doi.org/10.1016/j.tbench.2021.100009
Received 6 August 2021; Received in revised form 11 October 2021; Accepted 20 O
Available online 3 November 2021
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Fig. 1. The relationship between FLOPs, number of parameters, and inference latency of pruned models.
Another motivation of this work is that conventional channel prun-
ing methods crucially rely on human expert knowledge and hand-
crafted designs, and focus on selecting unimportant channels. Li et al.
[9] take 𝑙1-norm as significance criteria to determine which channels

ill be pruned. Luo et al. [11] use the input of (𝑖 + 1)-th layer to
guide the pruning of 𝑖th layer. Lin et al. [12] rank channels with
high rank of feature maps, then prunes the least important channels.
However, Liu et al. [13] find that the pruned network can achieve the
same accuracy no matter it inherits the weights in the original network
or not. This study inspires us that the essence of channel pruning lies
in finding optimal channel numbers in each layer, instead of selecting
unimportant channels based on rule-of-thumb designs. Following that
idea, Lin et al. [14] use artificial bee colony algorithm to search optimal
pruned network structure. However, like many conventional channel
pruning methods, Lin et al. [14] use the reduced FLOPs and parameter
numbers to measure the pruning quality, the latency speedup of pruned
model cannot be guaranteed.

In this paper, we propose a latency-aware automatic channel prun-
ing (LACP) method. Differing from conventional methods, we take
channel pruning in an automatic manner. Our method aims to search
the optimal pruned network structure, i.e., the channel number in
convolutional layers, instead of selecting important channels. An in-
tuitive challenge in finding optimal network structure is that it is
impractical to exhaustively searching all the possible combinations of
pruned network structures. To make the algorithm feasible, effective
shrinkage on search space is necessary. We first analyze the inference
latency of pruned convolutional layers on GPU. Results show that the
inference latency of convolutional layers presents a staircase pattern
with the number of channels, which means the inference latency of
a convolutional layer changes suddenly at certain channel number
intervals. Based on this observation, we greatly shrink the search
space of pruned structures. Then we apply an evolutional procedure
to efficiently search low-latency and accurate network structure. For
each candidate structure, we encode it to a vector 𝐶 =

[

𝑐1, 𝑐2, 𝑐3,… , 𝑐𝑖
]

,
where 𝑐𝑖 represents the channel numbers in 𝑖th convolutional layer.
The fitness of candidate pruned network structure is measured in both
model accuracy and inference latency. At each population, 𝐾 candi-
dates with highest fitness will survive to next population, crossover and
mutation will take place in these survived structures to generate new
structures. Finally, the best candidate is selected as the optimal pruned
network structure.

Overall, the main contributions of this paper are as follows:

• We propose a latency-aware automatic channel pruning method
LACP. Compared to conventional methods, LACP does not require
hand-crafted designs on selecting unimportant channels. It focus
on the inference latency speedup, instead of the FLOPs reduction.

• We analyze the inference latency of convolutional layers on GPU.
Based on the analysis results, we greatly shrink the search space
of pruned network structures, which enables efficient search of
low-latency and accurate network structure.

• We conduct a detailed evaluation to compare the proposed
method and existing methods on standard datasets. Results show
that our method can achieve more latency reduction with less
accuracy loss.
75
The rest of this paper is organized as follows. Section 2 reviews
related works. Section 3 presents the proposed latency-aware automatic
channel pruning method in detail. Section 4, show the experimental
results and analysis. Finally, we draw the paper to a conclusion in
Section 5.

2. Related work

Deep neural networks are usually over-parameterized [15,16], lead-
ing to huge storage and computation cost. There are extensive studies
on compressing and accelerating neural networks. We classify current
related research works into two major types: network pruning methods
and neural architecture search (NAS) methods.

Pruning methods reduce the storage and computation cost by re-
moving unimportant weights from the origin network. Existing pruning
algorithms can be categorized into weight pruning and channel prun-
ing. In weight pruning, individual weights are zeroed out. LeCun et al.
[6] present the early work about network pruning using second-order
derivatives as the pruning criterion. Han et al. [7] first propose itera-
tive pruning, which prunes individual weights below a monotonically
increasing threshold. Guo et al. [17] and Mocanu et al. [18] point out
that some previously unimportant weights may tend to be important
later. Inspired by this idea, LIU et al. [19] propose a trainable mask-
based method to dynamically get sparse network during the training
phase. Dettmers and Zettlemoyer [20] propose sparse momentum that
used the exponentially smoothed gradients as the criterion for pruning
and regrowth. A fixed percentage of parameters are pruned at each
pruning step. Weight pruning can significantly reduce the model size.
However, the non-structured random connectivity in DNN introduces
irregular memory access. It adversely affects practical acceleration
in hardware platforms [10]. Differing from weight pruning, channel
pruning methods focus on removing the entire redundant channels.
Li et al. [9] use 𝑙1-norm to determine the importance of channels.
He et al. [8] formulate channel pruning as an optimization problem,
which selects the most representative channels to recover the accuracy
of pruned network with minimal reconstruction error. Luo et al. [11]
use the next layer’s input to guide the pruning of the previous layer. Lin
et al. [12] use the feature map rank as sensitivity metric to prune
the least important channels. Differing from these magnitude-based or
sensitivity-based channel pruning methods, our work performs channel
pruning in an automatic manner.

Although network pruning methods have achieved great success,
they crucially rely on human expert knowledge and hand-crafted de-
signs. Automatically optimizing the neural network architecture has
been widely studied in recent years, known as neural architecture
search (NAS). Prior works mainly sample a large number of networks
from search space and train them from scratch to obtain a supervision
signal, e.g. validation accuracy, for optimizing the sampling agent with
reinforcement learning [21–23] or updating the population with an
evolutionary algorithm [24]. Bender et al. [25] and Pham et al. [26]
introduce weight-sharing paradigm in NAS to boost search efficiency,
where all candidate sub-networks share the weights in a single one-shot
model that contains every possible architecture in the search space. Liu
et al. [27] relax the search space to be continuous with architecture
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parameters and then efficiently optimized model parameters and archi-
tecture parameters together via gradient descent. Most prior NAS based
pruning methods are implemented in a bottom-up and layer-by-layer
manner. In contrast, our work mainly focuses on the optimal channel
number of each layer.

3. Methodology

3.1. Overview

Cheng et al. [28] point out that convolutional layers take up most
of the computation cost in convolutional neural networks. Our work
focuses on reducing the channel number of convolutional layers to
effectively compress the neural network. Fig. 2 presents the overall
framework of our LACP algorithm. Consider a CNN model 𝑁 that
contains L convolutional layers. We refer to 𝐶 = [𝑐1, 𝑐2,… , 𝑐𝐿] as
he network structure of 𝑁 , where 𝑐𝑖 is the channel number of the
th convolutional layer. We regard channel pruning as an optimal
etwork structure search process, rather than manually designed strate-
ies to remove unimportant channels. The algorithm aims to find
thinner network structure than the unpruned model, meanwhile,

eeping a comparable accuracy. We adopt an evolutionary algorithm
o achieve the goal of our search algorithm. A certain number of
andidate network structures make up a population, the candidate
etwork structures are evaluated using fitness. At each population, the
est 𝐾 candidate network structures are survive to the next population,
nd those survival candidates will produce new network structures
hrough crossover and mutation. In the end, the best candidate network
tructure in the whole process is selected to be the optimal pruned net-
ork structure, we then fine-tune it to restore the accuracy. Formally,

he algorithm is equivalent to solve an optimization problem as Eq. (1)
hows.

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = arg max
𝑆

𝐹 (𝐶,𝑊 ,𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑡𝑒𝑠𝑡) (1)

is the search space of pruned network structures. 𝐶 ∈ 𝑆 is the
andidate network structure. 𝑊 is the weight of pruned network,
hich is assigned from the pre-trained model. 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑡𝑒𝑠𝑡 repre-

ent the training data and testing data, respectively. The function 𝐹
valuates the fitness of candidate network structure to decide whether
eeping current candidate in next population. The effectiveness and
fficiency of the search algorithm mostly rely on the fitness evaluation
nd the search space definition. To find a low-latency and accurate
runed model, the fitness function should consider both model infer-
nce latency and test accuracy. For a convolutional neural network that
ontains 𝐿 convolutional layers, the possible combination of pruned
etwork structure can be ∏𝐿 𝑐 , where 𝑐 represents the channel
𝑖=1 𝑖 𝑖

76
umbers of 𝑖th convolutional layer in original dense model. It is im-
ractical to exhaustively searching all the possible network structures,
herefore, effective constraints on the search space are necessary. To
olve these problems, we further describe the detailed implementation
f our method in the following sections.

.2. Search space definition

Exhaustively searching every possible pruned network structure is
mpractical. To make the search algorithm feasible, we need to shrink
he search space. In this section, we conduct analysis on inference
atency of convolutional layers to find an efficient search space design.

Convolutional layers are widely used in modern neural networks. A
onvolutional layer consists of a certain number of channels to extract
ata features. To reduce the computation cost of convolutional layer,
hannel pruning aims to remove a portion of channels. Intuitively,
ith the decrease of the channel number, the FLOPs of a convolutional

ayer will decrease linearly. However, due to the complex nature of
onvolutional layer’s execution environment, its inference latency does
ot vary linearly with the FLOPs. To better understand the execution
echanism convolutional layer, we analyze how channel pruning af-

ects the inference latency of convolutional layer. As Fig. 3 illustrates,
he inference latency of convolutional layers shows a staircase pattern
ith different number of channels, which means with increasing a

ertain number of channels, there will be a significant step increase
n latency. By analyzing the intrinsic mechanism of DNN deployment
n GPU, this phenomenon can be explained. The computation of a
onvolutional layer is parallelized using multiple threads. These threads
re first grouped into different blocks, then loaded to streaming mul-
iprocessors (SMs) on a GPU. The maximum number of blocks loaded
n one SM is determined by GPU’s physical capacity. If the number
f thread blocks in need exceeds the GPU capacity, then GPU will
ivide these thread blocks into multiple consecutive waves, and run
hese waves in sequence. Since the SMs are executed in parallel, one
ave takes the same amount of time, no matter it is fully occupied or
ot. This phenomenon is called ‘‘GPU tail effect’’. For different channel
umber settings of a convolutional layer, their execution time can
e very similar if they need the same amount of waves to compute.
herefore, with the increase of channel number, the computation cost
f convolutional layer will increase. Once a critical point is exceeded,
n extra wave is needed to finish the computation, which leads to
significant step increase in latency. Then, the inference latency of

onvolutional layer will change slowly, until the last wave is fully
ccupied.

Inspired by the ‘‘GPU tail effect’’ phenomenon, we can greatly shrink
he search space of pruned network structure. Since the inference
atency shows a staircase pattern, which means under a certain range
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Fig. 3. Inference latency of convolutional layers with varying number of channels.
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of channel number settings, the inference latency changes very slowly.
Within a staircase step, set the channel number to the right endpoint,
then we can maximize the representational capacity of network with a
little latency cost.

Algorithm 1 Latency-aware Automatic Channel Pruning Algorithm
Input: Search Cycles: 𝑆, Population Size: 𝑁 , Number of Mutation: 𝑀 ,

Number of Crossover: 𝐶, Target latency: 𝑇
Output: Optimal pruned network structure 𝐶∗

1: 𝐺0 = Random(N)
2: 𝐺𝑡𝑜𝑝𝐾 = ∅
3: for 𝑖 = 0;𝑖 < 𝑆;𝑖 + + do
4: 𝐺𝑏𝑒𝑠𝑡 = Top1(𝐺𝑖)
5: if 𝐺𝑏𝑒𝑠𝑡 better than 𝐶∗ then
6: 𝐶∗ = 𝐺𝑏𝑒𝑠𝑡
7: end if
8: 𝐺𝑡𝑜𝑝𝐾 = TopK(𝐺𝑖)
9: 𝐺𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 = Mutation(𝐺𝑡𝑜𝑝𝐾 ,M)

10: 𝐺𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 = Crossover(𝐺𝑡𝑜𝑝𝐾 ,C)
11: 𝐺𝑖+1 = 𝐺𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 + 𝐺𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟
12: end for
13: return 𝐶∗

We analyze the inference latency variation of different convolu-
tional layers in VGG and ResNet. Results show that the width of the
staircase step is a multiple of 32. For the first few convolutional layers,
the width of the staircase step is 32. As the layers deepen, the max-
pooling operation or the down-sampling operation makes the feature
map smaller, thus a single GPU wave can compute more convolution
operation. As a result, in the subsequent convolutional layers, the width
of the staircase step can increase to 64 or 128. Heuristically, for each
convolutional layer, we set its possible channel number in pruned
network structure to a multiple of 32. Taking VGG16 as an exam-
ple, the possible channel number in the sixth convolutional layer is
[32, 64, 96, 128, 160, 192, 224, 256], where the initial number of channels
is 256. The other convolutional layers are also set up in the same way.
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3.3. Optimal network structure search

In this section, we describe the detailed implementation of our LACP
method. As Algorithm 1 shows, our method adopts evolutionary search
as the overall framework. In the beginning, the initial population is ran-
domly generated from the search space. Each sample in the population
represents a pruned network structure, formalized as 𝐶 = [𝑐1, 𝑐2,… , 𝑐𝐿],

here 𝑐𝑖 represents the channel number in 𝑖th convolutional layer.
t each population, the fitness of every candidate pruned network
tructure is evaluated as below:

𝑖𝑡𝑛𝑒𝑠𝑠(𝐶) = 𝐴𝑐𝑐(𝐶) ×
[

𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝐶)
𝑇

]𝑤
(2)

𝑤 =

{

0, 𝑖𝑓 𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝐶) < 𝑇 ,

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(3)

As Eq. (2) shows, both accuracy and inference latency are con-
sidered in the fitness evaluation, where 𝐴𝑐𝑐(𝐶) represents the test
accuracy of the pruned network. 𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝐶) is the inference latency
of the pruned network and 𝑇 is the target latency, which is specified
before running the algorithm. To measure the test accuracy of a net-
work structure, it is very time-consuming to completely train and test
the pruned model. In our implementation, we initialize the candidate
pruned network with the pre-trained model, for a pruned network
𝐶 = [𝑐1, 𝑐2,… , 𝑐𝐿], the 𝑖th convolutional layer is initialized with 𝑐𝑖
channels in the corresponding 𝑖th convolutional layer in the pre-trained
model, which have larger 𝑙1-norm value. Then we train the pruned
model with 2 epochs and evaluate its test accuracy. Besides, we add a
latency constraint in the fitness function. Given a target latency, if the
inference latency of pruned network is less than the target latency 𝑇 , we
simply use the test accuracy as the fitness value, otherwise, we penalize
the fitness value with a coefficient less than 1. In such a mechanism, the
algorithm will tend to select the model whose inference latency reaches
the target latency constraint.

At each population, 𝐾 candidate pruned network structures with
largest fitness will survive to next population. Crossover and muta-
tion will take place in these 𝐾 candidate structures to generate new
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structures. The objective of the crossover operation is to integrate ex-
cellent information from the parents. For example, given two preserved
network structures:

[𝟑𝟐, 𝟑𝟐, 128, 96, 𝟑𝟐, 𝟏𝟗𝟐, 224, 192], [64, 64, 𝟗𝟔, 𝟔𝟒, 160, 96, 𝟑𝟐𝟎, 𝟐𝟖𝟖]

one new structure will be generated by combining pieces of two parent
structures:

[32, 32, 96, 64, 32, 192, 320, 288]

Mutation operation is used to promote population diversity. For exam-
ple, given a network structure:

[𝟑𝟐, 32, 𝟏𝟐𝟖, 96, 𝟑𝟐, 192, 224, 192]

its fragments are randomly changed, generating a new network struc-
ture:

[64, 32, 160, 96, 128, 192, 224, 192]

The preserved 𝐾 candidate network structures and the structures
generated by crossover and mutation form the next population. The
algorithm will repeat such search iteration for 𝑆 times. In the end, the
best candidate is selected to be the optimal pruned network structure.
We then fine-tune it to restore the accuracy.

4. Evaluation

In this section, we conduct experiments on standard datasets with
different models to evaluate the performance of our algorithm.

