

BenchCouncil Transactions on Benchmarks, Standards and
Evaluations (TBench) is an open-access multi-disciplinary
journal dedicated to benchmarks, standards, evaluations,
optimizations, and data sets. This journal is a peer-reviewed,
subsidized open access journal where The International Open
Benchmark Council pays the OA fee. Authors do not have to
pay any open access publication fee. However, at least one of
the authors must register BenchCouncil International
Symposium on Benchmarking, Measuring and Optimizing
(Bench) (https://www.benchcouncil.org/bench/) and present
their work. It seeks a fast-track publication with an average
turnaround time of one month.

https://www.benchcouncil.org/bench/

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100064
Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

A BenchCouncil view on benchmarking emerging and future computing
Jianfeng Zhan
Research Center for Advanced Computer Systems, Institute of Computing Technology, Chinese Academy of Sciences, China

A R T I C L E I N F O

Keywords:
Benchmark science and engineering
Benchmarking challenges
Extrinsic property
Process entanglement
Instantiation bias
Unified benchmark definition
Conceptual framework
Benchmarking methodology
Traceability
Supervised learning
Emerging computing
Future computing
BenchCouncil Plan

A B S T R A C T

The measurable properties of the artifacts or objects in the computer, management, or finance disciplines are
extrinsic, not inherent — dependent on their problem definitions and solution instantiations. The processes
of problem definition, solution instantiation, and measurement are entangled. Only after the instantiation can
the solutions to the problem be measured. Definition, instantiation, and measurement have complex mutual
influences. Meanwhile, the technology inertia brings instantiation bias — trapped into a subspace or even a
point at a high-dimension solution space. These daunting challenges, which emerging computing aggravates,
make metrology cannot work for benchmark communities. It is pressing to establish independent benchmark
science and engineering.

This article presents a unifying benchmark definition, a conceptual framework, and a traceable and
supervised learning-based benchmarking methodology, laying the foundation for benchmark science and engi-
neering. I also discuss BenchCouncil’s plans for emerging and future computing. The ongoing projects include
defining the challenges of intelligence, instinct, quantum computers, Metaverse, planet-scale computers, and
reformulating data centers, artificial intelligence for science, and CPU benchmark suites. Also, BenchCouncil
will collaborate with ComputerCouncil on open-source computer systems for planet-scale computing, AI for
science systems, and Metaverse.
1. Introduction

Benchmarking is widely practiced in different disciplines without
a consensus on a consistent definition. For example, in the computer
science discipline, the community uses a set of workload implemen-
tations to measure CPU (processor) performances [1,2]. In machine
learning, standardized data sets labeled with ground truths are used
to define a data science problem [3,4]. In the management discipline,
the industry best practices are searched and compared against different
products, services, and processes [5,6]. All are called benchmarks or
benchmarking. In the previous work, I concluded five categories of
benchmarks [6]: measurement standards, standardized data sets with
defined properties, representative workloads, representative data sets,
and industry best practices.

The inconsistency or chaos results from the following fact. Per
JCGM 200 definition, metrology is the science of measurement and its
application [7,8]. Metrology measures intrinsic properties independent
of an observer, like length, time, and power. There is a true quantity for
each inherent property, where a probability could state the coverage
interval containing the true value [7,8]. However, the measurable
properties of the artifacts or objects in the computer, management, or
finance disciplines are extrinsic, not inherent — dependent on their
problem definitions and solution instantiations. Unlike the processes in
metrology that are linear and static, the processes of a benchmark have

E-mail address: zhanjianfeng@ict.ac.cn.
URL: https://www.benchcouncil.org/zjf.html.

complex mutual influence. The problem definition, solution instanti-
ation, and measurement processes are entangled and indivisible, and
only after the instantiation can the solutions to the problem be mea-
sured, which I call process entanglement. Users adhere to existing prod-
ucts, tools, platforms, and services, called technology inertia [9]. The
technology inertia traps the solution to a problem into a specific explo-
ration path — a subspace or even a point at a high-dimension solution
space. The instantiation bias impacts the measurement of the extrinsic
properties.

Our society increasingly relies upon information infrastructure with
daunting complexity that dwarfs the previous systems, making it diffi-
cult to trace the problem definition. Instead, the biased instantiation
of solutions becomes the proxy of the problems, missing the forest
for the trees. As shown in Fig. 1, these daunting challenges: extrinsic
properties, process entanglement, and instantiation bias, result in the
benchmark community’s inability to reuse the metrology knowledge
and the de facto isolation of benchmark communities, like computers,
management, and finance, developing different methodologies, tools,
and practices. It is pressing to establish independent benchmark science
and engineering.

Echoing my past call [6], this article further builds up benchmark
science and engineering. I define the benchmark from the perspective
of problems and solutions. A benchmark is an explicit or implicit
https://doi.org/10.1016/j.tbench.2022.100064

Available online 25 May 2022
2772-4859/© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

KeAi Communications Co. Ltd. This is an open access article under the CC

https://doi.org/10.1016/j.tbench.2022.100064
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2022.100064&domain=pdf
mailto:zhanjianfeng@ict.ac.cn
https://www.benchcouncil.org/zjf.html
https://doi.org/10.1016/j.tbench.2022.100064
http://creativecommons.org/licenses/by-nc-nd/4.0/

J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100064
Fig. 1. With respect to metrology, the benchmarking challenges – the extrinsic properties, process entanglement, and instantiation bias – explain why metrology cannot work
for the benchmark community. First, the property of a benchmark is not inherent but dependent on its problem definition and solution instantiation. Second, only after the
instantiation can the solutions to the problem be measured. The processes of problem definition, solution instantiation, and measurement are entangled, and they have complex
mutual influences. Third, instantiation introduces many biases.
definition of a problem, an instantiation of a problem, an instanti-
ation of state-of-the-practice solutions as the proxy to the problem,
or a measurement standard that quantitatively measures the solution
space. I propose a concise conceptual framework for the benchmark
science and engineering, at the core of which is the extrinsic properties.
The extrinsic property is a benchmark property that is not inherent
but dependent on a problem definition and solution instantiation. I
propose a traceable and supervised learning-based methodology to
tackle the challenges of extrinsic property, process entanglement, and
instantiation bias. The essence of the methodology has two integrated
parts: manage the traceability of the processes from the problem def-
inition and solution instantiation to measurement; search for the best
solution through supervised learning with reference to a thoroughly-
understood process from the problem definition, solution instantiation
to measurement.

Also, I discuss BenchCouncil’s plan for emerging and future chal-
lenges. The ongoing projects include defining the challenges of in-
telligence, instinct, quantum computers, Metaverse, planet-scale com-
puters, and reformulating data centers, artificial intelligence for sci-
ence, and CPU benchmark suites. Also, BenchCouncil will collabo-
rate with ComputerCouncil [10] on the open-source computer systems
for Planet-scale computing [11], AI for science [12], and Metaverse
[13].

The organization of this article is as follows. Section Two presents
the background and challenges and explains why metrology cannot
work for the benchmark community. Section Three describes why
emerging computing aggravates the benchmark challenges. Section
2

Four lays the foundation for benchmark science and engineering, in-
cluding the unifying definition of benchmarks, the conceptual frame-
work, and the benchmarking methodology. Section Five details Bench-
Council’s plan. Section Six concludes.

2. Background and challenge: why metrology cannot be directly
reused for benchmark science and engineering

In this section, I first introduce the metrology concepts as back-
ground and then present the benchmarking challenges and explain why
metrology cannot work in the benchmark community.

2.1. Background: metrology concepts

As shown in Fig. 2, I provide a simple but systematic metrology
concept framework to clarify why metrology cannot be directly reused
for establishing benchmark science and engineering. I present and
modify most of those concepts from [7,8]. But I define some concepts to
emphasize why metrology cannot work for the benchmark community,
e.g., inherent properties. To keep concise, I only stay with necessary
metrology concepts.

The inherent property is a property of a phenomenon, body, or sub-
stance that is independent of an observer, e.g., length and energy [7].
The inherent property can have various magnitudes. True quantity is
the magnitude of an inherent property of an individual phenomenon,
body, or substance that is independent of an observer, e.g., the radius
of a given circle, the kinetic energy of an identified particle in a
given system [7,8]. Unit of measurement [8] is a definition and its
physical realization, used as a reference to assign a value to a true

J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100064
Fig. 2. A simple but systematic metrology conceptual framework is used to clarify
why metrology cannot be directly reused for benchmark science and engineering.
Some concepts are defined by myself, while the other concepts are reused or modified
from [7,8]. Only necessary metrology concepts are reserved to keep concise.

quantity. Measurement standard [8] is a physical realization of a unit of
measurement, with a stated quantity value and associated measurement
uncertainty.

Measurement [8] is a process of comparing a true quantity with a
measurement standard to assign the true quantity one or more quantity
values that are traceable to a unit of measurement. A quantity value
obtained by the measurement is referred to as a measured quantity
value [7]. True quantity value [7] is a quantity value consistent with
the definition of a quantity, which is an unknown measurement tar-
get [7]. A coverage probability [7] is a probability that a specified
coverage interval contains the true quantity value.

2.2. The benchmarking challenges: extrinsic properties, process entangle-
ment, and instantiation bias

In the previous work [6], I have noticed the differences in properties
of the artifacts or objects in the computer, management, or finance
disciplines from those classical ones, like length, time, and power. The
properties of the artifacts or objects in the computer, management, or
finance disciplines are extrinsic, dependent on their problem definitions
and solution instantiations. Instead, the classical properties like time
and length are inherent, independent of the observers. From a concept
perspective, it is easy to say there are three essential processes: problem
definition, solution instantiation, and measurement. However, a prob-
lem definition is abstract; only after the instantiation can the solutions
to the problem be measured. Moreover, the problem definition, solution
instantiation, and measurement processes are entangled and indivisible,
which I call process entanglement. Only by fully understanding the side
effect of the extrinsic properties and process entanglement can we avoid
many traps. I elaborate on this viewpoint from different perspectives.
3

Before proposing the conceptual framework for benchmark science
and engineering (I defer it to Section 4.2), I stay with the metrology
concepts in Section 2.1 to depict the challenges.

A subtle change in the definitions of a problem may lead to wildly
varied solutions and significantly different measured quantity value. I
take the classical matrix multiplication problem [14,15] as an example.
Blalock et al. [15] reformulate the classical matrix multiplication prob-
lem as follows. The following reformulation is cited from [15]. A and
B are two matrices. A is 𝑅𝑁𝑥𝐷 and B is 𝑅𝐷𝑥𝑀 , 𝑁 ≫ 𝐷 >= 𝑀 . Given
a computation time budget 𝜏, the task constructs three functions g(⋅),
h(⋅), and f(⋅), along with constants 𝛼 and 𝛽, such that

‖𝛼𝑓 (𝑔(𝐴), ℎ(𝐵)) + 𝛽 − 𝐴𝐵‖𝐹 < 𝜖(𝜏)‖𝐴𝐵‖𝐹 (1)

for as small an error 𝜖(𝜏) possible. For this reformulated problem,
they introduce a learning-based algorithm that greatly outperforms
existing methods [15]. This is a typical example of a subtle change
in the definitions of a problem leading to wildly varied solutions and
significantly different measured quantity values.

Furthermore, the solutions instantiations at different levels also
interplay with each other and finally impact measured quantity values.
The obvious example is deep learning. Algorithms and neural net-
work architectures play a significant role. The hardware implementa-
tions, like different precision, e.g., single-precision, double-precision, or
mixed precision, impact the learning dynamics. Even for the same sys-
tem with different scales, the interactions among system size and mini-
batch size significantly impact the measured quantity values like time-
to-quality – the training time to achieve the state-of-the-art quality [16–
20].

The processes in metrology are linear and static. However, for a
benchmark, as shown in Fig. 1, the processes of problem definition,
solution instantiation, and measurement are entangled, having complex
mutual influences. The subtle difference in a problem definition will
lead to a wildly varied solution, and its instantiation finally signifi-
cantly impacts the measured quantity value. The solution instantiation
provides the basis for measurement tools, and the latter uses state-
of-the-practice instantiations that update frequently, which affects the
measured quantity value. Also, the measured quantity values provide
hints on searching for the best instantiation in the solution space.

Moreover, the instantiation introduces many biases, which I call
instantiation bias. For example, in the computer system and archi-
tecture disciplines, Wang et al. [21,22] found that merely conduct-
ing microarchitecture-dependent or microarchitecture-independent, or
ISA-independent (ISA is short for instruction set architecture) work-
load characterization (a form of measurement) will lead to misleading
or erroneous conclusions. These significant differences in measured
quantity values resulted from the solution instantiations at different
levels themselves. Before performing microarchitecture-dependent or
microarchitecture-independent, or ISA-independent workload charac-
terization, the necessary step is instantiating a computer workload
benchmark on a specific microarchitecture, a particular instruction set
architecture, or an intermediate representation (very close to the source
code), respectively. The community opts for the widely used ISA, IR
(intermediate representation) for instantiation.

Matsuoka et al. also found the implementation of biases and com-
plexity traps [23] in the instantiation process: on the one hand, any
implementation of a computer workload benchmark entails multiple
implicit biases towards algorithms, programming languages, data lay-
outs, and parallelization approaches; on the other hand, the bench-
marks, abstracted from large or legacy scientific codes and tuned for
previous computer architectures, trap the co-design participants into
considering only similar architectures.

Other observations are from the data sets, which many communities
like machine learning use to explicitly or implicitly define a problem.
It is prohibitively costly to build a representative and fidelity data set
that can capture real-world characteristics. Hence, in reality, the goal
often degrades to a workable data set. For example, for ImageNet [3],

J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100064
it is easy to collect familiar animal and plant pictures, while the rare
ones are difficult to obtain. Considering the data set is the cornerstone
of many challenges like auto-driving and automatic medical diagnosis,
this far-fetched methodology has many hidden flaws and risks.

3. Emerging computing aggravates the challenges1

Modern society is digitized, increasingly relying upon information
infrastructure. The information infrastructure consists of massive Inter-
net of Things (IoT), edge devices, data centers, and high-performance
computers. Those systems collaborate to handle big data, train AI
models and provide Internet services augmented by AI inference for
huge end-users with guaranteed quality of services. From a bench-
marking perspective, emerging computing like Big Data, AI, and In-
ternet Services are significantly different from the traditional work-
loads characterized by SPECCPU (desktop workloads) [1], TPC-C [25],
TPC-Web (Traditional web services) [26], and HPL (high-performance
computing) [27] benchmarks, raising serious challenges.

The first challenge is fragmentation. There are substantial frag-
mented application scenarios, a marked departure from the past [24].
For example, hundreds or even thousands of ad-hoc big data solutions,
termed NoSQL or NewSQL, are proposed to handle different application
scenarios. For AI, the same observation holds. There are tens or even
hundreds of organizations that are developing AI training or infer-
ence chips to tackle their challenges in different application scenarios,
respectively [19,28].

The second challenge is de facto isolation. Internet service provider
giants own and treat real-world data sets and workloads or even AI
models as first-class confidential issues. The treasure is hidden in data
centers and isolated between academia and industry, or even among
different providers [29]. The dire situation poses a huge obstacle for
our communities towards developing an open and mature research
field [29].

The third challenge is the complexity of collaboration: HPC sys-
tems, data centers, edge, and IoT devices collaboratively handle the
challenges; In the collaborations, different distributions of data sets,
workloads, machine learning, or AI models may substantially affect the
system’s behaviors; the interaction patterns among IoT, edge, and data
centers changes fast, embodying different architecture.

The fourth challenge originates from service-based architecture.
On the one hand, the software-as-a-service (SaaS) development and
deploy model makes the workloads change very fast (so-called work-
load churn) [30], and it is not scalable or even impossible to create
a new benchmark or proxy for every possible workload [31]. On
the other hand, modern Internet services adopt a microservice-based
architecture, often consisting of various modules with long and com-
plex execution paths across different data centers. As the worst-case
performance (tail latency) [32] does matter, the micro-service-based
architecture also poses a severe challenge to benchmarking [29,33].