4.1. Experimental settings

We implement our algorithm with Pytorch 1.5.0. All the experi-
ments are run on NVIDIA GeForce RTX 2080 Ti GPU, which is made
up of 4352 CUDA Cores and 68 SMs. We choose three standard image
classification datasets (CIFAR-10, CIFAR-100, and Tiny-ImageNet) to
evaluate our method. CIFAR-10 dataset consists of 60,000 colored
images, which are classified into 10 classes. Each class has 5000
training images and 1000 testing images. Similar to CIFAR-10, CIFAR-
100 contains 100 classes of images. Each class has 500 training images
and 100 testing images. Tiny-ImageNet contains 100,000 images of 200
classes (500 for each class) colored images. Each class has 500 training
images, 50 validation images, and 50 test images.

We use two kinds of models in our experiments: VGG and ResNet.
VGG is a single-path network. The 16-layer model is adopted for com-
pression. ResNet consists of a series of blocks, and there is a shortcut
between two adjacent blocks. For dimensional matching in the pruned
network, the last convolutional layer in each block will not be pruned.
Two different depths of ResNet are adopted, including ResNet18 and
ResNet34.

For each group of experiments, we report test accuracy, the reduc-
tion of network inference latency, the reduction of FLOPs, the reduction
of parameter numbers, and the reduction of channel numbers as the
performance metrics. We use the PyTorch expansion package thop
to count the FLOPs and parameter numbers of network. To measure
inference latency of network, we run the model 10 times for GPU warm
up, then run the model 300 times with input batch size 128, and take
the average inference time.

For each pre-trained model used in our experiments, we train it with
200 epochs using Stochastic Gradient Descent with momentum 0.9, and
the batch size is set to 128, the initial learning rate is set to 0.1, which
decays by 10 every 50 epochs. The weight decay is set to 1e-4.
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4.2. Comparative methods

We compare our method with three representative algorithms to
show its effectiveness.

• PFEC [9] is a representative traditional magnitude-based channel
pruning method. PFEC calculates and sorts the 𝑙1-norm value of
channels. Channels with smaller 𝑙1-norm value are less important,
then those channels and corresponding feature maps are pruned.

• Thinet [11] formulates channel pruning as an optimization prob-
lem, and prunes channels of current layer based on statistics
information computed from its next layer.

• ABCPruner [14] is a state-of-the-art automatic channel prun-
ing method. It adopts artificial bee colony algorithm to search
optimal pruned network structures. For 𝑖th convolutional layer
of unpruned model that contains 𝑐𝑖 channels, ABCPruner de-
fines its search scope to

{

10%𝑐𝑖, 20%𝑐𝑖, 30%𝑐𝑖,… , 𝛼%𝑐𝑖
}

, where the
maximum preserve percent 𝛼 is used to restrict the width of
pruned network, so that the FLOPs and parameter numbers can
be reduced.

4.3. Evaluation results

We conduct our experiments on CIFAR-10, CIFAR-100 and Tiny-
ImageNet datasets with VGG and ResNet models. To search for optimal
pruned network structures, we set the number of search cycles to 10
and the population size is 30, so LACP searches 300 pruned network
structures in the whole process. In each population, the numbers of new
pruned network structures that generated from mutation and crossovers
are both set to 15. In the end, we fine-tune the best pruned network
structure for 200 epochs with a learning rate of 0.1, which is divided
by 10 every 50 epochs. The weight decay is set to 1e-4. All algorithms
use the same pre-trained model, and the number of fine-tuning epoch is
set to 200. For a fair comparison with ABCPruner, we set its maximum
searching number of pruned network structures to the same 300.

The experimental results are shown in Table 1, compared with
PFEC, Thinet and ABCPruner, our method achieves better model in-
ference acceleration, while maintaining similar or higher accuracy. It is
worth noting that, as we have discussed before, more FLOPs or parame-
ter reduction does not necessarily lead to better inference acceleration.
Take CIFAR-100 dataset experiments as an example, ABCPruner-50%
prunes VGG16 with 87.29% FLOPs reduction and 88.22% param-
eter reduction, while LACP-0.5 prunes 69.03% FLOPs and 81.14%
parameters. However, LACP-0.5 achieves more latency reduction and
a significantly higher accuracy than ABCPruner-50%. Another draw-
back of ABCPruner can be observed from the experimental results.
ABCPruner compresses the model by limiting the maximum preserve
channel number of convolutional layers. As a result, once the max
preserve percent is small, the width of the pruned network is limited
and the representational capacity of the pruned model is thus limited.
To verify that point, we show a case study in Fig. 4. As shown in the
figure, compared with ABCPruner, our method achieves less accuracy
loss, while reducing the same percent of inference latency. As a supple-
mentary analysis, we compare the pruned network structure of LACP
and ABCPruner, result shows that our method preserves more channels
in the first several convolutional layers, which is more important for
neural network to extract feature information. On the contrary, the
pruned network of ABCPruner has a narrower head structure due to
the maximum preserve setting, leading to more accuracy loss.

5. Conclusion

In this paper, we propose a novel latency-aware automatic CNN
channel pruning method. Differing from conventional channel prun-
ing methods, our method get rid of selecting unimportant channels
based on hand-crafted design, and search for optimal pruned network
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Table 1
The experiment results on three datasets for different models. We compare LACP with three other methods.

Dataset Model Algorithm Accuracy (%) +/- (%) Latency reduction (%) FLOPs reduction (%) Parameter reduction (%) Channel reduction (%)

CIFAR10

VGG16

dense 93.02 0 0 0 0 0

PFEC 92.52 −0.5 26.18 47.01 44.57 25

LACP-0.7 92.74 −0.28 33.63 46.19 53.88 36.36

Thinet 91.51 −1.51 39.18 61.06 57.88 33.55

ABCPruner-90% 92.41 −0.61 46.59 68.82 78.39 51.23

LACP-0.5 92.62 −0.4 48.97 70.08 72.42 50

ABCPruner-50% 90.11 −2.91 59.18 87.55 87.81 67.57

LACP-0.4 91.62 −1.4 59.56 85.04 94.46 72.73

ResNet18

dense 94.28 0 0 0 0 0

PFEC 92.01 −2.27 17.56 35.26 48.51 18.67

ABCPruner-90% 94.02 −0.26 0.19 25.44 30.39 12.48

ABCPruner-50% 93.59 −0.69 18.61 60.27 60.07 24.98

LACP-0.5 94.34 +0.06 22.29 44.96 69.14 22.33

Thinet 94.36 +0.08 17.98 37.84 37.51 15.29

LACP-0.7 94.37 +0.09 21.3 41.15 61.71 20.67

CIFAR100

VGG16

dense 69.78 0 0 0 0 0

PFEC 69.45 −0.33 26.14 47 44.43 25

LACP-0.7 70.54 +0.76 30.23 50.72 63.17 39.39

Thinet 69.32 −0.46 40.63 63.42 60.01 35.27

ABCPruner-90% 69.06 −0.72 28.82 54.11 72.41 41.5

ABCPruner-50% 65.95 −3.93 39.14 87.29 88.22 66.17

LACP-0.5 69.42 −0.36 49.4 69.03 81.14 55.3

ResNet34

dense 74.86 0 0 0 0 0

PFEC 69.52 −5.34 20.91 39.63 48.93 21.05

Thinet 74.59 −0.27 19.94 38.09 37.75 16.96

ABCPruner-90% 74.58 −0.28 25.05 63.65 61.15 27.1

ABCPruner-50% 74.18 −0.68 23.56 67.92 68.33 30.06

LACP-0.5 74.59 −0.27 27.91 56.91 69.94 29.32

Tiny-ImageNet

ResNet18

dense 57.87 0 0 0 0 0

PFEC 56.49 −1.38 17.68 35.26 48.09 18.67

Thinet 56.53 −1.34 17.81 37.45 37.19 15.29

ABCPruner-90% 56.55 −1.32 2.69 38.9 34.37 15.27

ABCPruner-50% 55.23 −2.64 22.35 67.94 71.77 28.08

LACP-0.7 56.87 −1 22.15 50.16 68.08 24.67

ResNet34

dense 59.19 0 0 0 0 0

PFEC 58.98 −0.21 21.24 39.64 48.81 21.05

Thinet 59.05 −0.14 18.57 37.91 37.66 16.96

LACP-0.7 59.02 −0.17 24.45 52.28 67.1 27.07

ABCPruner-90% 58.58 −0.61 10.44 42.21 52.34 20.84

ABCPruner-50% 57.96 −1.23 24.17 68.09 73.76 31.58

LACP-0.5 58.64 −0.55 27.12 61.89 76.58 31.58

Note: LACP-𝛼 means we set the target latency to 𝛼 × 𝐿, where 𝐿 is the unpruned model’s inference latency. ABCPruner-𝛽 means the maximal preserved channel number in each
convolutional layer is 𝛽 × 𝐶, where 𝐶 is the original channel number in that layer.
structure automatically. By analyzing the inference latency of pruned
networks, we indicate that neither FLOPs nor the number of parameters
can accurately represent the real inference acceleration. Besides, we
analyze the execution mechanism of convolutional layers on GPU.
Results show that the inference latency of convolutional layers presents
a staircase pattern with different number of channels. Based on this
observation, we greatly shrink the combinations of network structure,
79
enabling efficient search of low-latency and accurate pruned network.
We conduct extensive evaluations to compare our method with ex-
isting studies on public datasets, and report the real latency metric.
Experimental results show that our method can achieve better inference
acceleration, while maintaining higher accuracy.

Although we have achieved desired pruning effect on our experi-
ments, our method can be further improved. As we discussed before,
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Fig. 4. The pruning results of LACP and ABCPruner for VGG16 on CIFAR-10 dataset.
we shrink the search space of pruned network structure through the
analysis of the GPU tail effect. However, our analysis is based on
empirical profiling. A more thorough and general investigation of the
GPU tail effect could be helpful. Besides, how to generalize our method
to different hardware platforms is also worth studying in future work.
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A B S T R A C T

All modern distributed systems list performance and scalability as their core strengths. Given that optimal
performance requires carefully selecting configuration options, and typical cluster sizes can range anywhere
from 2 to 300 nodes, it is rare for any two clusters to be exactly the same. Validating the behavior and
performance of distributed systems in this large configuration space is challenging without automation that
stretches across the software stack. In this paper we present Fallout, an open-source distributed systems testing
service that automatically provisions and configures distributed systems and clients, supports running a variety
of workloads and benchmarks, and generates performance reports based on collected metrics for visual analysis.
We have been running the Fallout service internally at DataStax for over 5 years and have recently open
sourced it to support our work with Apache Cassandra, Pulsar, and other open source projects. We describe
the architecture of Fallout along with the evolution of its design and the lessons we learned operating this
service in a dynamic environment where teams work on different products and favor different benchmarking
tools.
1. Introduction

Building databases and distributed systems with high performance
requires thorough testing and benchmarking. The earlier that perfor-
mance testing can be done in the development process, the cheaper
issues are to fix [1].

Software teams are now expected to use techniques such as
CI/CD [2] to deliver frequent releases to users. For many types of
products, including distributed systems and databases, users also expect
the systems to be resilient, never lose data, and always achieve high
performance. Strong automated testing tools are required to reduce
development time and deliver stable products.

Automating the testing of complex distributed systems requires
tightly controlling every aspect of the software: from operating sys-
tem configurations to application-level tuning. Fallout evolved into
a full-stack orchestration system, enabling us to test and tweak all
aspects of the distributed system under test. Fallout is a service that
deploys hardware resources, configures the operating system and dis-
tributed application, runs a workload or benchmark on the cluster and
gathers the results for analysis. Through a rich YAML-based configu-
ration, every aspect of the system and application can be detailed and
parameterized.

We use Fallout to run a mixture of manual and automated testing
and Fallout executes around 200 tests every day. These tests have been
used to verify the performance of new features and optimizations, un-
cover functional and performance regressions before they have shipped
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to customers, and reproduce issues that were discovered in the field.
Recently, we have added support for chaos testing too. Automated
testing is driven by Jenkins which is the CI tool of choice for the
majority of our teams. The rest of this paper is organized as follows. In
Section 2 we discuss our rationale for building Fallout along with the
existing tools at the time. In Section 3 we present a high-level overview
of the Fallout design and dive down into the details in Section 4.
Section 5 illustrates how Fallout test run results are displayed for
users. Lessons learned, related work, and conclusions are covered in
Sections 6–8.

2. Background

Five years ago, we had a server-based performance testing and
comparison tool named cstar_perf that could bootstrap Apache Cas-
sandra onto an already provisioned cluster, run a workload against it,
and plot the performance results on a web page. The workload was
composed via a web UI and used cassandra-stress [3] to generate load
on the cluster. cstar_perf gave us some flexibility in that the Cassandra
installation could be configured in a number of ways but it also came
with many limitations. The size of the cluster was fixed and could
not be changed. The workload consisted of a number of linear steps,
each of which could invoke one of a small number of tools. This gave
us neither the modularity we needed to support diverse teams with
https://doi.org/10.1016/j.tbench.2021.100010
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different preferences for benchmarks, tools, and workloads, nor the
parallelism required to run multiple tests at once.

Fallout was conceptualized to address these limitations. There was
a clear need to create a system that could seamlessly stitch together
a plethora of tools and systems built by internal teams so they could
be made to work together while remaining tool agnostic. It was also
desired to provide the ability to support any testing environment, be
it public or private cloud. Since Fallout needed to test distributed
systems, it needed to support scenarios involving multiple server/client
clusters and a myriad topology configurations as well as tools that
disrupt normal operation such as throttling the network bandwidth and
deleting cluster data. While cstar_perf gave us the ability to analyze
performance for a single test run we also wanted the ability to generate
better insights into results by gathering artifacts from those clusters.
To encourage adoption from a diverse set of stakeholders, Fallout was
required to be intuitive, simple, and self-documenting. The target user
group ranged from seasoned database engineers to non-developers.
Hence, Fallout needed to use a declarative language that was simple
for non-developers to write tests in. The artifacts involved in Fallout
were required to be persisted and versioned for future reference. All
of the test configurations, results, and artifacts were to be stored in
a single place so that everything could be trivially shared within our
organization.

In summary, Fallout addresses the following engineering challenges:

• Build a testing service that provides a single interface for multiple
teams to run test and benchmarking tools

• Use simple test configuration files to deploy tests into distributed
systems that accurately reflect real-world configurations

• Extract and preserve test run artifacts for later analysis
• Ease of use for both developers and non-developers.

The initial version of Fallout used Jepsen [4] as the workload
execution tool. This was largely a pragmatic choice since Jepsen was
well-known in the original Fallout team and using it avoided the need
to reinvent the wheel by creating a brand new tool. Fallout extended
Jepsen’s correctness testing features by creating operation logs during
test runs and allowing pass/fail checks to be run on test completion.
Over time, Fallout has evolved into a more performance-focussed ser-
vice but still retains a couple of the original Jepsen concepts such as
Checkers and operation logs.

3. Architecture

Fallout runs as a single service and exposes a REST API which
is accessible via a Python client API and command-line application,
and a web UI which users can access using a web browser. Fallout
supports multiple concurrent users while enabling each user to store
and execute tests independently. Read-only access of test configurations
is granted for other user’s test configurations which is especially handy
when multiple engineers are working on the same test since they can
clone the test configuration and collaborate. The Python client API and
command-line application are used by Continuous Integration tools to
submit tests to Fallout’s job queue. Once a job reaches the front of
the queue and hardware resources become available, Fallout deploys
and configures the test’s infrastructure (setup), runs the workload, then
collects test artifacts and tears down the infrastructure once the test is
complete. Results are published to a central server for analysis. Fallout
maintains logs of all the operations involved in each step of a test. An
overview of Fallout’s architecture is given in Fig. 1.

3.1. Cluster deployment

Test jobs are submitted to Fallout which internally schedules them
based on the available hardware resources in the infrastructure. To
provision the cluster in DataStax’s data center (private and public),
82
Fallout relies on a proprietary infrastructure tool, ctool. The open-
source version of Fallout includes support for using Google Kubernetes
Engine (GKE) to manage clusters. ctool is cloud provider agnostic and
bstracts the provisioning and deployment steps of Fallout tests so
hat users only need to specify high-level requirements such as cloud
rovider, instance type and region in a YAML test config file. Fallout
andles provisioning machines with GKE using the gcloud tool [5] and
ncludes logic for configuring resources that might be required for the
est. For example, Fallout will automatically add persistent storage to
he Kubernetes cluster so that test run artifacts can be downloaded
rom the cluster once the test completes. Users can also specify custom
anifests in their test config files which configure cluster resources.

allout monitors all logs from the cluster and can display them in real
ime via the Fallout web UI. Once the test completes and the cluster is
orn down, those logs are permanently stored on the Fallout server for
ffline analysis.