The final but not least challenge is the stochastic nature of AI. AI
techniques are widely used to augment modern products or Internet
services. The nature of AI is stochastic, allowing multiple different but
equally valid solutions [19]. Many factors manifest the uncertainties
of AI, e.g., the adverse effect of lower-precision optimization on the
quality of the final model, the impact of scaling training on time-to-
quality, and run-to-run variation in terms of epochs-to-quality [19].
However, the measurement process mandates being repeatable (the
same team) and reproducible (different teams). This conflict raises
serious challenges.

Emerging computing aggravates the benchmarking challenges dis-
cussed in Section 2.2. First, it is difficult to trace the original problem
definition, that is, the target to be achieved. Second, taking the in-
stantiation of solutions as the proxy for the problem aggravates the
instantiation bias and makes the community further trapped in the
specific solutions.

1 This section is written based on an unpublished technique report [24], of
which I am the lead author.
4

4. Building up benchmark science and engineering

This section proposes the unifying definitions of benchmarks, the
conceptual framework, and the benchmarking methodology, which lays
the foundation for benchmark science and engineering.

4.1. The unifying definition of benchmarks

Previously, I concluded five categories of benchmarks [6]: mea-
surement standards, standardized data sets with defined properties,
representative workloads, representative data sets, and industry best
practices. In this section, I give a simple and unifying definition to cover
five categories of benchmarks and reveal their essence. A benchmark
is an explicit or implicit definition of a problem, an instantiation of
a problem, an instantiation of state-of-the-practice solutions as the
proxy to the problem, or a measurement standard that quantitatively
measures the solution space.

A benchmark has three essential processes, some of which often be
omitted or implicitly stated in practice: definition, instantiation, and
measurement. I explain the process of definition and instantiation from
various perspectives in the rest paragraphs of Section 4.1. I leave the
discussion of the process of measurement in Sections 4.2, 4.3.

4.1.1. Definition
The first process is the definition. Defining a problem explicitly

or implicitly is the fundamental role that a benchmark could play
in almost all disciplines. Only after clearly defining a problem can
we figure out the solutions and compare them against the others.
For example, Alan Turing, in 1950 [34] formulated the problem of
what intelligence is as an imitation game: the game tests whether an
interrogator can distinguish a machine’s ability from a human. Turing’s
problem definition inspires several generations to explore the solutions
to achieve intelligence.

There are many ways to define a problem, e.g., using a natural lan-
guage or mathematics. From an accuracy perspective, mathematically
defining the problem is a better choice. Unfortunately, many problems
cannot be accurately depicted in this way.

The NAS parallel benchmarks [35] claimed that the common re-
quirements should be specified in a paper-and-pencil approach [24].
A paper-and-pencil approach is a vague description — It can be mathe-
matical, textual, or even visually. In the computer science discipline,
this approach is well-practiced in the database community but not
adopted in the computer architecture community.

Shun et al. [36] advocated a methodology to build benchmarks
using problem definitions, and they created the problem-based bench-
mark suite (PBBS). PBBS is a set of benchmarks for comparing parallel
algorithmic approaches, parallel programming language styles, and
machine architectures across a broad set of problems. Specifically,
a problem-based benchmark mandates a problem specification and
a set of input distributions while not detailing the requirements in
terms of algorithmic approach, programming language, or machine
architecture [36].

4.1.2. Instantiation
The second process is instantiating a problem or instantiating state-

of-the-practice solutions as the proxy to the problem or challenge. As
a replacement or complement, these are two different ways. First, an
instantiation of the problem is used. For example, a data set is often
used to instantiate a problem in the machine learning community.
Li et al. [12] further classified the problem definitions into problem
class, problem settings, and problem cases. Second, an instantiation
of state-of-the-practice solutions is used as the proxy for the problem.
For example, the computer architecture community provides state-of-
the-practice implementations of a group of computer workloads like
SPECCPU [2,37]. SPECCPU is a proxy to the problems.

J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100064
Fig. 3. The conceptual framework of benchmark science and engineering.

There are two reasons for this replacement or complement. First,
as a replacement, it serves as the proxy for the problem that is too
difficult to define. Second, as a complement, the instantiation brings
enriched and necessary details that set more specific problem settings.
Each instantiation is a subspace or point – which is often state-of-the-
practice – in the solution space to the problem, e.g., using source code
or binary code, which brings instantiation bias.

4.2. The conceptual framework of benchmark science and engineering

As shown in Fig. 3, I propose the conceptual framework of bench-
mark science and engineering. The extrinsic property is a benchmark
property that depends on a problem definition and its solution instan-
tiation. The extrinsic property can have various magnitudes. Measure-
ment metrics are the magnitude of a benchmark’s extrinsic property,
which depends on a problem definition and solution instantiations.
Unit of measurement [8] is a definition and its realization, used as
a reference to assign a value to a measurement metric. Measure-
ment standard [8] is a realization of a unit of measurement, with a
stated metric value, associated measurement uncertainty, and a repeat-
able (the same team) and reproducible (different teams) measurement
methodology. The measurement tool implements a measurement stan-
dard that can be calibrated and traceable. Traceability [7] is a property
of a measurement result whereby the result can be related to a reference
through a documented unbroken chain of calibrations, each contribut-
ing to the measurement uncertainty. The measurement tools should be
open-sourced and can be replicated by different teams.

Measurement [8] is a process of comparing a measurement metric
with a measurement standard to assign one or more measured values
5

to a measurement metric that are traceable to a unit of measurement. A
value obtained by the measurement is referred to as a measured metric
value [7]. True metric value [7] is a value consistent with the definition
of a measurement metric that is specific to the extrinsic properties of a
concrete problem definition and solution instantiation. The true metric
value is an unknown measurement target [7]. A coverage probabil-
ity [7] is a probability that the true metric value is contained within a
specified coverage interval.

4.3. The traceable and supervised-learning based benchmarking methodol-
ogy

A benchmark has no inherent properties, and its extrinsic property
is dependent on its problem definition and solution instantiation. Mean-
while, the processes of definition, instantiation, and measurement are
entangled, and they have complex mutual influences.

I propose a traceable methodology to tackle the above challenge,
at the core of which is to manage the traceability of the processes
from the problem definition and solution instantiation to measurement.
Fig. 4 shows that problem definition, solution instantiation, extrinsic
properties, measurement standard, measurement tool, and measured
metrics value have complex mutual influence. The problem definition
is the origin of this relationship. No other below entities, like solu-
tion instantiation, can impact the problem definition directly. Still,
solution instantiations may provide clues for the subtle change of
the problem definition, affecting the other entities significantly. At
the top level, I suggest a formal definition of problems and tracing
the relationship among the different subtle definitions of problems.
For many state-of-the-practice benchmarks, the definition process is
omitted. It should regularly keep an eye on revisiting the process from
the problem definition to solution instantiation, or else the outdated
instantiation will be a trap. The solution instantiation provides the basis
for measurement tools. It is mandatory to search for state-of-the-art or
state-of-the-practice solutions and implement them in the measurement
tool.

There is an explosion from the problem definition to solution instan-
tiations. Put in other words, the lower level has more state space [6].
For example, there is increasing state space in a computer workload
benchmark, from a mathematical problem definition, an algorithm, an
intermediate representation, an ISA-specific representation, to a micro-
architectural representation. The technology inertia traps the solution
into a specific exploration path — a subspace or even a point at a high-
dimension solution space, called instantiation bias. The instantiation
bias impacts the measurement of the extrinsic properties. Also, an
unguided exploration may drift away from optimized solutions.

I propose the supervised learning-based methodology to tackle the
challenge of instantiation bias. Supervised learning is a machine learn-
ing branch that trains a predictive model using labeled data with known
outcomes. Fig. 4 shows the thoroughly-understood process from the
problem definition, solution space instantiation, extrinsic properties,
measurement standard, measurement tool, to measured metrics value,
standing as a ground truth. From this ground truth, it is easy to learn
how the change of the top entities impacts the below. For example, if
the problem is reformulated, the solution instantiation changes accord-
ingly. Finally, the measured metrics values are significantly affected.
The benchmark plays the role of connecting the problem with its
solution space. By exploring the solution space and observing the effect
of its change on the measured metrics values, it is possible to search
for the best solution. This search process could leverage state-of-the-art
deep learning techniques. Of course, this learning dynamic will be very
complex. Fig. 5 shows an example on how to use this methodology in

computer architecture.

J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100064
Fig. 4. A traceable and supervised learning-based benchmarking methodology to tackle the challenges of extrinsic property, process entanglement, and instantiation bias.
Fig. 5. The application of the traceable and supervision learning-based benchmarking methodology in computer architecture. This figure is cited from [22] with the permission
of the authors.
4.4. Re-interpret five categories of benchmarks

I use the benchmark definition proposed in 4.1 to re-interpret five
categories of benchmarks defined in [6].

The first category of the benchmark is a measurement standard used
to measure the solution space to the problem. I use the Linpack bench-
mark – an example from high-performance computing – to explain this
6

category of benchmarks. The Linpack benchmark [38] is widely used to
report the performance of a high-performance computer. The problem
definition of Linpack is a linear system of equations of an order n:
𝐴𝑥 = 𝑏. The solution uses the LU factorization with partial pivoting.
The measurement metrics are the floating-point operations count of the
solving algorithm, which is (2 ∗ 𝑛3∕3 + 2 ∗ 𝑛2) operations, and the
execution time of running the benchmark. HPL is one of the reference

J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100064
Fig. 6. BenchCouncil’s plan on defining the challenges of emerging and future computing and the collaboration with ComputerCouncil on the open-source computer systems.
5

o
e
B

b
s
t
p
p
t
c
d
t
i
s
i
a

p
o
d
i
c
d

e
p
s
m
a

s
g
d
v
D
s

implementations of the measurement tool used to evaluate against
different high-performance computer implementations (solutions). The
measurement standard also details the reproducible and repeatable
measurement methodology to compare against other solutions: users
must report a residual for the accuracy of the solution with ‖𝐴𝑥 −
𝑏‖∕(‖𝐴‖‖𝑥‖). The TOP500 list reports the measured metrics values.
The measurement metrics highly depends on its problem definition and
solution instantiations.

The second category of benchmarks is the representative workloads
that run on the systems under measurement [6]. The representative
workloads are the definition of the problem or an instantiation of state-
of-the-practice solutions as the proxy to the problem. The problem-
based benchmark suite (PBBS) [36], TPC-C [25], TPC-Web (Traditional
web services) [26] are typical problem definition examples. They also
provide the instantiation of state-of-the-practice solutions as the mea-
surement tool. Without explicit problem definition, SPECCPU (desktop
workloads) [1], BigDataBench [39], BigBench [40], AIBench [20,33]
and MLPerf [19] are the instantiations of state-of-the-practice solutions
and they serves as the proxy to the problem.

The third category of the benchmarks is the implicit definition of
the problem using a standardized data set. The standardized data set
represents a real-world data science problem with defined properties,
some of which have ground truth [6,41]. ImageNet [3] (deep learning
benchmark) and MIMIC-III [4] (critical care benchmark) are typical
examples.

The fourth category of benchmarks is a representative data set, used
as a Ref. [6]. This category of benchmarks is an instantiation of a
problem. For example, an index (statistical measure) calculated from
a representative set of underlying data and used as a reference for
financial instruments or contracts [42] is a benchmark in finance. The
London Interbank Offered Rate (Libor) and the Euro Interbank Offered
Rate are well-known financial benchmarks [6,42].

The fifth category of benchmarks is the industry best practices
in diverse domains [6]. Benchmarking is continuously searching the
industry best practices with superior performance and measuring prod-
ucts, services, and processes against them [5,6]. The industry best
practices are instantiations of the state-of-the-practice solutions to the
problem or grand challenge.
7

. BenchCouncil’s plan on emerging and future computing

Fig. 6 presents BenchCouncil’s plan for defining the challenges
f emerging and future computing and collaborating with Comput-
rCouncil on the open-source computer systems. First, I introduce
enchCouncil’s plan for emerging and future challenges.

First, what is intelligence? What is instinct? What is the distinction
etween intelligence and instinct? The pre-trained language models,
uch as BERT and GPT-3, seem to outperform the capability beyond
he Turing test [43]. Many previous works have reformulated the
roblem of what intelligence is [44,45]. It is necessary to revisit the
rocesses from the intelligence problem definition, solution instantia-
ions to measurement. For example, there are many ways to solve these
hallenges to somewhat extent, including traditional machine learning,
eep learning, and brain-inspired computing. Letting them compete in
he same arena is essential. According to [46], instinct is an inborn
mpulse or motivation to action typically performed in response to
pecific external stimuli. But how do we distinguish intelligence from
nstinct? What are the differences between the octopus, birds, apes, and
nts’ behaviors? Are they intelligence or instinct?

Second, quantum computers emerge as a new computational
aradigm with unprecedented capability [47]; what are the problems
r grand challenges which the quantum computers do the best? How
o state-of-the-practice computers compete against quantum computers
n handling different or overlapping domains of problems or grand
hallenges? The community must ponder this fundamental issue before
elving into different levels of instantiations of solutions.

Third, computer algorithms almost govern the running of our soci-
ty. It is pressing to think, specify, verify and test what fundamental
roperties an algorithm must have before being embedded in our
ociety. Think about Twitter and Facebook’s impact on the election in
any vote-based democratic societies. It is vital to propose benchmarks

gainst those algorithms before putting them into practice.
Fourth, information infrastructure becomes the cornerstone of our

ociety [10], and many fundamental applications like medical emer-
ency management and smart cities applications rely upon planet-scale
istributed systems consisting of massive Internet of Things (IoT) de-
ices, edges and data centers, which I call planet-scale computers [11].
ifferent distributions of data sets, workloads, or AI models may sub-

tantially affect the system’s behaviors, and the system architectures are

J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100064
undergoing fast evolution regarding the interactions among IoT, edge,
and data centers [24]. How can the community propose benchmarks
for those ultra-scale emerging and future applications [33]?

Metaverse is an umbrella term. It is predicted to be a brand-new
way for people to immersively access the Internet, interact with each
other or digital avatars in the cyberworld, and manage digital assets.
Though many industry giants are pushing towards those goals, the
process itself is in a Cambrian explosion of different things in the forms
of concepts, prototypes, products, or services. It is pressing to propose a
benchmark suite to define the Metaverse problem or challenge, explore
and evaluate state-of-the-art and state-of-the-practice solutions [13].

Many old problems need reformulation. For example, the Berkeley
multidisciplinary groups proposed to use thirteen ‘‘Dwarfs’’ [48] – A
dwarf is an algorithmic method that captures a pattern of computation
and communication – to design and evaluate parallel programming
models and architectures. When AI has seen as a new dawn in the
traditional and emerging scientific area, how to reformulate those
problems [12]?

Datacenters have become the fundamental infrastructure of modern
society. There are substantial fragmented application scenarios in big
data, AI, and Internet service areas, a marked departure from the
past [24]. Virtualization technologies like containers are widely used
as resource management and performance isolation facilities. However,
the current BenchCouncil benchmark suites like BigDataBench [39] and
AIBench [20,33] are fragmented without providing a full-picture defi-
nition of the problems or challenges in data centers. Moreover, a lack of
simple but elegant abstractions prevents achieving both efficiency and
general purpose [24]. For example, hundreds or even thousands of ad-
hoc NoSQL or NewSQL solutions are proposed to handle different big
data application scenarios [24]. Contrasted, the relation algebra is gen-
eralized for the database theory and practice, and any complex query
can be written using five primitives like select, project, product, union,
and difference [49]. Though domain-specific software and hardware co-
design is promising [50], the lack of simple but unified abstractions
has two side effects [24]: it is prohibitively costly to build an ad-
hoc solution; single-purpose systems and architectures are structural
obstacles to resource sharing. Proposing simple but elegant abstractions
is an integrated part of managing the traceability of the process from
the problem definition to solution instantiation.