Running performance tests against clusters requires applying work-
oads and benchmarks. Fallout also handles provisioning and config-
ring client nodes that generate these workloads. Metrics and statistics
re gathered for all the client and server nodes via a dedicated observer
nstance that is configured for the test run in exactly the same way as
oth client and server: via the test config. In each test, the observer
nstance operates for the duration of the test run and allows Fallout
sers to monitor metrics from the client and server in real time. Watch-
ng the live observer node is frequently important when re-running

configuration that is known to exhibit performance issues and the
bserver can be used to detect when a cluster has entered a bad state of
erformance. At the end of the test, the observer metrics are archived
nd saved locally to the Fallout server and available on the test run
eb page. This enables analysis after the test execution has completed.
astly, Fallout tears down the infrastructure after the test completes
hereby returning the allocated resources to the cloud.

.2. Application installation, configuration, and execution

The specific method used to install applications such as Apache
assandra and Pulsar varies between releases and engineers are often
naware of the differences. Fallout automatically handles installation
nd system configuration no matter which version is specified for the
est. Installation involves extracting tarballs on each node and updating
he cassandra.yaml config file to use the additional larger disks from the

deployment phase — Fallout also needs to handle configuration of each
individual node to work in the cluster. For instance, Apache Cassandra
requires the IP addresses of seed nodes in a cluster to be known and
listed in every node’s config file.

Benchmarking tools including profilers and metrics collection agents
are installed on the client nodes by Fallout. Fallout supports a wide
variety of tools though only a few of them are currently available in
the open source version. We plan on contributing more in the future.
Each benchmark can be configured using the same YAML interface
and individual options contained in the config will be specific to
each benchmark. As Fallout has gained popularity, more and more
benchmarks have been added since it is common for different teams
to favor different benchmarks. For example, YCSB is a popular open
source benchmark often used to compare relative performance of
NoSQL database management systems. The DataStax Stargate team use
YCSB to benchmark Stargate’s Document API performance for every
release.

Fallout was designed to accommodate this heterogeneity while still
providing the same interface to users. This has an added benefit —
because the complexity of supporting multiple benchmarks is primarily
hidden inside of Fallout, external services that use Fallout can automati-
cally work with any benchmark, reducing the effort required to support
new teams and new tools.
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Fig. 1. Fallout architecture.
3.3. Artifact collection and analysis

To aid with post-run analysis, Fallout saves a range of logs and other
artifacts locally on the central server so that they can be inspected
after the test run has finished. This is the most common situation for
analyzing metrics and other benchmark data collected as part of a
manual test run. For automated test analysis, Fallout will push the
archived metrics to a central Grafana server where other tools run
further analysis on them, including Hunter, our statistical significance
detection tool that uses change point detection [6]. Fallout uses artifact
checkers to inspect the logs for specific error or warning messages and
allows the test run to be marked as failed if any are present. Other
artifact checkers are used to post-process files. For example, the hdrtool
artifact checker merges HDR files [7] retrieved from multiple clients
and produces aggregated metrics.

Even when a performance regression is automatically detected by
Hunter, engineers might need to look at the metrics that were collected
during the test run to understand the cause of the performance issue.
When a user needs to check the observer metrics they can simply
download the archived artifact from Fallout, extract it to their machine
and use a docker image containing Grafana to display the metrics.

3.4. Integration with CI

Automated testing with Fallout is primarily driven via Jenkins.
Jenkins uses the Fallout API to launch test runs whenever a pull request

from GitHub is successfully built. We have configured Jenkins so that
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it links directly to the Fallout test run for a given job (GitHub pull
request). Being able to navigate from the Jenkins job to the Fallout test
run acts as a breadcrumb trail and simplifies post-test run analysis.

We also run nightly and weekly performance tests that are sched-
uled outside of the GitHub PR-merge workflow but still rely on Jenkins
to call the Fallout REST APIs. Haxx is a git repository that acts as
a central location for storing Fallout test configs since Fallout itself
does not provide any kind of version control other than A) storing a
read-only copy of the YAML file from previous test runs and B) the
most recent version. Haxx also provides templating for Fallout YAML
files where common configuration snippets, such as optimal Apache
Cassandra configuration options, can be stored in template files and
reused across test configs. This allows us to significantly cut down on
the boiler plate code required to support a large number of tests where
only the machine size, version of Apache Cassandra, or benchmark
config is different. Better still, templates allow users to take advantage
of known-good performance options which ensures that they do not
waste their time analyzing performance issues that were the results of
poorly configured tests.

4. Implementation

Since Fallout was originally created as a wrapper around Clojure,
Fallout had to be written in another JVM language to make devel-
opment easier and Java was selected as the target language. Despite
Fallout development primarily being the responsibility of a very small

team, Fallout has benefited from a large number of contributors and
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Fig. 2. Example Fallout test configuration.
since Java is widely used inside of DataStax the choice of programming
language is no doubt a contributing factor.

A similar desire to make the configuration interface as welcoming
for users as possible led to the decision to use YAML for the configura-
tion files. YAML syntax is easy to learn for new users and YAML syntax
highlighting is readily available in IDEs and editors. Fallout’s web UI
provides a built-in YAML editor with syntax checker for creating and
modifying test configurations.

4.1. Test configuration files

Fallout test runs are driven by a single YAML configuration file that
has a number of required entries. Tests describe machines and services
running on those machines. A node is a resource with services running
on it. An example of a node is a single Apache Cassandra node within
a multi-node cluster. NodeGroups are collections of nodes. An example
of a NodeGroup is an Apache Cassandra cluster. An ensemble is a set of
NodeGroups with a specified role and test run configuration files expose
this concept to the user. The list of ensemble roles is:

• Server: A distributed server or cluster such as Apache Cassandra
• Client: A benchmark or workload
• Observer: A monitoring server such as graphite
• Controller: An external controller such as Jepsen.

Fig. 2 shows an example of a Fallout test configuration file.
Workloads are built from one or more phases which are the basic

unit of concurrency in Fallout. Each phase can run one or more modules
and specifying more than one module executes them in parallel. Phases
are always run sequentially and a phase will not start executing until
the previous phase completes.

4.2. Test provisioning lifecycle

Each NodeGroup in a test transitions through a number of states

when the test executes. There are three types of states: Unknown,
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Transitional, and Runlevel. Transitional states are entered when a
NodeGroup moves from one state to another. Runlevel states represent
steady states where a NodeGroup is not currently transitioning and are
modeled on the UNIX runlevel concept — NodeGroups progress to
higher levels where each level has more capabilities than the previous
one. State transitions perform provisioning and configuration actions
on the NodeGroup and the current state of a NodeGroup is used by
Fallout to guarantee only legal transitions between states can occur.
Using the state machine, it is impossible for Fallout to configure a
NodeGroup before it is provisioned. If any errors are encountered
during a transition, for example if Fallout fails to install the distributed
application, the NodeGroup will enter the FAILED state and the entire
test run will fail.

A transition diagram is presented in Fig. 3. The oval states on the
left and right represent Transitional states, and the rectangular states
in the center represent runlevel states.

4.3. Modules, providers, and configuration managers

Adding support for a new benchmark or tool to Fallout requires
adding 3 new components to the Fallout code base: a module, a
provider, and a configuration manager. Providers allow access to a
service or tool via an API and these are invoked by the Fallout test
harness to run commands on the node. For example, the NoSqlBench-
PodProvider is responsible for executing the nosqlbench [8] benchmark
on a Kubernetes pod. Providers can also have dependencies on other
Providers which makes it possible to express that a benchmark should
only be available when running on a Kubernetes cluster, for example.
Fallout supports Chaos Mesh [9], a tool for running chaos experiments
on a cluster, however since it is only available on Kubernetes Fallout
will refuse to deploy it into any environment that does not meet the
Kubernetes Provider dependency.

Configuration Managers are responsible for configuring and uncon-
figuring software running on nodes as well as starting and stopping
services. Additionally, Configuration Managers register Providers with
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Fig. 3. NodeGroup transition diagram.

nodes, making the associated services available to Modules in a test
workload.

Finally, Modules are the user-facing component of benchmarks.
Modules define the supported keywords and parameters that can be
passed to the benchmark via YAML configuration files. Since this pro-
vides a layer of indirection between the test config and the benchmark
itself, it is common for only a subset of the parameters supported
by the benchmark to be supported in Fallout, though if users want
maximum flexibility there is usually an args parameter that passes
through parameters without any kind of filtering.

While Fallout supports a number of different benchmarks, one les-
son we have learned is that users need some kind of back-stop module
that allows them to manually run benchmarks for which no support
currently exists. A bash module is provided to fill the gap where users
need to run a simple script or download a benchmark to a node and run
it manually. Extended use of the bash module is frowned upon because
we have seen it lead to difficult to understand shell scripts that are
copied between test configs.

4.4. Checkers and artifact checkers

Once a test has completed, Fallout needs a way to validate that
the system under test behaved correctly for the duration of the test.
Checkers are the component in Fallout responsible for ensuring that
no errors occurred during the test that might invalidate the results.
This is important for performance tests even though the checkers do
not perform any kind of performance analysis themselves — any per-
formance results from tests that fail basic checks are likely to be invalid
because the test was not run under real-world conditions. NoFailChecker
is an example of a very basic checker that simply checks that none
85
Fig. 4. Average daily test runs by month.

Table 1
Test run statistics.
Year Total Mean Min Max

2016 759 8 0 44
2017 5512 15 0 101
2018 58625 160 0 562
2019 64633 177 0 361
2020 62616 171 0 421
2021 39945 197 34 349

of the Fallout operations that ran during a test failed. The history of
operations is passed to checkers as an argument so that they can run
arbitrary checks against it. There is no limit to the number of checkers
that can be included in a Fallout test and a test will only pass if all
checkers pass.

A related concept is the artifact checker which performs the same
kind of validation process on artifacts that are collected after the test
run completes. A frequently used artifact checker for Apache Cassandra
tests is SystemLogChecker which checks Cassandra’s system.log for the
resence of user-specified patterns such as log messages containing

‘ERROR’’ or ‘‘WARN’’.

.5. Test queue

When Fallout was first launched, test runs were executed as soon as
hey were submitted. As Fallout grew in popularity, contention for VMs
n our internal infrastructure resulted in tests failing. A simple queue-
ng mechanism was added to fix this that checked for VM availability
efore attempting to submit a claim for resources. It has been tweaked
ver time to become more robust and fair. For example, it now favors
sers with fewer running test runs to prevent anyone monopolizing the
ystem. With this in place, Fallout now handles over 200 test runs a day.
ig. 4 shows the mean number of daily test runs per month. Table 1
hows additional yearly statistics for this time period.

.6. REST API

The Fallout command-line client is built using a Python library for
ccessing the Fallout REST API. Making this API available instead of
nly providing access to Fallout via the web UI has helped many other
ervices leverage Fallout’s test running capabilities and has no doubt
ed to Fallout’s rise in popularity at DataStax. Recently, we have used
allout’s API and Python library to drive Fallout tests using pytest [10]

for a new project.

5. Results

Once one or more benchmarks have been run on a cluster, we use
multiple tools to display benchmark and OS metrics. Fallout includes a
built-in way to display client-side benchmark metrics as part of the web
UI but we usually collect many more metrics for runs such as Apache
Cassandra and OS metrics. We use a central Grafana server, known
as the history server, to display all of the historical metrics that are
accumulated during test runs.
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5.1. Performance reports

Fallout can generate performance reports which visualizes the met-
rics gathered from a single test run. Performance reports are built on
top of HdrHistogram datasets [7]. The HdrHistogram format is a de
facto standard for histogram data and implementations are available for
many benchmarking tools. A feature that we use heavily is the ability
to merge HdrHistogram data across multiple clients which makes it
possible to split load across nodes, collect individual HDR files, and
combine them to summarize the total load on the cluster. Finally, HDR
files capture both throughput and latency in a single file format. Fig. 5
shows an example of a performance report.

Metrics are displayed using time series data which is invaluable for
database workloads where the workload does not have a consistent
behavior, e.g. where it changes as memory-resident data structures fill
up and are flushed to disk. Being able to see metrics for the entire test
run duration makes it easier for users to spot situations where the test
hits an unexpected state. The metric data used to create graphs can be
altered by selecting an item from the drop-down menu on the right of
the page and in this example in Fig. 5 each phase of the test run records
a separate set of metrics. Digesting time-series metrics into a single
number is impossible to do manually, so we also provide summary
metrics that list throughput, mean, median, and percentiles for the test
run though these metrics are missing from Fig. 5 above due to lack of
space.

Performance reports are globally readable for all logged in Fallout
users and we have used this feature to share test runs across teams that
were collaborating on investigating performance issues — having a
single location to refer to for a test run’s performance helped everyone
to agree what work needed to be done next.

Individual performance reports can be grouped together into one re-
port which allows users to look for differences in performance between
test runs. Fig. 6 shows an example of a grouped performance report.

Graphed metrics for each run are displayed in the group report using
different colors and details of the runs are included below the chart in a
key which is not included in Fig. 6 again due to lack of space. The group
performance reports are particularly useful for comparing different ver-
sions of Apache Cassandra or different configuration options on either
the server or client side. When performance reports started appearing
in Jira tickets to illustrate performance improvements and regressions,
we knew that this feature had become successful as a way of quickly
visualizing the performance of benchmarks. Over time, these links to
performance reports have become even more useful as engineers have
been able to refer back to previous benchmarking with ready-to-run
tests they can reuse to troubleshoot new issues.

5.2. History server

Though performance reports offer a helpful way to look at the
performance of a small number of test runs for comparison, the fact that
all of the metrics from a test run are presented in a time-series chart
makes it unsuitable for analyzing historical trends. When we need to
understand how the performance of our automated tests have changed
over the past few days or weeks we use a central Grafana server we call
the history server. This server aggregates OS and application metrics
from both clients and servers for historical analysis and is one of the
ways that release engineers assess the quality of DataStax products.
Aggregated metrics are very coarse grained to reduce disk space usage
and calculate simple summary statistics — each metric is reduced to a
single data point per run regardless of the duration of the test run.

Given that the history server is a central component of quality en-
gineering for releases, it may be surprising that the hardware resources
used to run it are extremely modest. The original version of the history
server ran on a virtual machine with 1 CPU, 4 GB of RAM and a 20 GB
hard disk drive. The current configuration uses 2 CPUs, 4 GB of RAM
and an 80 GB hard disk drive. We believe that the reason the history
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server has survived for many years without any kind of downtime and
without exhausting its small disk space is due to the aggressive graphite
retention policy we apply to all metrics. The default metric namespace,
temporary, has a retention policy of 1 h:15d which works well for one-
off investigations because metrics can be updated once per hour and
are automatically deleted after 15 days. We use a separate namespace,
performance_regressions, to retain metrics for much longer but with a
reduced frequency: daily metrics are recorded at most once a day,
weekly metrics are recorded once a week, and both are retained for
10 years. Graphite’s design requires that disk space for all configured
metrics be allocated up front and storage for a single metric is 12 bytes,
so we can calculate that storing one metric in performance_regressions
every day for a full year only consumes 4.3 KB of disk space.

Fig. 7 shows one of the Grafana dashboards from the history server
which includes panels for throughput, error count, and percentile met-
rics.

6. Lessons learned

Fallout has evolved over many years of development and we have
found that while some of our initial design choices were correct and
have stood the test of time, others were wrong and needed reassessing.
And some problems we never even anticipated.

6.1. Configuration files should be short and expressive

The more lines a test configuration file has the greater the chance
of introducing a bug. One of the goals for Fallout has been to provide
enough support in the test and benchmark modules that common use
cases only need small test run configuration files which reduces the
probability that a user will make a mistake. This is still an on-going
effort as it takes time for common usages to emerge when support for
new modules is added but the end result is happier users with greater
confidence in Fallout. This goal has served us well in creating a useful
configuration language that is easy to understand.

6.2. Templating for configuration files encourages reuse

As Fallout amassed more users and the number of test run configura-
tions increased, we noticed that many users began copying and pasting
YAML across config files. A common situation where this happens is
when users need to run the same test across multiple versions of an
app, e.g. running the same benchmark against Apache Cassandra 3.11
and 4.0 to compare performance. We added support in Fallout’s YAML
parser for mustache [11] templates which allow users to use templates
in their YAML files and provide specific values either on the Fallout test
run web page or as parameters via the REST API.