The CPU benchmark suite like SPECCPU [2,37] advanced the evo-
lution of different processor architectures. However, the SPEC CPU is
an instantiation of state-of-the-practice solutions as the proxy to the
problem, severely biased towards market-dominant CPU architecture,
high-performance languages like C, and high-performance computing
and desktop workloads. The BENCHCPU project [51] will propose a
new CPU benchmark suite.

5.1. The collaboration with ComputerCouncil

As a non-profit international organization, the International Open-
source Computer Council (ComputerCouncil) mission is to unite the
science and technology community to tackle the challenges of in-
formation technology decoupling [52]. ComputerCouncil initiates the
open-source computer system (OSCS) initiative to tackle the challenges
of IT decoupling.

ComputerCouncil will choose three emerging areas: planet-scale
computers — planet-scale distributed systems and applications built
on IoTs, edges, and datacenters [11], AI for science [12], and Meta-
verse [13] as the initial targets of the OSCS initiative. BenchCouncil
will cooperate with ComputerCouncil: the former focuses on the bench-
marks, while the latter concentrates on the open-source computer
systems for the three emerging areas.
8

6. Conclusion

This article concluded benchmarking challenges as extrinsic prop-
erties, process entanglement, and instantiation bias. The measurable
properties of a benchmark are not inherent but dependent on their
problem definitions and solution instantiations. The processes of prob-
lem definition, solution instantiation, and measurement are entangled
and have complex mutual influences. The technology inertia leads to
a specific exploration path –a subspace or even a point at a high-
dimension design space. Those challenges make metrology cannot work
for benchmark communities and call for independent benchmark sci-
ence and engineering.

I proposed a unified benchmark definition, a conceptual frame-
work, and a traceable and supervised learning-based benchmarking
methodology, laying the foundation for benchmark science and engi-
neering. A benchmark is an explicit or implicit definition of a problem,
an instantiation of a problem, an instantiation of state-of-the-practice
solutions as the proxy to the problem, or a measurement standard
that quantitatively measures the solution space. At the core of the
conceptual framework, the extrinsic property is a benchmark property
that depends on a problem definition and its solution instantiation. The
essence of the proposed benchmarking methodology has two integrated
parts: manage the traceability of the processes from the problem def-
inition and solution instantiation to measurement; search for the best
solution through supervised learning with reference to the thoroughly-
understood processes from the problem definitions and solution instan-
tiations to measurements. Also, I elaborated BenchCouncil’s plan to
define emerging and future computing challenges and collaborate with
ComputerCouncil on open-source computer systems.

Acknowledgments

I am very grateful to Mr. Shaopeng Dai for compiling the references,
Mr. Shaopeng Dai and Mr. Qian He for drawing Figs. 1, 2, 3, 4, and 6,
and Dr. Lei Wang for discussing and contributing significantly to the
presentations of Figs. 1, 4, 6 and proofreading throughout this article.
Fig. 5 is cited from [22] as an example with the permission of the
authors. Section 3 and a part of Section 5 are based on the unpublished
technical report [24], of which I am the lead author. The technical
report [24] was based on my presentation at a BoF of SC 2019, and
the web link is https://www.benchcouncil.org/file/BenchCouncil-SC-
BoF.pdf. After the presentation, I drafted the technical report [24]
as the first author. I am very grateful to the other authors for their
discussions and contributions: Dr. Lei Wang, Dr. Wanling Gao, and Dr.
Rui Ren.

References

[1] SPEC, SPEC CPU 2017 Benchmark, 2017, https://www.spec.org/cpu2017/.
[2] R. Panda, S. Song, J. Dean, L.K. John, Wait of a decade: Did SPEC CPU 2017

broaden the performance horizon? in: 2018 IEEE International Symposium on
High Performance Computer Architecture, HPCA, IEEE, 2018, pp. 271–282.

[3] J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale
hierarchical image database, in: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, IEEE, 2009, pp. 248–255.

[4] A.E. Johnson, T.J. Pollard, L. Shen, L.w.H. Lehman, M. Feng, M. Ghassemi, B.
Moody, P. Szolovits, L. Anthony Celi, R.G. Mark, MIMIC-III, a freely accessible
critical care database, Sci. Data 3 (1) (2016) 1–9.

[5] M. Zairi, P. Leonard, Origins of benchmarking and its meaning, in: Practical
Benchmarking: The Complete Guide, Springer, 1996, pp. 22–27.

[6] J. Zhan, Call for establishing benchmark science and engineering, BenchCouncil
Trans. Benchmarks Stand. Eval. 1 (1) (2021) 100012.

[7] I. BiPM, I. IFCC, I. IUPAC, O. ISO, The international vocabulary of metrology—
basic and general concepts and associated terms (VIM), 2012, p. 2012, JCGM
200.

[8] R.N. Kacker, On quantity, value, unit, and other terms in the JCGM international
vocabulary of metrology, Meas. Sci. Technol. 32 (12) (2021) 125015.

[9] J. Zhan, Three laws of technology rise or fall, BenchCouncil Trans. Benchmarks
Stand. Eval. 2 (1) (2022) 100034.

https://www.benchcouncil.org/file/BenchCouncil-SC-BoF.pdf
https://www.benchcouncil.org/file/BenchCouncil-SC-BoF.pdf
https://www.benchcouncil.org/file/BenchCouncil-SC-BoF.pdf
https://www.spec.org/cpu2017/
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb2
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb2
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb2
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb2
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb2
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb3
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb3
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb3
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb3
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb3
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb4
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb4
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb4
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb4
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb4
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb5
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb5
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb5
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb6
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb6
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb6
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb7
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb7
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb7
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb7
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb7
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb8
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb8
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb8
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb9
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb9
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb9

J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100064
[10] J. Zhan, Open-source computer systems initiative: The motivation, essence,
challenges, and methodology, BenchCouncil Trans. Benchmarks Stand. Eval. 2
(1) (2022) 100038.

[11] ComputerCouncil, The IoTs, edges, datacenter and networks as a computer:
Building open-source planet-scale computers (PSC) for emerging and future
computing, 2022, https://www.computercouncil.org/PSC.

[12] Y. Li, J. Zhan, SAIBench: Benchmarking AI for science, BenchCouncil Trans.
Benchmarks Stand. Eval. (2022).

[13] ComputerCouncil, MetaverseBench: Instantiating and quantifying metaverse
problems, benchmarks, and challenges, 2022, https://www.computercouncil.org/
MetaverseBench.

[14] V.V. Williams, Multiplying matrices faster than coppersmith-winograd, in: Pro-
ceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing,
2012, pp. 887–898.

[15] D. Blalock, J. Guttag, Multiplying matrices without multiplying, in: International
Conference on Machine Learning, PMLR, 2021, pp. 992–1004.

[16] Z. Jiang, L. Wang, X. Xiong, W. Gao, C. Luo, F. Tang, C. Lan, H. Li, J. Zhan,
Hpc ai500: The methodology, tools, roofline performance models, and metrics
for benchmarking hpc ai systems, 2020, arXiv preprint arXiv:2007.00279.

[17] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A.
Tulloch, Y. Jia, K. He, Accurate, large minibatch sgd: Training imagenet in 1
hour, 2017, arXiv preprint arXiv:1706.02677.

[18] Y. You, Z. Zhang, C.J. Hsieh, J. Demmel, K. Keutzer, Imagenet training in
minutes, in: Proceedings of the 47th International Conference on Parallel
Processing, 2018, pp. 1–10.

[19] P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Micikevicius, D. Patterson, H.
Tang, G.Y. Wei, P. Bailis, V. Bittorf, et al., Mlperf training benchmark, Proc.
Mach. Learn. Syst. 2 (2020) 336–349.

[20] F. Tang, W. Gao, J. Zhan, C. Lan, X. Wen, L. Wang, C. Luo, Z. Cao, X.
Xiong, Z. Jiang, et al., Aibench training: balanced industry-standard ai training
benchmarking, in: 2021 IEEE International Symposium on Performance Analysis
of Systems and Software, ISPASS, IEEE, 2021, pp. 24–35.

[21] L. Wang, X. Xiong, J. Zhan, W. Gao, X. Wen, G. Kang, F. Tang, Wpc: Whole-
picture workload characterization across intermediate representation, isa, and
microarchitecture, IEEE Comput. Archit. Lett. 20 (2) (2021) 86–89.

[22] L. Wang, K. Yang, W. Gao, C. Luo, C. Wang, Z. Ge, L. Zhang, F. Zhang, J. Zhan,
WPC: Whole-picture Workload Characterization, Technical Report, Institute of
Computing Technology, Chinese Academy of Sciences, 2022.

[23] S. Matsuoka, J. Domke, M. Wahib, A. Drozd, R. Bair, A.A. Chien, J.S. Vetter,
J. Shalf, Preparing for the future–rethinking proxy apps, 2022, arXiv preprint
arXiv:2204.07336.

[24] J. Zhan, L. Wang, W. Gao, R. Ren, Benchcouncil’s view on benchmarking ai and
other emerging workloads, 2019, arXiv preprint arXiv:1912.00572.

[25] TPC, TPC-C Benchmarks, http://www.tpc.org/tpcc/.
[26] TPC, TPC-W Benchmarks, http://www.tpc.org/tpcw/.
[27] A. Petitet, HPL-a portable implementation of the high-performance linpack

benchmark for distributed-memory computers, 2004, http://www.netlib.org/
benchmark/hpl/.

[28] V.J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.J. Wu, B.
Anderson, M. Breughe, M. Charlebois, W. Chou, et al., Mlperf inference bench-
mark, in: 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture, ISCA, IEEE, 2020, pp. 446–459.

[29] W. Gao, F. Tang, L. Wang, J. Zhan, C. Lan, C. Luo, Y. Huang, C. Zheng, J. Dai,
Z. Cao, et al., AIBench: an industry standard internet service AI benchmark suite,
2019, arXiv preprint arXiv:1908.08998.

[30] L.A. Barroso, U. Hölzle, The datacenter as a computer: An introduction to the
design of warehouse-scale machines, Synth. Lect. Comput. Archit. 4 (1) (2009)
1–108.

[31] W. Gao, J. Zhan, L. Wang, C. Luo, D. Zheng, F. Tang, B. Xie, C. Zheng, X.
Wen, X. He, et al., Data motifs: A lens towards fully understanding big data and
ai workloads, in: Proceedings of the 27th International Conference on Parallel
Architectures and Compilation Techniques, 2018, pp. 1–14.

[32] J. Dean, L.A. Barroso, The tail at scale, Commun. ACM 56 (2) (2013) 74–80.
[33] W. Gao, F. Tang, J. Zhan, X. Wen, L. Wang, Z. Cao, C. Lan, C. Luo, X. Liu,

Z. Jiang, Aibench scenario: Scenario-distilling ai benchmarking, in: 2021 30th
International Conference on Parallel Architectures and Compilation Techniques,
PACT, IEEE, 2021, pp. 142–158.

[34] A.M. TURING, I.—COMPUTING MACHINERY AND INTELLIGENCE, Mind LIX
(236) (1950) 433–460.

[35] D.H. Bailey, Nas parallel benchmarks, in: Encyclopedia of Parallel Computing,
2011, pp. 1254–1259.
9

[36] J. Shun, G.E. Blelloch, J.T. Fineman, P.B. Gibbons, A. Kyrola, H.V. Simhadri,
K. Tangwongsan, Brief announcement: the problem based benchmark suite, in:
Proceedings of the Twenty-Fourth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, 2012, pp. 68–70.

[37] J.L. Henning, SPEC CPU2000: Measuring CPU performance in the new
millennium, Computer 33 (7) (2000) 28–35.

[38] J.J. Dongarra, P. Luszczek, A. Petitet, The LINPACK benchmark: past, present
and future, Concurr. Comput.: Pract. Exper. 15 (9) (2003) 803–820.

[39] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S.
Zhang, et al., Bigdatabench: A big data benchmark suite from internet services,
in: 2014 IEEE 20th International Symposium on High Performance Computer
Architecture, HPCA, IEEE, 2014, pp. 488–499.

[40] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, H.A. Jacobsen,
Bigbench: Towards an industry standard benchmark for big data analytics, in:
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data, 2013, pp. 1197–1208.

[41] MIT, AutoML benchmark datasets, 2021, [EB/OL]. https://openml.github.io/
automlbenchmark/benchmark_datasets.html. (Accessed 2 December 2021).

[42] IOSCO, Financial Benchmarks, Technical Report, IOSCO, 2013.
[43] C.D. Manning, Human language understanding & reasoning, Daedalus 151 (2)

(2022) 127–138.
[44] R.M. French, The Turing Test: the first 50 years, Trends Cogn. Sci. 4 (3) (2000)

115–122.
[45] C.H. Hoffmann, Is AI intelligent? An assessment of artificial intelligence, 70 years

after turing, Technol. Soc. (2022) 101893.
[46] Britannica, instinct, 2022, https://www.britannica.com/topic/instinct.
[47] T. Tomesh, P. Gokhale, V. Omole, G.S. Ravi, K.N. Smith, J. Viszlai, X.C. Wu,

N. Hardavellas, M.R. Martonosi, F.T. Chong, Supermarq: A scalable quantum
benchmark suite, 2022, arXiv preprint arXiv:2202.11045.

[48] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, D.A.
Patterson, W.L. Plishker, J. Shalf, S.W. Williams, et al., The landscape of parallel
computing research: A view from berkeley, 2006.

[49] E.F. Codd, A relational model of data for large shared data banks, in: Software
Pioneers, Springer, 2002, pp. 263–294.

[50] J. Hennessy, D. Patterson, A new golden age for computer architecture: Domain-
specific hardware/software co-design, enhanced, in: ACM/IEEE 45th Annual
International Symposium on Computer Architecture, ISCA, 2018.

[51] BenchCouncil, BENCHCPU, 2019, https://www.benchcouncil.org/benchcpu/
index.html.

[52] ComputerCouncil, International opensource computer council, 2022, https://
www.computercouncil.org/.

Dr. Jianfeng Zhan is a Full Professor at Institute of Comput-
ing Technology (ICT), Chinese Academy of Sciences (CAS),
and University of Chinese Academy of Sciences (UCAS),
the director of Research Center for Advanced Computer
Systems, ICT, CAS. He received his B.E. in Civil Engineering
and MSc in Solid Mechanics from Southwest Jiaotong Uni-
versity in 1996 and 1999, and his Ph.D. in Computer Science
from Institute of Software, CAS, and UCAS in 2002. His
research areas span from Chips, Systems to Benchmarks. A
common thread is benchmarking, designing, implementing,
and optimizing a diversity of systems. He has made substan-
tial and effective efforts to transfer his academic research
into advanced technology to impact general-purpose pro-
duction systems. Several technical innovations and research
results, including 35 patents, from his team, have been
adopted in benchmarks, operating systems, and cluster and
cloud system software with direct contributions to advanc-
ing the parallel and distributed systems in China or even in
the world. He has supervised over ninety graduate students,
post-doctors, and engineers in the past two decades. Dr.
Jianfeng Zhan founds and chairs BenchCouncil and serves
as the Co-EIC of TBench with Prof. Tony Hey. He has served
as IEEE TPDS Associate Editor since 2018. He received
the second-class Chinese National Technology Promotion
Prize in 2006, the Distinguished Achievement Award of the
Chinese Academy of Sciences in 2005, and the IISWC Best

paper award in 2013, respectively.