Even with mustache templating, we found that users wanted to
separate out common chunks of YAML into different, smaller files and
include them in multiple configuration files. Additionally, users wanted
to be able to store these files in a version control system. Fallout does
not support either of these features so the haxx project was created
which uses Jinja [12] templating to allow composition of test fragments
and to provide version control via a git repository.

6.3. Tests need access to external files

A feature that we failed to anticipate early on was that tests,
benchmarks, and tools would need the ability to access external files,
e.g. configuration files. We initially worked around this limitation by
either extending the test module to fetch the external file from a GitHub
gist or by generating the test config file at runtime based on the keys
and values in the Fallout YAML config. This approach did not scale as
we added new modules and it is now possible to use a unified method
to access external files with the ≪file:filename≫ syntax regardless of the
module used in the test run config.
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Fig. 5. Example performance report.
Fig. 6. Example grouped performance report.
Fig. 7. Grafana dashboard.
6.4. Long-running tests benefit from semantic checks and idempotency

It is very straightforward to check YAML files for syntactic errors
and there are numerous Java libraries available to do that, such as
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SnakeYaml [13] which is the library that Fallout uses. However, syn-
tactic errors are only one source of problems afflicting users. Since most
of the YAML values in a test config are consumed by tools other than
Fallout, it is challenging to validate that the semantics of those values
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behave as expected. We have encountered situations where a single
mistyped character in a NoSQL table name caused all subsequent test
phases to fail and was only triggered after the test had been running
for an hour.

Additionally, re-running Fallout tests sometimes requires the in-
frastructure to be torn down and brought back up if Fallout cannot
determine the runlevel of the cluster. Other deployment tools, such as
Terraform [14] solve this problem with idempotency which allows the
same deployment steps to be applied repeatedly without causing any
changes to the underlying machine if the corresponding configuration
for those steps has not changed. Fallout does make an attempt to
detect the current cluster runlevel and skip unnecessary configuration
steps but the detection is imperfect. This detection is used in Fallout’s
cluster-reuse mechanism, which is triggered by naming a cluster and
requesting that it be left in a specific runlevel at the end of a test
run; subsequent test runs with the same test definition will find the
named cluster, detect its runlevel, and continue from there. This makes
it possible to iterate on test creation a little bit faster, and—in some
specialized cases – skip slow data loading steps for big-data tests.
However, in our experience most users do not encounter situations
where they need to use these features.

7. Related work

Automated testing, which includes running benchmarks, is a vital
part of ensuring quality for software projects [15]. Integrating bench-
marking into a continuous deployment pipeline is discussed in [16]
which focuses on using performance metrics with thresholds to decide
whether changes should be allowed into production. Since we use
Fallout to test software that will ultimately be deployed to a variety
of environments, ranging from the cloud to on-premise, there is no
built-in functionality for gating deployments based on performance
change thresholds. Instead, statistically significant changes are detected
using change point detection and a developer is required to make the
deployment decision. Automating deployments with Fallout is one of
our future goals.

MockFog 2.0 [17] enables fog applications experiments by emu-
lating fog infrastructure in the cloud and has a very similar design
to Fallout. Both MockFog and Fallout provision infrastructure, con-
figure and deploy applications, run tests and benchmarks, and even
use states (Action states and NodeGroup states, respectively) to define
legal transitions for the internal state machine. However, MockFog
uses Docker to manage applications whereas Fallout supports both
native and Kubernetes-based applications which more closely aligns
with typical deployments of Apache Cassandra and Apache Pulsar.
MockFog also uses Ansible to configure infrastructure which provides
the idempotent state updates that are partly missing from Fallout’s
implementation.

Adelphi [18] is an open-source QA tool that runs on top of Ku-
bernetes and allows users to run data integrity and performance tests
against Apache Cassandra. It is packaged as a helm chart and includes
a limited number of benchmarks and testing tools so that users can
compare two clusters against one another. Adelphi takes care of exe-
cuting the tests but does not provide facilities to create and terminate
the underlying Kubernetes clusters or present the benchmark and test
results for analysis.

MongoDB’s Distributed Systems Infrastructure (DSI) [19] was devel-
oped at approximately the same time as Fallout though the two projects
were not known to each other. DSI shares many things in common with
Fallout including components to provision virtual machines, configure
database servers and benchmarks, collect results for automated and
visual inspection, and finally teardown the infrastructure when the
test completes. Both Fallout and DSI use YAML configuration files to
control test runs. However, Fallout differs from DSI in a number of
ways. Fallout is written in Java and DSI is written in Python. While

DSI primarily targets Amazon EC2, Fallout can currently launch tests
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on Google Cloud Platform, Amazon EC2, Microsoft Azure, as well as our
internal OpenStack-based private cloud. Because ctool already existed
when Fallout was created, Fallout has a very modular architecture and
relies on other tools and components to do certain tasks whereas most
of the corresponding functionality for DSI is built into the service.
Lastly, as far as the authors are aware, DSI does not expose an API
for other tools to call.

Work on reducing the cost of testing very large distributed systems
by running many virtual machines on top of fewer physical servers is
discussed in [20]. This work targets network services with thousands of
nodes which are much larger than typical Apache Cassandra or Pulsar
clusters.

RocksDB includes tools for running benchmarks and analyzing the
results but no project exists to handle the setting up and tearing down
of hardware to run the benchmarks [21]. Likewise, SAP has published
work that shows how they integrate performance testing into their
CI process [22] but no details are included on the way that tests are
deployed on their testing infrastructure.

8. Conclusion

Fallout is a distributed systems testing service capable of auto-
matically provisioning clients and servers, installing, configuring and
executing distributed apps and workloads, and centrally collecting
results for later analysis. We use Fallout internally at DataStax and
it drives the entire performance and testing ecosystem for both our
Apache Cassandra and Apache Pulsar products. Fallout started life with
a very specific purpose and has evolved after years of engineering
effort to be the backbone of performance and quality for us and it
provides our engineering teams with fully-automated end-to-end testing
for distributed systems. Fallout’s REST API has been essential for new
teams to leverage Fallout’s distributed testing and has encouraged the
birth of numerous tools and services that complement Fallout. Our
Fallout server executes around 200 tests every day, and on busy days
runs closer to 400 tests.

Since each of our engineering teams have their own preferences
for the kinds of benchmarks, cluster configurations, and cloud infras-
tructure, all of these components are configurable in Fallout which
has been designed with modularity in mind. We have extended this
modularity to allow tests and benchmarks to load external files and
added templating so that users can reuse test config fragments without
copying and pasting.

We have released Fallout as an open-source project with the hope
that the open-source community can benefit from our investment and
the lessons we have learned running Fallout in production for over 5
years.
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A B S T R A C T

Software patches are made available to fix security vulnerabilities, enhance performance, and usability.
Previous works focused on measuring the performance effect of patches on benchmark runtimes. In this
study, we used the Top-Down microarchitecture analysis method to understand how pipeline bottlenecks were
affected by the application of the Spectre and Meltdown security patches. Bottleneck analysis makes it possible
to better understand how different hardware resources are being utilized, highlighting portions of the pipeline
where possible improvements could be achieved. We complement the Top-Down analysis technique with the
use a normalization technique from the field of economics, purchasing power parity (PPP), to better understand
the relative difference between patched and unpatched runs. In this study, we showed that security patches
had an effect that was reflected on the corresponding Top-Down metrics. We showed that recent compilers are
not as negatively affected as previously reported. Out of the 14 benchmarks that make up the SPEC OMP2012
suite, three had noticeable slowdowns when the patches were applied. We also found that Top-Down metrics
had large relative differences when the security patches were applied, differences that standard techniques
based in absolute, non-normalized, metrics failed to highlight.
1. Introduction

Operating systems are complex computer programs that are contin-
uously evolving to accommodate changes and updates to the underlying
hardware it runs on. Like any other piece of software, frequent updates
are released to address security issues, improve usability, enhance
performance, and fix software bugs. These fixes have the potential of
affecting performance, and it is essential to gain an understanding on
the effect software patches have on a system. It is through the use of
well known performance metrics that a proper assessment of security
patches can be made by quantifying their effect, not only on overall
performance, but on the different subsystems that make up a CPU.

In January 2008, two major vulnerabilities were reported, Spectre
and Meltdown [1,2]. These vulnerabilities made it possible for attackers
to gain access to data, stored in memory or caches, by bypassing
security mechanisms. The exploits took advantage of CPU features
that make it possible to use speculative execution to increase CPU
performance. It was fear that the security fixes would have a major
detrimental effect on performance by possible curtailing the speculation
capabilities of CPUs.

A number of studies on the effects of the Spectre and Meltdown
security patches had on performance were published. In one study,
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a number of Cray supercomputers were used to analyse the effects
patches had on runtime performance. A number of benchmarks were
tested, and it was found that the overall impact of the security patches
was minimal [3]. Another study, showed the effects different patches
had on two computational intensive workflows, pMatlab and Keras with
TensorFlow, on a Intel based cluster [4]. It reported that significant
negative effects, up to 21% for pMatlab and 16% for TensorFlow, once
the CPU microcode update was applied.

To quantify the effect a change on the configuration or code had
on performance, performance metrics such as the ones derived from
the Top-Down bottleneck analysis are used [5]. This approach, the
comparison of metrics after a change, is called differential analysis,
and it makes it possible to associate specific changes on the system or
code with changes on performance metrics [6]. A problem can arise
when absolute rates are compared. The issue is that the comparison
might provide an incomplete picture of changes between rates. Relative
changes, normalized with the purchasing power parity technique [7],
can provide additional information on the metric drift. This technique
has been used to account for differences across GCC compiler suite
releases [8] using the Top-Down bottleneck classification method. PPP
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made it possible to identify significant relative variations in different
Top-Down categories. The Top-Down classification, in conjunction with
PPP normalization, has been similarly applied to the AArch64 architec-
ture [9], where it was used to analyse strong scaling and its resulting
bottlenecks.

In this study, a comprehensive Top-Down and PPP analyses were
made to quantify absolute and relative bottleneck metric changes,
bottleneck drift, of a system when the Meltdown and Spectre security
patches were enabled. Our study makes the following contributions:

• We found little difference in all but one of the benchmarks
between patch settings.

• We showed that bottleneck profiles can differ even when security
patches had little effect on performance.

• We showed that relative rates can vary significantly, while abso-
lute bottleneck can remain relatively similar.

• We highlighted trends and differences in metrics that might have
otherwise gone unnoticed by standard evaluation practices.

Performance analysis and system characterizations is a time con-
suming and complex process. Checking the impact of security patches
requires multiple testing of different programs. Our approach makes it
possible to compare bottleneck metrics by quantifying their absolute
and relative changes when patches are applied. This makes it possible
to obtain a more complete picture of the effect security patches had on
systems.

2. Background

2.1. Spectre and Meltdown vulnerabilities

The Meltdown vulnerability allows an attacker to gain read access
to all memory, even when lacking the appropriate privileges to do
so [2]. The Spectre exploit allows attackers to gain access to private
information through branch mispredictions [1]. For this study, we
focused on the effect the patches had on pipeline bottlenecks. The
following variant security patches were provided the OS vendor and
applied to the system: [11,12]:

• Spectre, variant 1: This is a kernel patch fix that is always enabled.
It provides bounds checking during branching to prevent arbitrary
bypassing.

• Spectre, variant 2: This fix includes microcode and kernel patches.
It can be disabled to prevent performance impacts. It prevents
data leakage through indirect branch poisoning.

• Meltdown, variant 3: This is a kernel fix. It can be disabled to pre-
vent performance impacts. It prevents an attacker from reading
memory through speculative cache loading.

In the following subsections, we discuss the methods used to analyse
the performance impact of the security patches for Spectre, variant 2,
and Meltdown, variant 3, had on the system.

2.2. Top-Down classification method

The Top-Down analysis method is a bottleneck classification tech-
nique that identifies dominant bottlenecks of an application. This
method tracks CPU pipeline slots — resources needed to process a
micro-operation (uop). Uops are low level hardware operations of
microarchitectural instructions which were generated to represent the
application being executed by the CPU. Pipeline slots are assigned into
four main categories: Frontend Bound, Backend Bound, Retiring and
Bad Speculation [5]. A simple classification is applied to pipeline slots
to assign the bottleneck to the right category. If a slot was allocated,
it will be classified as Retiring if the slot is eventually retired. It will
be assigned to the Bad Speculation category if it is not retired. If the
slot cannot be allocated, it will be assigned to the Backend Bound
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category if it is a back end stall. Otherwise, it will be assigned to the
Frontend Bound category. Back end stalls occur when there are not
enough resources in the back end portion of the pipeline to handle new
slots. Front end stalls take place when the front end cannot supply slots
to the back end portion of the pipeline. Non stalled slots are classified
as Bad Speculation, when a slot will never retire due to an incorrect
speculation, or slots were blocked by the pipeline due to recovery
operations due to an earlier bad speculation. Retired slots are the slots
that successfully completed their operations.

To apply the Top-Down analysis technique, a user would first com-
pute the main category metrics to identify which classification has the
highest bottleneck rate. Once a category is identified, the user can
narrow down the metrics needed to analyse by just focusing in the
subcategories of the selected main category. The user can continue gen-
erating metrics until the source of the problem is identified. Since our
goal is to provide a comprehensive view of the different components
that make up the processor, our experimental runs included multiple
categories. This made it possible to get a more complete picture of
bottlenecks across the processor, and a better understanding of how
the different processor components were affected by the use of security
patches. Table 1 lists the main Top-Down categories and subcategories
that were used in this paper, along the corresponding formulas needed
to compute the metrics. More in-depth descriptions, definitions and
techniques of the Top-Down metrics, and how to use the Top-Down
analysis method, were made available by the CPU vendor [13].

2.3. Purchasing power parity

Purchasing power parity theory underlies different methods to com-
pare the cost of identical products such as lattes, and iPods between
different countries, each of them with different currencies [7,14,15].
The most famous PPP index is the Big Mac Index (BMI), which was
developed by The Economist magazine [16]. The goal of the BMI is to
compare the strength of the currency by testing how much of the same
product a currency can buy when compared to another currency. A
currency is overvalued – when the product bought using that currency
is more expensive – or undervalued – when the product is cheaper –
when compared to a base currency.

The following is an illustrative example of the purchasing power of
the Chinese yuan versus the US dollar as described in The Economist
magazine. For this example, the dollar to yuan exchange rate is $1 = 6.4
yuan. The quoted Big Mac price was $5 and 20 yuan. Eq. (1) computes
the Big Mac exchange rate which is based on its local price.

20∕5 = 4 (1)

Eq. (1) shows that on the basis of Big Mac burger prices, the
exchange rate should be set at 4 yuans per dollar. Since the actual
exchange rate is 6.4 yuans per dollar, Eq. (2) shows that the yuan is
37.5% undervalued as compared to the US dollar.