http://refhub.elsevier.com/S2772-4859(22)00051-5/sb10
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb10
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb10
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb10
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb10
https://www.computercouncil.org/PSC
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb12
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb12
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb12
https://www.computercouncil.org/MetaverseBench
https://www.computercouncil.org/MetaverseBench
https://www.computercouncil.org/MetaverseBench
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb14
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb14
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb14
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb14
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb14
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb15
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb15
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb15
http://arxiv.org/abs/2007.00279
http://arxiv.org/abs/1706.02677
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb18
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb18
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb18
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb18
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb18
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb19
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb19
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb19
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb19
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb19
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb20
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb20
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb20
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb20
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb20
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb20
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb20
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb21
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb21
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb21
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb21
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb21
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb22
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb22
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb22
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb22
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb22
http://arxiv.org/abs/2204.07336
http://arxiv.org/abs/1912.00572
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcw/
http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb28
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb28
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb28
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb28
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb28
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb28
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb28
http://arxiv.org/abs/1908.08998
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb30
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb30
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb30
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb30
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb30
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb31
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb31
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb31
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb31
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb31
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb31
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb31
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb32
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb33
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb33
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb33
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb33
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb33
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb33
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb33
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb34
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb34
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb34
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb35
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb35
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb35
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb36
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb36
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb36
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb36
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb36
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb36
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb36
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb37
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb37
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb37
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb38
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb38
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb38
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb39
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb39
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb39
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb39
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb39
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb39
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb39
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb40
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb40
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb40
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb40
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb40
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb40
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb40
https://openml.github.io/automlbenchmark/benchmark_datasets.html
https://openml.github.io/automlbenchmark/benchmark_datasets.html
https://openml.github.io/automlbenchmark/benchmark_datasets.html
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb42
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb43
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb43
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb43
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb44
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb44
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb44
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb45
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb45
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb45
https://www.britannica.com/topic/instinct
http://arxiv.org/abs/2202.11045
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb48
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb48
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb48
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb48
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb48
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb49
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb49
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb49
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb50
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb50
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb50
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb50
http://refhub.elsevier.com/S2772-4859(22)00051-5/sb50
https://www.benchcouncil.org/benchcpu/index.html
https://www.benchcouncil.org/benchcpu/index.html
https://www.benchcouncil.org/benchcpu/index.html
https://www.computercouncil.org/
https://www.computercouncil.org/
https://www.computercouncil.org/

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100063
Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

SAIBench: Benchmarking AI for Science
Yatao Li a,b,c,∗, Jianfeng Zhan a,b

a Institute of Computing Technology Chinese Academy of Science, No. 6 Kexueyuan South Road, Haidian District, 100190, Beijing, China
b University of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Shijingshan District, 100049, Beijing, China
c Microsoft Research Asia, Building 2, No. 5 Dan Ling Street, Haidian District, 100080, Beijing, China

A R T I C L E I N F O

Keywords:
Scientific computing
Artificial intelligence
Benchmarking

A B S T R A C T

Scientific research communities are embracing AI-based solutions to target tractable scientific tasks and
improve research work flows. However, the development and evaluation of such solutions are scattered across
multiple disciplines. We formalize the problem of scientific AI benchmarking, and propose a system called
SAIBench in the hope of unifying the efforts and enabling low-friction on-boarding of new disciplines. The
system approaches this goal with SAIL, a domain-specific language to decouple research problems, AI models,
ranking criteria, and software/hardware configuration into reusable modules. We show that this approach is
flexible and can adapt to problems, AI models, and evaluation methods defined in different perspectives. The
project homepage is https://www.computercouncil.org/SAIBench.
1. Introduction

Artificial Intelligence has seen continuous and significant advance-
ments over the past years, with Deep Learning methods being arguably
the most representative and focused on. Blessed by the ever-increasing
computation power in AI accelerators and general-purpose architec-
tures alike, new AI paradigms and models are proposed which greatly
improve the scalability, flexibility, and applicability of this data-driven
approach. As a result, the IT industry is welcoming AI-powered solu-
tions, integrating them into existing data processing pipelines that will
otherwise require human intervention or prohibitive computation cost.
This trend is also propagating into scientific research communities,
as researchers are gaining interest in leveraging state-of-the-art AI
solutions to tackle equally if not more difficult tasks, hence AI for
Science.

From a bird’s eye view, a scientific research activity can be mechan-
ical or creative. A mechanical research activity can be algorithmically
specified, with quantized or computationally verifiable input/output.
On the other hand, a creative research activity breaks out of a mechan-
ical system, for example, by defining a new problem or introducing
ideas hard to quantify. In this work, we call a computationally veri-
fiable research task a ‘‘tractable scientific task’’. That said, an AI for
Science solution is introduced to bring improvements into the scientific
research workflow and is usually targeting towards a tractable scientific
task, such as:

• Mathematical Problem Solving — to solve mathematically well-
defined problems.

∗ Corresponding author at: Institute of Computing Technology Chinese Academy of Science, No. 6 Kexueyuan South Road, Haidian District, 100190, Beijing,
China.

E-mail addresses: yatli@microsoft.com (Y. Li), jianfengzhan@ict.ac.cn (J. Zhan).

• Pattern Matching — to classify, identify patterns, and detect
region-of-interest in high volume scientific data.

• Prediction — to compute future world states, given an initial
snapshot of the world state and evolving rules.

• Artifact enhancement — to improve the quality of data acquired
from imperfect observations, e.g. incomplete, fragmented, noisy
sensor data.

• Control — to use actuators to drive sensor readings into desired
states, despite the imperfection of both.

• Hypothesis and Confirmation — to propose a theory (e.g. equa-
tions) that conforms with the observations.

Examples of these tasks are shown in Table 1. The term ‘‘AI for
Science’’ is also conventionally deemed as an ensemble of vertical fields
and tasks [1]. However, we argue that to fully realize the potential of
AI for Science, it is not enough to cherry-pick an AI method, match
it against a specific task, and heuristically compare it with existing
methods. One strength of AI methods is that they abstract away the
problem details and mathematical procedures, into generic functions
that transform inputs into outputs — that is, every AI model possesses
the potential to adapt to other tasks, some (for example, neural net-
works) even being universal approximators. Science is vast, and AI
methods are many. A single effort to evaluate a taskmethod pair would
leave other research communities unaware, of both the potential tasks
that a model is capable of processing and potential models that can be
applied to a task. This problem is exaggerated by the fact that the AI
research is moving forward fast, that by the time a specific method is
https://doi.org/10.1016/j.tbench.2022.100063
Received 15 April 2022; Received in revised form 11 May 2022; Accepted 11 May
Available online 24 May 2022
2772-4859/© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of
BY license (http://creativecommons.org/licenses/by/4.0/).

10
2022

KeAi Communications Co. Ltd. This is an open access article under the CC

https://doi.org/10.1016/j.tbench.2022.100063
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2022.100063&domain=pdf
https://www.computercouncil.org/SAIBench
mailto:yatli@microsoft.com
mailto:jianfengzhan@ict.ac.cn
https://doi.org/10.1016/j.tbench.2022.100063
http://creativecommons.org/licenses/by/4.0/

Y. Li and J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100063
Table 1
Examples of tractable scientific tasks.

Mathematical Problem Solving Partial derivative equations
General matrix multiplication
Matrix decomposition
Integration
Monte Carlo methods

Pattern Matching Species Classification
Event Identification [2]
Climate Analysis [3]
Anomaly Detection

Prediction High-Energy Particle Simulation
Molecular Dynamics
Fluid Dynamics
Protein Folding

Artifact Enhancement Genome Sequence Alignment
Astronomy Image Enhancement
Medical Image Enhancement
MRI Reconstruction

Control Tokamak Plasma Control [4]
Sensor Triggering

Hypothesis and Confirmation Automatic Physics Laws Discovery
Symbolic Regression

picked up by a scientific computing task, or a task is adapted to an AI
method, it may be already bested by then state-of-the-art.

To help the scientific research communities as a whole system-
atically absorb and integrate the advancements of AI research, and
to avoid repeated efforts in development and evaluation, we propose
SAIBench, a system that bridges scientific computing tasks and AI
methods, and automatically benchmarks every sensible combination,
collects performance metrics, and projects it back into rankings proper
to each research community. Research groups of different backgrounds
can focus on their needs while taking advantage of other benchmarking
building blocks, without having to re-invent end-to-end evaluation
processes.

The rest of this article is organized as follows. We first define the
problem of scientific AI benchmarking in Section 2. In Section 3 we
discuss the methodology, goal, and challenges. Section 4 elaborates our
system design, including the details of each component. We showcase
end-to-end scenarios involving multiple modules in Section 5.