(4 − 6.4) ∗ 100∕6.4 = −37.5 (2)

PPP theory can be used to determine the relative difference between
bottlenecks generated by the same benchmark but generated under
different system configurations. The currency used to compare the cost
is the number of cycles it took to run the program to completion. The
product being compared are the Top-Down metrics for each benchmark.
The goal is to show that a metric value can differ, or be similar to
another, as defined by the Top-Down formulas, while its true cost might
be relatively higher or lower, when compared to a baseline run. PPP
normalized rates close to 0% imply parity between the patches disabled
and enabled metrics. It takes about the same number of 𝐶𝑃𝑈 _𝑐𝑙𝑘 cycles
for a similar number of pipeline slots to achieve similar Top-Down
metric rates. For positive PPP rates, it implies that the patches enabled
𝐶𝑃𝑈 _𝑐𝑙𝑘 cycles are overvalued. It requires less cycles to achieve same
metric magnitude when compared to a configuration with the security
patches disabled. Negative PPP rates imply that the 𝐶𝑃𝑈 _𝑐𝑙𝑘 cycles
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Table 1
Top-Down Metric formulas for Intel Skylake processor [5,10].
Metric Formula

CORE_CLKS CPU_CLK_UNHALTED.THREAD_ANY/2
CLKS CPU_CLK_UNHALTED.THREAD
SLOTS 4 * CORE_CLKS
Frontend Bound
Frontend Bound IDQ_UOPS_NOT_DELIVERED.CORE/SLOTS
DSB ( IDQ.ALL_DSB_CYCLES_ANY_UOPS - IDQ.ALL_DSB_CYCLES_4_UOPS )

/CORE_CLKS
Branch Resteers (INT_MISC.CLEAR_RESTEER_CYCLES+BACLEARS.ANY )/CLKS
Bad Speculation
Bad Speculation (UOPS_ISSUED.ANY - UOPS_RETIRED.RETIRE_SLOTS

+ (4*Recovery_Cycles))/SLOTS
Recovery_Cycles INT_MISC.RECOVERY_CYCLES_ANY/2
Branch Mispredicts (BR_MISP_RETIRED.ALL_BRANCHES/(BR_MISP_RETIRED.ALL_BRANCHES

+ MACHINE_CLEARS.COUNT)) * Bad Speculation
Machine Clears Bad Speculation - Branch Mispredicts
Retiring
Retiring UOPS_RETIRED.RETIRE_SLOTS/SLOTS
Microcode Sequencer ((UOPS_RETIRED.RETIRE_SLOTS /UOPS_ISSUED.ANY)* IDQ.MS_UOPS)

/SLOTS
Base Retiring - Microcode Sequencer
Backend Bound
Backend Bound 1 - (Frontend Bound + Bad Speculation + Retiring)
Backend Bound, Memory Bound
Store Bound EXE_ACTIVITY.BOUND_ON_STORES/CLKS
L2_Bound_Ratio (CYCLE_ACTIVITY.STALLS_L1D_MISS-CYCLE_ACTIVITY.STALLS_L2_MISS)

/ CLKS
LOAD_L2_HIT MEM_LOAD_RETIRED.L2_HIT*

(1+MEM_LOAD_RETIRED.FB_HIT/MEM_LOAD_RETIRED.L1_MISS)
L1 Bound (CYCLE_ACTIVITY.STALLS_MEM_ANY-CYCLE_ACTIVITY.STALLS_L1D_MISS)

/CLKS
L2 Bound (LOAD_L2_HIT/( LOAD_L2_HIT + L1D_PEND_MISS.FB_FULL) )

* L2_Bound_Ratio
L3 Bound (CYCLE_ACTIVITY.STALLS_L2_MISS-CYCLE_ACTIVITY.STALLS_L3_MISS)

/ CLKS
DRAM Bound (CYCLE_ACTIVITY.STALLS_L3_MISS/CLKS) + L2_Bound_Ratio - L2_Bound
Backend Bound, Core Bound
Divider ARITH.DIVIDER_ACTIVE /CLKS
UPC UOPS_RETIRED.RETIRE_SLOTS/CLKS
Few_Uops_Executed
_Threshold

EXE_ACTIVITY.2_PORTS_UTIL * UPC/5

Core_Bound_Cycles EXE_ACTIVITY.EXE_BOUND_0_PORTS + EXE_ACTIVITY.1_PORTS_UTIL
+ Few_Uops_Executed_Threshold

Ports Utilization if ARITH.DIVIDER_ACTIVE < EXE_ACTIVITY.EXE_BOUND_0_PORTS
then Ports Utilization = Core_Bound_Cycles/CLKS
else Ports Utilization = (Core_Bound_Cycles -
EXE_ACTIVITY.EXE_BOUND_0_PORTS)/CLKS
w
u

for a configuration with patches enabled are undervalued. It requires
more cycles to achieve the same metric value when compared to a
configuration with security patches disabled.

Top-Down metrics were computed using the formulas described in
Table 1. The use of CPU_CLK_UNHALTED. THREAD, or
CPU_CLK_UNHALTED.THREAD_ANY to compute the PPP Exchange
Rate, Eq. (3), was based on which PMU event the Top-Down metric
formula used in its computation. Some metrics use CLKS while others
use the CORE_CLKS performance metric. The baseline 𝐶𝑃𝑈 _𝑐𝑙𝑘 values
sed for comparison were obtained from runs with the security patches
isabled.

𝑃𝑃 _𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒_𝑅𝑎𝑡𝑒 = 𝐶𝑃𝑈 _𝑐𝑙𝑘∕𝐶𝑃𝑈 _𝑐𝑙𝑘𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (3)

Eq. (4) computes the PPP index. The baseline, represented by the
ariable 𝑀𝑒𝑡𝑟𝑖𝑐𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, was the resulting Top-Down metric value with
he security patches disabled.

𝑃𝑃𝑃 = 100 ∗ ((𝑀𝑒𝑡𝑟𝑖𝑐∕𝑀𝑒𝑡𝑟𝑖𝑐𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

−𝑃𝑃𝑃 _𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒_𝑅𝑎𝑡𝑒)∕𝑃𝑃𝑃 _𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒_𝑅𝑎𝑡𝑒
(4)

The following is an example of how to compute the drift in terms of
elative difference of the Retiring metric for the 370.mgrid331 bench-
ark. The Retiring metric was computed using the formulas provided

y the Top-Down method as shown in Table 1, and the results were
ound to be 0.06789046 when patches were enabled, and 0.09773369
92
hen patches were disabled. The PPP exchange rate was computed
sing the PMU event, CPU_CLK_UNHALTED. THREAD_ANY with a re-

sulting value of 1.46, Eq. (5). The drift between security patch set-
tings was found to be −52.42%, Eq. (6). When patches were enabled,
the CPU_CLK_UNHALTED.THREAD_ANY were overvalued. The system
used more CPU_CLK_UNHALTED.THREAD_ANY cycles to retire a similar
number of uops when patches were disabled.

81671652350125∕55924600475776 = 1.46 (5)

100 ∗ ((0.06789046∕0.09773369) − 1.46)∕1.46 = −52.42 (6)

In this paper, we use the relative change between metrics, the
difference in Top-Down metrics between patch settings divided by the
metric value when patches were disabled, as an additional indicator
of the changes between patch settings. For the example just described,
370.mgrid331 had a relative change in its Retiring metric of −30.54%.
The relative change and PPP normalized rates give us a sense of the
relative change of the Top-Down metric between patch settings, not the
change of its effect on the system. Additionally, PPP normalized rates
give us information on the relative change when taking into account the
number of core cycles that were used to compute the metrics, which
is useful when putting large percentage values in relative changes in
perspective.
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Table 2
SPEC OMP2012 Benchmark description [17].
Benchmark name Programming language Description

350.md Fortran Physics: Molecular dynamics
351.bwaves Fortran Physics: Computational Fluid Dynamics (CFD)
352.nab C Molecular Modelling
357.bt331 Fortran Physics: Computational Fluid Dynamics (CFD)
358.botsalgn C Protein Alignment
359.botsspar C Sparse LU
360.ilbdc Fortran Lattice Boltzmann
362.fma3d Fortran Mechanical Response Simulation
363.swim Fortran Weather Prediction
367.imagick C Image Processing
370.mgrid331 Fortran Physics: Computational Fluid Dynamics (CFD)
371.applu331 Fortran Physics: Computational Fluid Dynamics (CFD)
372.smithwa C Optimal Pattern Matching
376.kdtree C++ Sorting and Searching
3. Experimental setup

We used the Top-Down method in combination with the SPEC
OMP2012 benchmarks [17,18] to measure the effects of Spectre and
Meltdown patches have on the Intel 2021.1 compiler suite. The fol-
lowing compiler options were used as the default to compile most
benchmarks: -fopenmp -O3 -march=skylake-avx512 -g -pg. Some of the
benchmarks required additional or different options. The 371.applu331
benchmark used -fopenmp -O2 -march=skylake-avx512 -g -pg. 367.imag-
ick required the compiler option -std=c99 to be added to the default
options. Additionally, the option -FR was added to 350.md, while -
mcmodel=medium needed to be added to the 363.swim and 357.bt331
benchmarks. The SPEC OMP2012 benchmarks are described in Table 2.
OMP2012 results that followed the SPEC reporting guidelines can be
submitted for publication [19]. A two socket Intel(R) Xeon(R) Silver
4110 CPU @ 2.10 GHz with 8 cores per socket, 2 threads per core was
used running the CentOS 7.6.1810 Linux version installed. perf record
collected the data from eight performance counters per experimental
run. There were at least five data points per performance counter for
both patch settings. To compute Top-Down metric rates, the average of
the performance counter values was used.

It is possible to disable the Spectre variant 2 and Meltdown variant
3 through an interface made available by the Red Hat Linux vendor,
which is also available to the CentOS distribution. The vendor also
made available a script to check the state of the security patches, to
see whether or not the system currently has its patches enabled or
disabled [12]. In this study, version 3.1 of the verification script was
used. To disable the security patches, a 0 was stored in the following
files located in /sys/kernel/debug/x86/: ibrs_enabled, retp_enabled and
pti_enabled. Patches were enabled by replacing the 0 with a 1 in the
same files.

4. Analysis of results

Fig. 1 shows the speedup gains or losses when the security patches
were enabled. There were at least 55 runs for each benchmark for
both patch settings, and the averages were taken to compute the
speedups. The plot shows that most benchmarks suffer about a 0.01𝑥
speedup loss. The exception is 360.ilbdc, which experienced a small
gain of 0.02𝑥, and 370.mgrid331, which had a negative effect close to
0.04𝑥. While these are not significant effects on runtime, we further
analysed the effects of the security patches through the use of the Top-
Down classification method to see how bottlenecks were affected on
a subset of benchmarks. We showed that while benchmark runtimes
were similar, their bottleneck profiles were different. With the use of
PPP techniques, we were able to highlight and quantify these relative
differences when compared to the baseline, a system with its security
patches disabled.

Table 3 shows the performance counters of significance that were

used to compute the Top-Down metrics. When the results followed a

93
Fig. 1. Speedup comparison for the Intel 2021.1 compiler suite when patches are
enabled using SPEC OMP2012 benchmarks with 32 threads and SMT enabled. Higher
is better.

normal distribution, the unpaired two-sample t-test was used. When
the results did not follow a normal distribution, the non parametric
two-samples Wilcoxon rank test was used. We had a minimum of five
runs per counter for both settings, patches enabled and disabled. P-
values for the performance counters were identified as significant at
values less than 0.05. For the Retiring category, there were more uops
delivered by the Microcode Sequencer for 358.botsalgn, 359.botsspar,
and 370.mgrid331 when patches were enabled. Additionally, 359.botss-
par had increases in number of uops issued by the resource allocation
table while at the same time the number of retiring slots increased when
patches were enabled. 358.botsalgn had the opposite effect.

For the Frontend Bound metric, 358.botsalgn, 359.botsspar, 360.ilbdc
and 370.mgrid331 had increases in the number of uops not delivered
to the resource allocation table per thread when the patches were
enabled. A higher number in none delivered uops could potentially
translate in the frontend under-supplying the CPU’s backend portion
of the pipeline. Similarly, the 358.botsalgn, 359.botsspar, 360.ilbdc,
370.mgrid331 and 371.applul331 reported an increase in the number
of times frontend resources are resteered when encountering branch
instructions in a fetch line with patches enabled. 358.botsalgn and
359.botsspar had decreases in the number of uops and 4 uops cycles that
were delivered to the instruction decode queue unit. These decreases
occurred when patches were enabled.
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Table 3
Performance counters of significance.
Performance counter Benchmark Category

BACLEARS.ANY 358.botsalgn, 359.botsspar, 360.ilbdc, 370.mgrid331, 371.applu331 Branch Resteers
BR_MISP_RETIRED.ALL_BRANCHES 358.botsalgn, 359.botsspar, 360.ilbdc, 370.mgrid331, 371.applu331 Branch Mispredicts
CPU_CLK_UNHALTED.THREAD 360.ilbdc CLKS
CPU_CLK_UNHALTED.THREAD_ANY 359.botsspar, 360.ilbdc, 359.botsspar CORE_CLKS
CYCLE_ACTIVITY.STALLS_L1D_MISS 359.botsspar L1, L2 Bound
CYCLE_ACTIVITY.STALLS_L2_MISS 359.botsspar L2, L3 Bound
CYCLE_ACTIVITY.STALLS_L3_MISS 359.botsspar, 370.mgrid331 L3, DRAM Bound
CYCLE_ACTIVITY.STALLS_MEM_ANY 358.botsalgn L1 Bound
EXE_ACTIVITY.2_PORTS_UTIL 359.botsspar Few_Uops_Executed_Threshold
EXE_ACTIVITY.EXE_BOUND_0_PORTS 358.botsalgn, 359.botsspar, 360.ilbdc Ports Utilization
IDQ.ALL_DSB_CYCLES_4_UOPS 358.botsalgn, 359.botsspar DSB
IDQ.ALL_DSB_CYCLES_ANY_UOPS 358.botsalgn, 359.botsspar DSB
IDQ.MS_UOPS 358.botsalgn, 359.botsspar, 370.mgrid331 Microcode Sequencer
IDQ_UOPS_NOT_DELIVERED.CORE 358.botsalgn, 359.botsspar, 360.ilbdc, 370.mgrid331 Frontend
INT_MISC.CLEAR_RESTEER_CYCLES 358.botsalgn, 359.botsspar, 360.ilbdc, 370.mgrid331 Branch Resteers
INT_MISC.RECOVERY_CYCLES_ANY 358.botsalgn, 359.botsspar, 360.ilbdc, 370.mgrid331, 371.applu331 Recovery_Cycles
MACHINE_CLEARS.COUNT 358.botsalgn, 359.botsspar, 360.ilbdc, 370.mgrid331, 371.applu331 Branch Mispredicts
MEM_LOAD_RETIRED.FB_HIT 358.botsalgn, 359.botsspar L2 Bound
MEM_LOAD_RETIRED.L1_MISS 358.botsalgn L2 Bound
UOPS_ISSUED.ANY 358.botsalgn, 359.botsspar Bad Speculation, Microcode Sequencer
UOPS_RETIRED.RETIRE_SLOTS 358.botsalgn, 359.botsspar Bad Speculation, Retiring, Microcode Sequencer
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In the Bad Speculation category, the following benchmarks had
increases of statistical significance when patches were enabled. 358.bot-
salgn, 359.botsspar, 360.ilbdc, 370.mgrid331 and 371.applu331 had in-
creases in the number of events that require the clearing of the pipeline,
the number of mispredicted retired instructions, and the number of
stalls due to recoveries from earlier clear events increased for these
benchmarks. In the core bound category, 358.botsalgn, 359.botsspar and
360.ilbdc had statistically significant increases of cycles with where
no uops were executed on all ports. 359.botsspar had an increase
in the number cycles in which 2 uops were executed on all ports.
In the memory bound classification, the number of execution stalls
due data misses increased for 359.botsspar for L1D, 359.botsspar for
L2, 359.botsspar and 370.mgrid331 for L3. Additionally, 359.botsspar
eported statistically significant increases for execution stalls due to
emory subsystem outstanding loads.

.1. Top-Down metrics

Fig. 2(a) shows the effects the security patches had on the main
op-Down categories. With the exception of 360.ilbdc, all Frontend
ound values dropped. This was driven by two factors when patches
ere enabled: the number of CPU_CLK_UNHALTED.THREAD_ANY in-

reased for all benchmarks, and the number of uops not delivered
o the resource allocation table when the backend portion of the
ipeline was not stalled, the IDQ_UOPS_NOT_DELIVERED.CORE perfor-
ance counter, stayed relatively the same. In the case of 360.ilbdc, the

pposite was true, the number of CPU clock cycles stayed relatively
he same while the number of uops not delivered increased by more
han 11%. This resulted in an increase of 7.5% in the Frontend Bound
etric when the security patches were enabled. Fig. 2(b) shows the

orresponding PPP normalized rates. Except for 360.ilbdc, which had a
PP rate of 3.67%, all benchmarks had negative PPP rates that ranged
rom −22% for 358.botsalgn and 359.botsspar, to −49% for 370.mgrid. As
he number of cycles, CPU_CLK_UNHALTED.THREAD_ANY, increased,
he number of uops not delivered increased modestly. Resulting in less
ot delivered uops per cycles, making the cycles undervalued. The runs
ith patches enabled handled relatively the same number of stalls with
ore core cycles.

The Retiring metric values decreased for all benchmarks when the
atches were applied. It had a drop of −30.53% for 370.mgrid331,
hile 350.md and 371.applu331 had drops of about −20%. 360.ilbdc
ad a drop of −2.73%. This is attributed to the increase in core cycles,
PU_CLK_UNHALTED.THREAD_ANY, while the number of retired slots

emained relatively the same when patches were enabled. PPP rates a
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ecreased for all benchmarks. Expect for 360.ilbdc, all had at least a
24% drop, with 370.mgrid recording a drop of −52%. As the number
f core cycles increased with the security patches enabled, the number
f retired slots remained relatively the same. 370.mgrid had the largest
ncrease in core cycles, 46%, while 360.ilbdc had the smallest increase,
.73%. This explains the difference in magnitude in PPP rates.

The Bad Speculation metric had an increase of 101% for 350.md,
0% for 371.applu331, and 51% for 360.ilbdc when patches were
nabled. This is due to an increase of UOPS_ISSUE_ANY and Recov-
ry_Cycles while the number of UOPS_RETIRED.RETIRED_SLOTS stayed
elatively the same. The other benchmarks, 359.botsspar, 358.botsalgn
nd 370. mgrid331, had less than a −4% decrease in Bad Speculation
ates. Since the number of clock cycles, the denominator in the formula,
lso increased but at a larger rate, the Bad Speculation rate decreased
hen patches were enabled. While regular rates showed a decrease
f −4%, PPP normalized rates were larger in magnitude, 32.23% for
70.mgrid, 16.63% for 359.botsspar and 14.84% for 358.botsalgn. The
ffects of large increases in core cycles, 46% for 370.mgrid331, and
4% for 359.botsspar and 358.botsalgn, resulted in decreases of PPP
ates. There were more core cycles to do the same amount of work
nce the patches were enabled, which resulted in a depreciation in
he value of core cycles. The other benchmarks experienced gains in
PP normalized rates. 350.md had a gain of 57.15%, 371.applu331
ad a gain of 21.06%, and 360.ilbdc had a gain of 46.42%. The
ecovery_Cycles metric increased at a much larger rate for this subset
f benchmarks than the benchmarks with negative PPP rates. 350.md
ad an increase in Recovery_Cycles of 1334%, while 371.applu331 had
n increase of 1446% and 360.ilbdc had an increase of 983%. Positive
PP rates show that core cycles were overvalued, the same amount of
ork is being done with less core cycles relatively to baseline runs.

The 360.ilbdc benchmark saw less than a 1% difference in the
ackend Bound metric between patch settings. For 360.ilbdc, the Bad
peculation, Front End, and Retiring metrics stayed relatively the same,
esulting in a very similar Backend Bound rate. All other benchmarks
ad an increase in the Backend Bound rates because of lower Retiring
ates when patches were enabled. 370.mgrid331 had a 4% increase,
hile 371.applu331 recorded an increase of 6%. Other benchmarks had

arge increases. 359.botsspar had an increase of 19%, 350.md had a
5% increase, and botsalgn had a 76% increase. PPP rates increased
or benchmarks that had large increases in Backend Bound rates. For
nstance, 350.md had a core cycles increase of 28% but its Backend
ound rate had a larger effect when it increased by 54%, resulting in
PP rate of 20%. 370.mgrid331 had a core rate increase of 46% and

Backend Bound rate increase of 3.90%, resulting in a PPP rate of
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Fig. 2. Results of the Top-Down architectural bottleneck classification main categories.

−28%. When patches were enabled, the number of cycles increased for
some benchmarks at higher rates than there were uops to be processed
resulting in negative PPP rate, while others had proportionally fewer
cycles for an increasing number of uops resulting in overvalued cycles
and positive PPP rates.

The following subsections describe the effects of the security patches
had on different Top-Down subcategories.

4.1.1. Frontend bound
Frontend Stalls track the fraction of slots that were affected when

the frontend of the pipeline undersupplies the pipeline’s backend. Two
subcategories were examined in this paper: DSB and Branch Resteers.
The DSB metric tracts the fraction of CPU cycles that were affected by
the decoded uop cache, DSB, fetch pipeline. Branch Resteers account
for the CPU stalls due to branch resteers, delays from a corrected path,
after a mispredicted branch. Fig. 3(a) shows that the Branch Resteers
metric increased when the security patches were enabled. This is due to
increases in the number of cycles the issue stage had to wait to recover
from bad speculation events, while at the same time, the number of
CPU_CLK_UNHALTED.THREAD decreased or stayed the same. For ex-
ample, 350.md had a Branch Resteers rate increase of 329% due mostly
95
Fig. 3. Frontend Bound subcategories.

in part to an increase of 234% in INT_MISC.CLEAR_RESTEER_CYCLES,
and a slight decrease of −2.58% for CPU_CLK_UNHALTED.THREAD.
360.ilbdc had a increase of 117.93% for Branch Resteers resulting
from an increase of 61.81% in INT_MISC.CLEAR_RESTEER_CYCLES,
and a decrease of −19.65% in CPU_CLK_UNHALTED.THREAD. Nor-
malized PPP rates for the Branch Resteers metric were all positive,
Fig. 3(b). While CPU core cycles increased, Branch Resteers increased
at higher rates. The largest percentage increases in PPP rates reflect
large increases in Branch Resteers while lower increasing rates for
core cycles. That is the case for 350.md, which had a PPP rate of
340.42%. Its core cycles rate increased by 28.16% while its Branch
Resteers rate increased by 329.04%. Similarly, 360.ilbdc had a PPP
rate of 171.25%, because of an increase of 3.73% in core cycles and
a 117.94% increase in Branch Resteers when patches were enabled.
Core cycles were overvalued, when compared to their baseline, because
fewer core cycles had to do relatively less work.
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The DSB metric decreased when patches were enabled. While the
number of uops that were delivered to the instruction decode queue
remained the same or had a slight decrease, there were increases
in CPU_CLK_UNHALTED.THREAD_ANY, the divisor. This resulted in
more CPU cycles for the same number of delivered uops for all the
benchmarks. For instance, 370.mgrid331 and 350.md had increases of
46% and 28.16% for CPU_CLK_UNHALTED.THREAD_ANY, resulting in
DSB decreases of −35.54% and −23.05% respectively while the uops
delivered stayed relatively the same. DSB PPP rates were negative for
all benchmarks. The number of core cycles increased while DSB rates
decreased when patches were enabled. The benchmarks with the high-
est rates reflect the large increases in core clocks and decreases in the
DSB rate. That is the case for 370.mgrid. It had a PPP rate of −55.87%,
n increase of 46.04% for its CPU_CLK_UNHALTED.THREAD_ANY value
nd a decrease of −35.55% for its DSB rate. The lowest PPP rate was

reported by 360.ilbdc. It had a small increase in core cycles, 3.73%,
and a decrease in DSB rate of −9.29%.

4.1.2. Retiring
The Retiring category represents the fraction of pipeline slots of

useful work, the uops that were eventually retired. The Microcode
Sequencer metrics is a retiring subcategory that accounts for pipeline
slots of uops that were retired and were fetched by the microcode
sequencer ROM. The Base metric tracks retired uops that did not
originate from the microcode sequencer. Fig. 4(a) shows that Base rates
across all benchmarks decreased when patches were enabled. This was
due to lower Retiring rates. PPP rates for the Base metric rates were
negative, reflecting the increasing number of core cycles as the Base
rates decreased, Fig. 4(b).

When the security patches were enabled, 370.mgrid331 and 371.ap-
plu331 had lower Microcode Sequencer rates, −21.54% and −18.56% re-
spectively. This resulted from an increase in core cycles,
CPU_CLK_UNHALTED.THREAD _ANY, the divisor in the metric for-
mula, while the other performance counters remained the same. The
other benchmarks had similar or slightly higher Microcode Sequencer
rates because the number of uops delivered by the microcode se-
quencer, IDQ.MS_UOPS, increased at a similar or higher rate than
CPU_CLK_UNHALTED.THREAD_ANY. 360.ilbdc was the only bench-
mark with a positive PPP rate, 7.51%. This was due to an increase of
11.52% in the Microcode Sequence rate when patches were enabled
while the number of core cycles increased modestly, 3.73%. All other
benchmarks had negative PPP rates, up to −46.28% for 370.mgrid331
because of the large increase of core cycles and a decrease in the
Microcode Sequencer rate when the security patches were enabled.

4.1.3. Backend bound
The Backend Bound metric measures the fraction of slots where

no uops were delivered to the backend portion of the pipeline due to
bottlenecks in the computational or memory subsystems. This metric
is further divided into Memory and Core Bound subcategories. In this
study, the following memory subsystem stalls due to load accesses were
tracked through their corresponding Top-Down metrics: L1, L2, L3 and
DRAM. Additionally, the Store Bound metric tracks stalls due to store
memory accesses.

The numerator of the L1 Bound metric is the difference between
the number of execution stalls due to outstanding loads in the mem-
ory subsystem, CYCLE_ACTIVITY.STALLS_MEM_ANY, minus the num-
ber of stalls due to outstanding L1 cache miss demand load, CY-
CLE_ACTIVITY.STALLS_L1D_MISS. When the security patches were ap-
plied, both type of stalls increased, Fig. 5(a). Some of the benchmarks
had negative values because the CYCLE_ACTIVITY.STALLS_L1D_MISS
values were larger in magnitude. This was the case for 359.botsspar,
60.ilbdc and 370.mgrid331, which had a negative L1 Bound rate only
hen patches were enabled. 350.md, 358.botsalgn and 371.applu331

had all positive L1 Bound rates. 350.md had an increase of 31.39%
96
Fig. 4. Retiring subcategory.

and 358.botsalgn an increase of 30.67% with patches enabled due to in-
reases in stalls and a decrease in core cycles,
PU_CLK_UNHALTED.THREAD. 371.applu331 had a decrease in the

L1 Bound rate of −40.83%. It had a small decrease in the core cy-
cles, and a higher increase in stalls due to L1 cache miss activity,
CYCLE_ACTIVITY.STALLS_L1D_MISS, than stalls due to the memory
subsystem, CYCLE_ACTIVITY.STALLS_MEM_ANY.

L2 Bound rates were higher when the security patches were enabled.
This was attributed to large increases in the L2_Bound_Ratio rates,
higher execution stalls for L1 cache misses,
CYCLE_ACTIVITY.STALLS_L1D_MISS, and a decrease in
CPU_CLK_UNHALTED.THREAD. 370.mgrid 331 had an increase of
32.11% while 359.botsspar and 371.applu331 had increases in the low
20s. L3 Bound rates increased with patches enabled. This was due
mostly by increases in execution stalls for L2 cache misses,
CYCLE_ACTIVITY.STALLS_L2_MISS, and a decrease in core cycles,
CPU_CLK_UNHALTED.THREAD. 370.mgrid331 had an increase of
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Fig. 5. Memory Bound subcategories which are part of the Backend Bound
classification.

66.46%, while 371.applu331 had an increase of 40% and 359.botsspar
an increase of 29.27%.

DRAM Bound rates increased when patches were enabled due
mainly to increases in stalls while L3 cache miss load demands were
waiting, CYCLE_ACTIVITY.STALLS_L3_MISS, and decreases in core cy-
cles, CPU_CLK_UNHALTED.THREAD. The L2_Bound_Ratio also
increased but had a smaller effect on the DRAM Bound results.
370.mgrid331 had a DRAM Bound rate increase of 45.08%, while others
had increases of 37.41% 360.ilbc, 31.32% for 359.botsspar, and 21.42%
for 371.applu331. Store Bound rates also increased when patches were
applied. This was the result of increases in the number of cycles when
the store buffer was full, EXE_ACTIVITY.BOUND_ON_STORES, and a
decrease in the number of core cycles, CPU_CLK_UNHALTED.THREAD.
Two benchmarks, 360.ilbdc and 371.applu331, recorded gains of 39.25%
nd 17.06% respectively.
 a

97
PPP rates for DRAM, L2, L3 and Store Bound metrics were consis-
tently positive across all benchmarks, Fig. 5(b). This was the result of
increasing stall rates across these metrics while the number of cycles
decreased. There were fewer cycles to handle the increasing number
of stalls, so the cycles became overvalued when the security patches
were enabled. PPP rates also showed that while not all the benchmarks
had significant stall rates in some of the categories, the impact of the
patches was significant across all of them. That is the case of the Store
Bound metric. For this category, 371.applu331, and 360.ilbdc had the
argest Store Bound rates of at least 0.14, but the effects the patches
ad on all benchmarks were found to be of at least 19%, which was
he case for 371.applu331 and as much as 53.46% for 359.botsspar.
arge relative changes, as reported by PPP rates, of a metric that is
mall in magnitude will not have a big effect on the overall Top-Down
lassification results, it does gives us information on the relative effect
he security patches are having on the metric.

The L1 Bound PPP rates for 359.botsspar, 360.ilbdc and 370.mgrid331
ere not computed because they provided no useful information since

he regular rates were negative. The regular rates were negative be-
ause of the large increases in the execution stalls due to L1 cache
isses, CYCLE_ACTIVITY.STALLS_L1D_MISS, when the security patches
ere enabled. Not all benchmarks reported negative L1 Bound rates.
50.md and 358.botsalgn followed the premise previously stated that an
ncreasing number of stalls in combination with a decreasing number of
ore cycles resulted in positive PPP rates. The PPP rates were 34.87%
or 350.md and 48.35% for 358.botsalgn. 371.applu331 had a negative
PP rate of −39.96% because its drop in the L1 Bound rate when the
atches were applied.

Core Bound is the second set of subcategories of the Backend
ound classification. They represent all non-memory related bottle-
ecks. The Divider metric tracks the fraction of cycles in which di-
ide and square root operations used the DIV unit. When patches
ere enabled, the number of cycles when the divide unit was busy,
RITH.DIVIDER_ACTIVE, increased, while the number of
PU_CLK_UNHALTED.THREAD remained the same or decreased.
ig. 6(a) shows that the 360.ilbdc benchmark had an increase of
ycles that required root or division operations of 47.67% while the
umber of core cycles decreased by −19.65%. For benchmarks that had
maller increases in the Divider metric, the increase of cycles used in
ivision and root operations was smaller, while the number of core
ycles remained relatively the same. That is the case for 370.mgrid,
here CPU_CLK_UNHALTED.THREAD had an increase of 1.15% and
n increase in ARITH.DIVIDER_ACTIVE of 13.63%.

The Ports Utilization metric tracks the fraction of CPU cycles af-
ected by limitations in computational resources that do not involve
he DIV unit. For benchmarks 350.md and 371.applu331, the perfor-
ance counter ARITH.DIVIDER_ACTIVE was smaller in magnitude than
XE_ACTIVITY.EXE_BOUND_0_PORTS, as a result, the Ports Utilization
etric depended only on the Core Bound metric and
PU_CLK_UNHALTED.THREAD. Both of these benchmarks reported in-
reases in the Ports Utilization metric when patches were enabled. This
as attributed to increases in the Core Bound rates while the number of

ore cycles decreased slightly. The other four benchmarks had higher
XE_ACTIVITY.EXE_BOUND_0_PORTS rates, so the formula used to
ompute Ports Utilization had to include the
XE_ACTIVITY.EXE_BOUND_0_PORTS performance counter in the com-
utation of Ports Utilization. 358.botsalgn, 359.botsspar, and 360.ilbdc
ad increases of 34.64%, 33.75% and 44.63% respectively when patches
ere enabled. This was the result of increases in Core Bound rates, and
decrease in core cycles. 370.mgrid experienced only a 7.31% increase

ate because there was a small increase in core cycles and a smaller
ncrease in its Core Bound rate.

Ports Utilization and Divider PPP normalized rates followed the
ame patterns, Fig. 6(b). The rates were all positive, due to a decreasing
umber of CPU_CLK_UNHALTED.THREAD, while the Ports Utilization

nd Divider regular rates increased as the patches were enabled. The
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Fig. 6. Core Bound subcategories, which are part of the Backend Bound classification.

highest PPP rates occurred when the Ports utilization had the largest
increase while the core cycles decreased the most. This is the case for
360.ilbdc. It had a PPP rate of 80.01%, because of an increase in the
Ports Utilization rate of 44.63% and a drop in the core cycle count of
−19.65%. The same benchmark had the highest Divider rate, 83.79%
which resulted from a Divider rate increase of 47.67%.

4.1.4. Bad speculation
The Bad Speculation metric is used to account for the slots that

were wasted due to incorrect speculation. These uops will never get
retired. In this study, we analysed one additional subcategory, Branch
Mispredicts, which had relevance due to its rates. The Branch Mis-
predicts metric tracks slots that were affected by wasted uops that
were fetched from an incorrectly speculated path, or stalls that occur
when the out-of-order portion of the machine needs to recover its state
from a speculative path. With patches enabled, 350.md had an increase
 i

98
Fig. 7. Bad Speculation subcategories.

n the Branch Misprediction rate of 103.74% due to an increase in
he Bad Speculation metric, Fig. 7(a). In this case, the branch mis-
rediction machine clear fraction, BR_MISP_RETIRED.ALL_BRANCHES
ivided by difference between BR_MISP_RETIRED.ALL_BRANCHES and
achine_CLEARS.COUNT, rate stayed relatively the same while the

umber of bad speculation events increased. 360.ilbdc and 371.ap-
lu331 had increases of 96.57% and 104.25% in their Branch Mispre-
iction rates respectively, due to increases in the Bad Speculation rate
nd the misprediction machine clears fraction. These increases resulted
rom both, an increase of bad speculation events and the branch mis-
redictions machine clears fraction. 358.botsalgn and 359.botsspar had
mall Branch Misprediction decreases, less than −4% due to a decrease
n the Bad Speculation rate, while the misprediction machine clears
raction remained the same. For these two benchmarks, the effect of
he patches was a decrease in the number of bad speculation events
esulting in a lower Branch Mispredicts rate. 370.mgrid had a 6.82%
ncrease due to an increase in the misprediction machine clears ratio.
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PPP rates were affected by variations in the Branch Misprediction
rates, since all benchmarks had increased in CPU core cycles Fig. 7(b).
When patches were enabled, 350.md had a PPP rate of 58.98%, 371.ap-
lu331 had a rate of 64.15%, and 360.ilbdc had a rate of 89.50%.
ore work for relatively less number of core cycles resulted in the

ore cycles being overvalued when the security patches were enabled.
he opposite is true for 358.boltsalgn that a PPP rate of −14.92%,
59.botsspar which had a rate of −16.15%, and 370.mgrid331 that had a
PP rate of −26.86%. For these benchmarks, the Branch Misprediction
ates either dropped or they stayed relatively at the same levels, while
he number of CPU core cycles increased. This resulted in less work for
n increasing number of cycles making the core cycles undervalued.

. Conclusion

In this study, we analysed the effects that the Spectre and Meltdown
ecurity patches had on CPU pipeline bottlenecks. Previous studies
eported the effects patches had on performance, by focusing on two
omputationally intensive workflows [4] on an Intel based cluster,
nd on a diverse set of multiple benchmarks on different Cray based
lusters [3]. The first study ran different tests under different condi-
ions: before patches were applied, and with patches applied one at

time. This strategy was very comprehensive because some of the
ecurity patches, the BIOS and microcode fixes, could not be disabled
nce they were applied. The authors found that there was a negative
ffect when patches were applied and even when they disabled some of
he patches via the vendor provided tunable feature, the performance
egradation on their workflows was significant. The microcode and
IOS fixes had a major impact on performance. The second study
eported minimal effect on their results. The systems used in their
xperiments were compared before and after all of the recommended
atches were applied.

Our work compares the effects patches had on the CPU’s pipeline
y comparing Top-Down bottleneck metrics. We did not run experi-
ents before all patches, including the microcode and BIOS fixes, were

pplied so the performance baseline included the Spectre, variant 1
ix. We compared the effects of the Spectre variant 2 and Meltdown
ariant 3 had on the test system. This comparison was possible because
he OS vendor added tunable features that can enable or disable the
wo security patches, variant 2 and variant 3, to prevent a decrease in
erformance. To quantify relative changes of the metrics between the
atch settings, we modified the Big Mac Index, a PPP theory based tech-
ique. This made it possible to compare Top-Down metric rates against
baseline performance counter, either CPU_CLK_UNHALTED.THREAD,

r CPU_CLK_UNHALTED.THREAD_ANY. The goal was to determine if
he number of cycles used for a given operation, stalls for instance, was
elatively higher, lower or similar when compared to the same metric
hen the patches were disabled. This relative difference can be used to

dentify situations like the ones observed in the Backend Bound rates,
igs. 2(a) and 2(b), where the rates dropped or stayed the same for
he regular rates, but the PPP normalized rates fell. This is the case
or 371.applu331, which had an increase in the Backend Bound rate of
.70% but a decrease in the PPP rate of −15.05%. This drop was due
o an increase of 24.43% in core cycles. Similarly for 370.mgrid331,
ts regular Backend Bound rates stayed relative little change between
atch settings, 3.90%. Its PPP normalized rate was found to be 28.86%,
ecause its cycle count increased by 46.04% between patch settings.
or both benchmarks, there were more cycles for the amount of stalls
s compared to the baseline, so the cycles became overvalued.

Other techniques, such as the Roofline model [20], can give users an
dea of how their code is performing relative to memory and floating-
oint peak performance. Another approach is to use statistical methods
o model performance based on metrics such as cache hit rates and
emory latencies [21]. These tools can provide information on how
erformance is affected when changes to the system settings or the

ode base are made. But they have some limitations. Statistical models

99
rovide information specific to the parameters that were used to create
he model. These parameters were selected after being found to be of
ignificance to the model. The Roofline model provides information
f the changes made to the system configuration, or code changes in
erms of memory and floating-point performance. Our study uses a
ore general technique that was applied to different metrics, including
ifferent categories of the Top-Down classification method.

We showed that Top-Down classification metrics varied when the
ecurity patches were enabled. We were able to quantify the relative
hanges when compared to a baseline run. Additionally, the use of
PP normalized rates made it possible to put into context the large
ercentage changes reported by the relative difference between metrics.
he next step is to understand the effects these relative changes, which
re not reflected in regular metrics, have on power efficiency. Our
oal is to identify relationships between CPU pipeline bottlenecks and
ower efficiency before and after patches are applied. Other works
ave focused on the effect Spectre and Meltdown patches had on
ower efficiency by focusing in models based on performance metrics,
or instance instructions-per-cycle, and branches-per-cycle, to develop
odels [22]. Our future work will focus in understanding the relation

etween PPP rates and power efficiency.
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A B S T R A C T

This report introduces the awards presented by the International Open Benchmark Council (BenchCouncil) in
2021 and highlights the award selection rules, committee, awardees, and their contributions.
1. The introduction of BenchCouncil 2021 awards

According to the decision of the BenchCouncil Steering committee,
four awards were set up to encourage and reward scientists who
have made contributions in benchmarking, standardizing, measuring,
evaluating and optimizing: the Benchcouncil Achievement Award, the
Benchcouncil Rising Star Award, the BenchCouncil Distinguished Doc-
toral Dissertation Award, and the BenchCouncil Bench conference Best
Paper Award. In addition, Prof. Tony Hey donated to set up the
BenchCouncil Bench conference Tony Hey Best Student Paper Award.

The virtual award ceremony was held at the 2021 BenchCouncil
International Symposium on Benchmarking, Measuring, and Optimiz-
ing (Bench’21). The Bench’21 General Chairs are Prof. Resit Sendag
from the University of Rhode Island, USA, Dr. Arne J. Berre from
SINTEF Digital, Norway. The Program Chairs are Dr. Lei Wang from
ICT, Chinese Academy of Sciences, China; Prof. Axel Ngonga, from
Paderborn University, Germany; and Prof. Chen Liu from Clarkson
University, USA. The Special Session Chair is Prof. Xiaoyi Lu from
The University of California, Merced, USA. Three associate coordinators
from BenchCouncil: Ke Liu, Simin Chen, Fanda Fan from the University
of Chinese Academy of Sciences, and one coordinator from BenchCoun-
cil: Shaopeng Dai from ICT, Chinese Academy of Sciences, provided
technical services for organizing this virtual event.

2. The BenchCouncil Achievement Award

This award recognizes a senior member who has made long-term
contributions to benchmarking, standardizing, measuring, evaluating
and optimizing. The winner will automatically become BenchCoun-
cil Fellow and join the BenchCouncil Achievement and Rising Star
Award Committees the following year. The award carries a $3,000
honorarium.

∗ Corresponding author.
E-mail addresses: dtaotaozhan@gmail.com (T. Zhan), chensimin000@gmail.com (S. Chen).

1 Assistant coordinator.
2 Associate coordinator.

2.1. Award committee

The 2021 BenchCouncil Achievement Award committee consists
of six members. They are Prof. Lizy John from the University of
Texas at Austin (architecture), Prof. Geoffrey Fox from Indiana Uni-
versity (systems and applications), Prof. D.K. Panda from the Ohio
State University (high-performance computing), Prof. Jianfeng Zhan
from the Chinese Academy of Sciences (systems, architecture, and ap-
plications), Prof. Tony Hey from Rutherford Appleton Laboratory STFC
(systems and applications), and Prof. David Lilja from the University of
Minnesota (high-performance computing and architecture).

2.2. Award selection rule [1]

Only the award committee members can nominate the candidates.
Each committee member can nominate one person. A coordinator in
the award committee is responsible for collecting the nomination and
votes. After receiving the nominations, the coordinator will send the
nomination information to all members. Before the voting is over, the
nominator is anonymous. After that, all details of who nominated who
and who voted will be disclosed within the committee. The candidate
who gets the highest votes will become the winner.

2.3. The awardee and contribution

BenchCouncil Achievement Award is given to Dr. Jack J. Dongarra
from the University of Tennessee. He specializes in numerical algo-
rithms in linear algebra, parallel computing, the use of advanced com-
puter architectures, programming methodology, and tools for parallel
computers. His research includes developing, testing, and documenta-
tion of high-quality mathematical software. According to the decision
https://doi.org/10.1016/j.tbench.2021.100013
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Fig. 1. Prof. Jack. J. Dongarra is honored with 2021 BenchCouncil Achievement Award
for the ‘‘novel and substantial contribution to development, testing and documentation
of high-quality mathematical software’’ and ‘‘benchmarking HPC systems’’.

Fig. 2. Prof. Jack. J. Dongarra’s award certification.

Fig. 3. Prof. Jack. J. Dongarra delivered a keynote speech at the Bench21 award
ceremony. Prof. Geoffrey Fox from Indiana University chaired the speech.

of the award committee, Prof. Jack J. Dongarra has been selected
for the ‘‘novel and substantial contribution to development, testing
and documentation of high-quality mathematical software [2–4]’’ and
‘‘benchmarking HPC systems [5,6]’’.

Dr. Jack J. Dongarra is a Member of the US National Academy of
Engineering, a Foreign Member of the Russian Academy of Sciences,
and a Foreign Fellow of the British Royal Society (see Figs. 1–3).

3. BenchCouncil Rising Star Award

This award recognizes young researchers who demonstrate out-
standing research and practice in benchmarking, standardizing, mea-
suring, evaluating, and optimizing. The winner will automatically be-
come BenchCouncil Senior Fellow and join the BenchCouncil Rising
Star Award Committee the following year. The award carries a $1,000
honorarium.
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Fig. 4. Dr. Petter Mattson from Google is honored with 2021 BenchCouncil Rising
Star Award. Prof. Jianfeng Zhan from Chinese Academy of Sciences chaired the award
ceremony.

3.1. Award committee

The 2021 BenchCouncil Rising Star Award committee consists of
seven members. They are Prof. Lizy John from the University of Texas
at Austin (architecture), Prof. Geoffrey Fox from Indiana University
(systems and applications), Prof. D.K. Panda from the Ohio State
University (high-performance computing), Prof. Jianfeng Zhan from
the Chinese Academy of Sciences (systems, architecture, and appli-
cations), Prof. Tony Hey from Rutherford Appleton Laboratory STFC
(systems and applications), and Prof. David Lilja from the University
of Minnesota (high-performance computing and architecture), and
Prof. Torsten Hoefler from ETH Zurich (high-performance computing).

3.2. Award selection rule [7]

Only the award committee members can nominate the candidates.
Each committee member can nominate one researcher or a group of
researchers up to three people who co-advance the state-of-the-art
and state-of-the-practice in the same field. A coordinator in the award
committee is responsible for collecting the nomination and votes. After
receiving the nominations, the coordinator will send the nomination
information to all members. Before the voting is over, the nominator
is anonymous. After that, all details of who nominated who and who
voted will be disclosed within the committee. The candidate (one
researcher or a group of researchers) who gets the highest votes will
win.

3.3. Awardees and their contributions

Three primary contributors to the MLPerf and AIBench projects
were honored with the 2021 BenchCouncil Rising Star Award: Dr.
Peter Mattson from Google, Prof. Dr. Vijay Janapa Reddi from Harvard
University, and Prof. Dr. Wanling Gao from the Chinese Academy of
Sciences.

Dr. Peter Mattson was chosen for the contributions ‘‘as a lead re-
searcher, proposing AI training benchmarks and performing large-scale
industry testing [8,9]’’ and ‘‘co-proposing memory access scheduling
technique that reorders memory references to exploit locality within
the 3-D memory structure [10]’’.

Dr. Peter Mattson leads the ML Performance Measurement at Google.
He co-founds and is General Chair of the MLPerf consortium. Previ-
ously, he founded the Programming Systems and Applications Group
at NVIDIA Research. He ever was V.P. of software infrastructure for
Stream Processors Inc (SPI), and a managing engineer at Reservoir Labs.
His research focuses on accelerating and understanding the behavior of
machine learning systems by applying novel benchmarks and analysis
tools (see Figs. 4–6).

Dr. Wanling Gao was selected for the contributions ‘‘as one of the

primary researchers, proposing AI scenario [11], AI training [12], and
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Fig. 5. Dr. Petter Mattson’s Award Certificate.

Fig. 6. Dr. Petter Mattson delivered a keynote speech at the Bench 21 award ceremony.

Fig. 7. Dr. Wanling Gao from Chinese Academy of Sciences is honored with 2021
BenchCouncil Rising Star Award. Prof. Jianfeng Zhan from Chinese Academy of Sciences
chaired the award ceremony.

HPC AI benchmarks [13]’’ and ‘‘proposing a data motif abstraction that
tries to unify the big data and AI workloads [14]’’.

Dr. Wanling Gao is an Associate Professor at the Institute of Com-
puting Technology, Chinese Academy of Sciences. Dr. Wanling Gao
received her B.S. degree from Huazhong University of Science and
Technology in 2012, and her Ph.D. degree from the Institute of Comput-
ing Technology, the Chinese Academy of Sciences, and the University of
Chinese Academy of Sciences in 2019. Her works focus on big data and
AI benchmarking, workload characterization, computer architecture,
and proxy benchmarks for simulation (see Figs. 7–9).

Dr. Vijay Janapa Reddi was selected for the contributions ‘‘as a
lead researcher, proposing AI inference benchmarks and performing
large-scale industry testing [9,15]’’ and ‘‘co-proposing Pin: customized
program analysis tools with dynamic instrumentation [16]’’.
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Fig. 8. Dr. Wanling Gao’s Award Certificate.

Fig. 9. Dr. Wanling Gao delivered a keynote speech at the Bench 21 award ceremony.

Fig. 10. Dr. Vijay Janapa Reddi from Harvard University is honored with the 2021
BenchCouncil Rising Star Award. Prof. Jianfeng Zhan from Chinese Academy of Sciences
chaired the award ceremony.

Dr. Vijay Janapa Reddi is an Associate Professor in the John A.
Paulson School of Engineering and Applied Sciences (SEAS) at Har-
vard University. His research is centered on mobile and edge-centric
computing systems (see Figs. 10–12).

4. BenchCouncil Distinguished Doctoral Dissertation Award

This award recognizes and encourages superior research and writing
by doctoral candidates in the broad field of benchmarking, standard-
izing, measuring, evaluating, and optimizing. Among the submissions,
four candidates will be selected as finalists. They will be invited to give
a 30-minute presentation at the BenchCouncil Bench Conferences and
contribute research or survey articles to BenchCouncil Transactions on
Benchmarks, Standards, and Evaluation. Finally, one among the four

will receive the award, which carries a $1,000 honorarium.
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Fig. 11. Dr. Vijay Janapa Reddi’s Award Certificate.

Fig. 12. Dr. Vijay Janapa Reddi delivered a keynote speech at the Bench 21 award
ceremony.

4.1. Award committee

The 2021 BenchCouncil Distinguished Doctoral Dissertation Award
consists of five members. They are Prof. Jack Dongarra from University
of Tennessee (high-performance computing), Prof. Dr. Xiaoyi Lu from
The University of California, Merced (high-performance computing),
Dr. Jeyan Thiyagalingam from STFC-RAL (scientific Computing and
AI), Dr. Lei Wang, ICT, Chinese Academy of Sciences (Systems and
architecture), Prof. Dr. Spyros Blanas from The Ohio State University
(data management). The committee members cannot nominate their
students.

4.2. Award selection rule [17]

The committee welcomes the proposals from the following but not
limited to the following communities: architecture, systems, database,
high-performance computing, machine learning or AI, scientific com-
puting, medicine, or other disciplines.

Only those awarded Ph.D. in the past two years are eligible for
this award. Only the accepted final version of a nominated Ph.D.
dissertation will be considered, and it must have been filed with the
writer’s institution during the nomination cycle. The writer or the
writer’s Ph.D. advisor can nominate a dissertation, nominated only
once. The benchmarks, data, or tools that are the essential contributions
of the dissertation should be open-sourced.

At least two supporting letters should be included from experts
in the field who can provide additional insights or evidence of the
dissertation’s impact. The nominator/advisor may not write a letter of
support. Each letter should include the name, address, and telephone
number of the endorser. The nominator should collect the letters and
bundle them for submission.
104
Fig. 13. Dr. Romain Jacob is selected as one of the finalists for the 2021 BenchCouncil
Distinguished Doctoral Dissertation Award. Prof. Xiaoyi Lu from The University of
California, Merced chaired the finalist speech.

In the first round, the four candidates will be singled out. Each one
will give a 30-minute presentation in the distinguished Ph.D. disser-
tation session in the Bench conference https://www.benchcouncil.org/
conferences.html#benchconf chaired by the committee.

Each finalist must submit an article to the BenchCouncil Transac-
tions on Benchmarks, Standards, and Evaluations (TBench). In advance,
each submitter is encouraged to submit a survey article or a research
article to TBench. The article should include the following contents.
(a) The fundamental issue your dissertation tackles. Why is it essential
and challenging? (10%). (b) The summary of state-of-the-art and state-
of-the-practice (30%). (c) How do you advance state-of-the-art and
state-of-the-practice? What are your innovative approaches, systems,
tools, and insights? (40%) (d) Open issues and future work (20%).

The article that is submitted to TBench will be reviewed for tech-
nical depth and significance of the research contribution, the potential
impact on theory and practice. Finally, one among the four finalists will
receive the award. The committee will present the award at the award
ceremony of the Bench conference.

4.3. Finalists and citations

Dr. Romain Jacob from ETH Zurich, Dr. Pei Guo from University
of Maryland, Baltimore County (UMBC), Dr. Kai Shu from Arizona
State University, and Dr. Belen Bermejo from University of the Balearic
Islands are selected as the finalists.

Dr. Romain Jacob completed his doctoral studies under the supervi-
sion of Prof. Lothar Thiele at ETH in 2019. His dissertation is entitled
Leveraging Synchronous Transmissions for the Design of Real-time
Wireless Cyber–Physical Systems. He was suggested for ‘‘his leading
efforts in establishing benchmarks for low-power wireless networking
and for the development of a concrete methodology to foster the
replicability of networking experiments [18,19]’’.

Dr. Romain Jacob’s advisor, Prof. Lothar Thiele, is a Full Professor
of Computer Engineering at ETH Zurich. His research interests include
models, methods, and software tools for designing real-time embedded
systems, the internet of things, cyber–physical systems, sensor net-
works, embedded software, and bioinspired optimization techniques
(see Figs. 13–15).

Currently, Dr. Romain Jacob is a postdoctoral researcher at ETH
Zurich in the group of Prof. Laurent Vanbever. His current interests
focus on computer networks, communication protocols, (real-time)
scheduling theory, and statistics applied to experimental design.

Dr. Pei Guo received her Ph.D. in Information Systems from the
University of Maryland, Baltimore County, in 2021. Her dissertation
is entitled Scalable Multivariate Causality Discovery From Large-scale
Global Spatio-temporal Climate Data. She was selected for ‘‘the in-
terdisciplinary research on causality discovery approaches for climate

https://www.benchcouncil.org/conferences.html#benchconf
https://www.benchcouncil.org/conferences.html#benchconf
https://www.benchcouncil.org/conferences.html#benchconf
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Fig. 14. Dr. Romain Jacob completed his doctoral studies under the supervision of
Prof. Lothar Thiele.

Fig. 15. Dr. Romain Jacob’s Finalist Certificate.

Fig. 16. Dr. Pei Guo is selected as one of the finalists for the 2021 BenchCouncil
Distinguished Doctoral Dissertation Award. Prof. Xiaoyi Lu from The University of
California, Merced, chaired the finalist speech.

data and extensive benchmarking of proposed work via both synthetic
datasets and real-world applications [20,21]’’.

Dr. Pei Guo’s advisor, Prof. Jianwu Wang, is an Associate Professor
at the Department of Information Systems, University of Maryland, Bal-
timore County (UMBC). His current research interests include Big Data
Analytics, Distributed Computing, and Scientific Workflows with an
application focusing on climate and manufacturing (see Figs. 16–18).

Currently, Dr. Pei Guo is working as a Data Scientist at Wyze
Labs. She involves in the research on spatiotemporal causal model-
ing on large-scale data, big data application parallelizing, and cloud
computing.

Dr. Kai Shu obtained his Ph.D. in Computer Science at Arizona State
University in 2020 and was the recipient of the 2020 ASU Engineering
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Fig. 17. Dr. Pei Guo completed his doctoral studies under the supervision of
Prof. Jianwu Wang.

Fig. 18. Dr. Pei Guo’s Finalist Certificate.

Fig. 19. Dr. Kai Shu is selected as one of the finalists for the 2021 BenchCouncil
Distinguished Doctoral Dissertation Award. Prof. Xiaoyi Lu from The University of
California, Merced, chaired the finalist speech.

Dean’s Dissertation Award. His dissertation is entitled Understanding
Disinformation: Learning with Weak Social Supervision. He was sug-
gested for ‘‘creating, curating and maintaining FakeNewsNet - a widely
used, de facto benchmark data repository on Fake News Detection in
his doctoral dissertation [22,23]’’.

Dr. Kai Shu’s advisor, Prof. Huan Liu, is a professor of Computer
Science and Engineering at Arizona State University. He is a Fellow
of ACM, AAAI, AAAS, and IEEE. His research interests are in data
mining, machine learning, social computing, and artificial intelligence,
investigating interdisciplinary problems that arise in many real-world,
data-intensive applications with high-dimensional data of disparate
forms such as social media.

Currently, Dr. Kai Shu is a Gladwin Development Chair Assistant
Professor in the Department of Computer Science at Illinois Institute
of Technology since Fall 2020. His research and computational tool
development address challenges on fake news detection, explainable
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Fig. 20. Dr. Kai Shu completed his doctoral studies under the supervision of Prof. Huan
Liu.

Fig. 21. Dr. Kai Shu’s Finalist Certificate.

Fig. 22. Dr. Belen Bermejo is selected as one of the finalists for the 2021 BenchCouncil
Distinguished Doctoral Dissertation Award. Prof. Xiaoyi Lu from The University of
California, Merced, chaired the finalist speech.

machine learning, trust social computing, and social media mining (see
Figs. 19–21).

Dr. Belen Bermejo obtained a Ph.D. degree in 2020 at the University
of the Balearic Islands. Her dissertation is entitled Performance and En-
ergy Consumption Tradeoff in Server Consolidation. She was suggested
for ‘‘the creation of the CiS2 index which is based on monitoring and
benchmarking to manage the trade-off between power consumption
and performance in virtualized servers [24,25]’’.

Dr. Belen Bermejo’s advisor, Prof. Carlos Juiz, is heading the ACSIC
research group (http://acsic.uib.es) at the University of the Balearic
Islands. He is a senior member of the IEEE and a senior member of the
ACM. His research interest mainly focuses on performance engineering,
Green IT, and IT governance (see Figs. 22–24).

Currently, Dr. Belen Bermejo is an assistant lecture at the University
of the Balearic Islands and a member of the ACSIC research group (http:
//acsic.uib.es). Her researches focus on the performance and energy
consumption of virtualized systems.
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Fig. 23. Dr. Belen Bermejo completed his doctoral studies under the supervision of
Prof. Carlos Juiz.

Fig. 24. Dr. Belen Bermejo’s Finalist Certificate.

Fig. 25. The group photo of the awardees of the Best Paper Award. From left to right
are Ross Miller, Dr. Aristeidis Tsaris, Dr. Junqi Yin (the first author), Dr. Sajal Dash, Dr.
Mallikarjun (Arjun) Shankar, and Dr. Feiyi Wang from Oak Ridge National Laboratory.

5. BenchCouncil Bench 21 Best Paper Award and Tony Hey Best
Student Paper Award

5.1. BenchCouncil Bench 21 Best Paper Award

A group of computer scientists at Oak Ridge National Laboratory
(ORNL) received the best paper award for the paper titled ‘‘Com-
parative Evaluation of Deep Learning Workload for Leadership-class
Systems [26]’’ (see Figs. 25–27).

Since deep learning (DL) applications rely heavily on DL frame-
works and underlying compute (CPU/GPU) stacks, it is essential to

http://acsic.uib.es
http://acsic.uib.es
http://acsic.uib.es
http://acsic.uib.es
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Fig. 26. Prof. Tony Hey chaired the award ceremony of the best paper award.

Fig. 27. Best Paper Award Certificate.

gain a holistic understanding from compute kernels, models, and frame-
works of popular DL stacks, and to assess their impact on science-
driven, mission-critical applications. This paper employs a set of micro
and macro DL benchmarks established through the Collaboration of
Oak Ridge, Argonne, and Livermore (CORAL) to evaluate the AI readi-
ness of the next-generation supercomputers. This paper presents the
early observations and performance benchmark comparisons between
the Nvidia V100 based Summit system with its CUDA stack and an AMD
MI100 based testbed system with its ROCm stack.

The following introduces each author. Dr. Junqi Yin is a compu-
tational scientist in Analytics & AI Methods at Scale (AAIMS) group
of National Center for Computational Sciences at ORNL. His research
interests range from scalable machine learningdeep learning. Dr. Aris-
teidis Tsaris is a research scientist in the Analytics & AI Methods
at Scale (AAIMS) group of National Center for Computational Sci-
ences at ORNL. His research focus is on scalable machine learning
applications on HPC systems, benchmarking, and imaging. Ross Miller
has B.S. and M.S. degrees in computer science. He has been working
at ORNL for 12 years on a variety of supercomputer-related topics
including filesystems for SSD’s, data archiving systems and exploring
ARM architecture for HPC use. Dr. Sajal Dash is currently a postdoc-
toral research associate at Analytics & AI Methods at Scale (AAIMS)
group of National Center for Computational Sciences at ORNL. His
research interests include exploring scaling approaches for large-scale
deep learning applications.

Dr. Feiyi Wang is a Senior Research Scientist and Group Leader of
Analytics and AI methods at Scale Group (AAIMS) at National Center
for Computational Sciences of ORNL. He is also a Senior Member
of IEEE. His research interests include large-scale data analytics, dis-
tributed machine learning and benchmarking, high-performance stor-

age systems, parallel I/O, and file systems. Dr. Mallikarjun (Arjun)
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Fig. 28. The group photo of the awardees of the Tony Hey Best Student Paper Award.
From left to right are Prof. Guangzhong Sun, Dr. Jingwei Sun, Zhongtian Xu, and
Jiaqiang Liu (the first author) from the University of Science and Technology of China.

Shankar is the Section Head for the Advanced Technologies Section
(ATS) in the National Center for Computational Science at ORNL. He is
the director of the Compute and Data Environment for Science (CADES)
at ORNL. He is a member of the AAAS, a Senior Member of the ACM,
and a Senior Member of the IEEE. His research involves designing
large-scale data analysis, modeling systems, sensor networking systems,
energy grid monitoring, and control frameworks, and deploying mid-
dleware to overlay data, computation, and control across systems and
infrastructure.

5.2. BenchCouncil Bench 21 Tony Hey Best Student Paper award

A graduate student, Jiaqiang Liu, from the University of Science
and Technology of China, and the other members, supervised by
Prof. Guangzhong Sun, received the Tony Hey Best Student Paper
Award for the paper titled 11Latency-Aware Automatic CNN Channel
Pruning with GPU Runtime Analysis [27]’’ (see Figs. 28–30).

The huge storage and computation cost of convolutional neural
networks (CNN) make them challenging to meet the real-time inference
requirement in many applications. This paper proposes a latency-aware
automatic CNN channel pruning method (LACP) to search for low
latency and accurate pruned network structure automatically. The in-
ference latency of convolutional layers on GPU is analyzed to bridge
model pruning and inference acceleration. Results show that the in-
ference latency of convolutional layers exhibits a staircase pattern
along with channel number due to the GPU tail effect. Based on that
observation, the search space of network structures is greatly shrunk.
Then an evolutionary procedure is applied to search a computationally
efficient pruned network structure, which reduces the inference latency
and maintains the model accuracy. Experiments and comparisons with
state-of-the-art methods on three image classification datasets show
that the method in this paper can achieve better inference acceleration
with less accuracy loss.

The short introduction of each author is as follows. Jiaqiang Liu
is a graduate student at the University of Science and Technology
of China. His research interests include high-performance computing
and performance modeling. Dr. Jingwei Sun is currently a postdoc-
toral researcher with the School of Computer Science and Technology,
University of Science and Technology of China. His research inter-
ests include high-performance computing, performance modeling, and
algorithm optimization. Zhongtian Xu is a graduate student at the
University of Science and Technology of China. His research interests
include high-performance computing and algorithm optimization. Dr.
Guangzhong Sun is a professor at the School of Computer Science and

Technology, University of Science and Technology of China. He is also
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Fig. 29. Prof. Tony Hey chaired the award ceremony of the Tony Hey Best Paper
Award.

Fig. 30. The Tony Hey Best Paper Award Certificate.

a member of the National High-Performance Computing Center (Hefei)
and the principal investigator of the Algorithm and Data Application
(Ada) Research Group. His research interests include high-performance
computing, algorithm optimizations, and data processing.
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BenchCouncil Transactions on Benchmarks, Standards, and Evaluations (TBench) publishes position articles that open new
research areas, research articles that address new problems, methodologies, tools, survey articles that build up
comprehensive knowledge, and comments articles that argue the published articles. The submissions should deal with the
benchmarks, standards, and evaluation research areas. Particular areas of interest include, but are not limited to:
 1. Generalized benchmark science and engineering (see

https://www.sciencedirect.com/science/article/pii/S2772485921000120), including but not limited to
 measurement standards
 standardized data sets with defined properties
 representative workloads
 representative data sets
 best practices

 2. Benchmark and standard specifications, implementations, and validations of:
 Big Data
 AI
 HPC
 Machine learning
 Big scientific data
 Datacenter
 Cloud
 Warehouse-scale computing
 Mobile robotics
 Edge and fog computing
 IoT
 Chain block
 Data management and storage
 Financial domains
 Education domains
 Medical domains
 Other application domains

 3. Data sets
 Detailed descriptions of research or industry datasets, including the methods used to collect the data and technical

analyses supporting the quality of the measurements.
 Analyses or meta-analyses of existing data and original articles on systems, technologies, and techniques that

advance data sharing and reuse to support reproducible research.
 Evaluating the rigor and quality of the experiments used to generate the data and the completeness of the data

description.
 Tools generating large-scale data while preserving their original characteristics.

 4. Workload characterization, quantitative measurement, design, and evaluation studies of:
 Computer and communication networks, protocols, and algorithms
 Wireless, mobile, ad-hoc and sensor networks, IoT applications
 Computer architectures, hardware accelerators, multi-core processors, memory systems, and storage networks
 High-Performance Computing
 Operating systems, file systems, and databases
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 Virtualization, data centers, distributed and cloud computing, fog, and edge computing
 Mobile and personal computing systems
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 Real-time and fault-tolerant systems
 Security and privacy of computing and networked systems
 Software systems and services, and enterprise applications
 Social networks, multimedia systems, Web services
 Cyber-physical systems, including the smart grid
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 Performance, scalability, power, and reliability analysis
 Sustainability analysis and power management
 System measurement, performance monitoring, and forecasting
 Anomaly detection, problem diagnosis, and troubleshooting
 Capacity planning, resource allocation, run time management, and scheduling
 Experimental design, statistical analysis, simulation

 6. Measurement and evaluation
 Evaluation methodology and metric
 Testbed methodologies and systems
 Instrumentation, sampling, tracing, and profiling of Large-scale real-world applications and systems
 Collection and analysis of measurement data that yield new insights
 Measurement-based modeling (e.g., workloads, scaling behavior, assessment of performance bottlenecks)
 Methods and tools to monitor and visualize measurement and evaluation data
 Systems and algorithms that build on measurement-based findings
 Advances in data collection, analysis, and storage (e.g., anonymization, querying, sharing)
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 Descriptions of challenges and future directions the measurement and evaluation community should pursue
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