2. Problem definition

Here we define the problem of scientific AI benchmarking. To begin
with, we have a set of tractable scientific tasks as defined in the pre-
vious section, and an array of AI methods, each needs to be trained to
solve a specific problem. To evaluate a method for such tasks, different
scientific communities have different criteria. For example, instruments
in High Energy Physics generate zettabytes of data, and the training
data for AI models is virtually unlimited. An AI method could thus focus
on throughput, time-to-solution, sample selection, etc. Meanwhile, for
Biology and Life Sciences, sometimes there are just a few hundred
data points, requiring high sample efficiency, and a strong ability to
generalize and extrapolate onto unseen problem configurations.

Nonetheless, the qualification of a method can be categorized as
follows:

• Defined by Problem Class. For purely computational tasks such
as mathematical problem solving, it is preferable to target against
classes of problems to see how the method performs under each
set of mathematical constraints. For example in equation solving,
it is desired to study how a method behaves for both stiff and
non-stiff systems, where both types contain their problem class
definitions.

• Defined by Problem Setting. Compared to purely mathematical
problem classes, this type of problem definition usually embodies
specific constraints under a class to match a physical setting.
Scientific research communities have established well-respected
11
Table 2
Examples of qualification criterion.

Problem class Boundary Value Problem
Stochastic Differential Equations
Many-body Interactions
Positive Definite Matrix Decomposition

Problem setting Temperature and pressure dependence of
alanine dipeptide
Straight wire Magnetostatics
Community Atmosphere Model
(CAM5) [5] Simulation

Problem case ANI-1x [6], GDB-17 [7]
OASIS [8]

problem settings that have been practiced and confirmed. This
allows computational methods to interoperate with real-world
experiments, as specific experimental settings can be virtually
replicated.

• Defined by Problem Cases. For some tasks we are only inter-
ested in a narrow range within the whole problem space. Most
data-driven tasks fall into this category, where the typical work-
loads of a task are defined by collected and/or labeled data. There
are also ‘‘golden standards’’ defined in research fields, which are
computational methods with superior accuracy and other desir-
able properties, at expensive computational costs. These methods
are then used to collect data for very specific problem cases so
that other faster but less accurate methods can be developed and
evaluated.

This categorization is not mutually exclusive though, as some tasks
require more than one qualification criteria to properly define the prob-
lem. For example, a robotic control algorithm can be tested both in a
simulated setting and on data points collected from real-world sensors.
Nevertheless, the principle is that this categorization describes the hi-
erarchy of problem definition — the more the definition leans towards
the former (problem classes), the more computation is required; On the
other hand, the more towards the latter (problem cases), the more data.
Furthermore, the problem definition serves as a specification for the AI
model behavior, for both training and testing.

Examples of these qualifications are shown in Table 2. However, AI-
based methods likely require training, so the problem definition of all
three types must be reduced to case-by-case training data points — for
a problem class, the problem definition should generate independent
problem instances that sufficiently cover the problem space. For a
problem setting, the problem definition should generate state snapshots
that conform to the constraints. For data-driven problem cases, the
problem definition should simply enumerate from the dataset.

Furthermore, the evaluation of a method depends on the problem
definition generating tests. For each test case, the performance is
represented with a cost function. For a mathematical problem instance,
the cost function can be the error against ground truth solution, or
error against equality constraints [9,10]. For simulation settings, the
cost function can be obtained by comparing the performance metrics
derived from such experiments, as shown by previous works on specific
tasks [11–13]. Lastly, for data-driven problem cases, the dataset can be
split into training and test sets, and the cost function is the loss function
applied to the test set.

Finally, it is crucial to realize that different benchmarking com-
munities use the word ‘‘performance’’ to refer to different concepts.
Scientific AI benchmarking concerns not only the accuracy of AI models
but also the computation cost. The computation cost can be further
broken down into two phases: (1) the cost for a model to reach
certain accuracy, and (2) once the model is properly trained, the
cost of using the model for inference tasks. For the first phase, the
standard practice is to measure training time (wall clock or total
CPU/GPU time) against the best/mean/worst accuracies, and for the
second, the throughput/latency etc. for completing the inference tasks.

Y. Li and J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100063
Moreover, for both phases, we can investigate the system performance
with standard parallel computing benchmarking techniques [14] to
expose different performance characteristics of a solution, for example,
time-to-solution or cost-efficiency.

3. Methodology

The main goal of SAIBench is to build an inclusive and intercon-
necting environment for all the relevant research efforts, including
problem definition, AI method, training algorithm, software and hard-
ware environment, metric definition and ranking definition, and deliver
benchmarking result efficiently with given computation resources. The
desiderata brought by this goal is multifold.

We need to design the system with a modular paradigm and pro-
vide friendly programming interfaces for different modules. It should
handle the impedance mismatches between different programming lan-
guages and environments while maintaining consistent standards. This
is traditionally implemented with language bindings (for example, the
computational chemistry package NWChem [15] can either execute its
own scripting language, or be controlled by a Python language binding)
or file-based inter-process communication, which is suboptimal because
different programming environments may have incompatible constructs
that cannot be bound into a single process, and distributed computing
modules cannot be modeled easily.

A module should be self-descriptive so that the system can au-
tomatically discover benchmarking tasks it can participate in, so in
addition to modular interfaces targeting benchmarking tasks, there
should be a protocol for modules to exchange metadata and relate
to each other. It is challenging to design such a protocol because it
has to be generic, extensible, and yet carrying concrete meanings. For
example, if we model the input/output of an AI model as tensors of
required dimensions, it places strict constraints on what the AI model
can solve, and the system will not be able to associate this AI model
with even slightly incompatible tensors, not to mention non-tensor
data that has to be converted to adapt. On the other hand, if we
simply attach a textual description to each module, it would be too
hard for machine-understanding, and require human in- tervention to
develop the connections. To this end, machine-understandable flexibil-
ity and extensibility are needed, to enable modules to cooperate less
rigidly. The previous example shows how a module for an AI model
should describe itself. Similarly, for a problem definition, it should
programmatically set up the training and test fixtures, and conduct
the experiments. This way all the three types of problem definitions
previously can be normalized and become accessible to AI models. In
addition, it should expose metadata that allows the system to inspect
the execution workflow, and identify tasks that can be completed by
other modules. This type of meta-programming is practiced in program-
ming language research and recently machine learning frameworks,
implemented in declarative languages and domain-specific languages
(DSLs) [16], yet largely unexplored in scientific computing, where most
execution engines take a parse–interpret–execute approach [15,17].

As we discussed above, the system is not a single benchmark, but
a collection of such, to be projected back to each research field and
aggregated by a ranking criterion. Conflict of interests naturally arises,
for example, to favor speed vs. to favor accuracy, first principle metrics
vs. a particular set of derived properties. The system should be able
to allow different perspectives of the same metrics and provide an
interface for ranking modules to declare their preferences.

The performance of an end-to-end AI solution to a tractable sci-
entific task depends on multiple aspects, including the AI model, the
training algorithm, the computing software stack, the empowering
hardware, and so on. These factors do not contribute to the final
performance linearly, for example, a particular AI model may have
the best work-precision properties under one hardware configuration
but not the others. It is thus desirable to consider all these factors as

benchmarking hyperparameters. There are several implications brought

12
by this requirement. The AI module implementation should be declar-
ative instead of being bound to a specific software/hardware stack;
The software stack module should declare the capabilities (e.g. matrix
multiplication and backward propagation) so that the system finds com-
patible model-software pairs; Also, the software stack module should
describe the hardware compatibility and accept a standardized hard-
ware configuration descriptor, so that the system can automatically
schedule scalability tests.

With all the components modularized and parameterized, the whole
benchmarking workflow can be formulated as follows. Each type of
module introduces some dimensions to the benchmarking task, and
the goal is to enumerate and test against the Cartesian product of all
such dimensions, where each point in the problem space represent
the combination of a specific task, solver, metrics, software and hard-
ware configuration. This allows the modules to advertise themselves,
discover the others, and therefore reuse data and interact with each
other, without knowing them beforehand. This paradigm aligns well
with the FAIR guiding principles for scientific data management [18],
which suggests that scientific data should have findability, accessibility,
interoperability, and reusability. This is the key difference between
the methodology of this work and previous AI benchmarking and
scientific benchmarking systems, where the benchmarked scenarios are
pre-determined workload and model combinations, and the addition of
a new AI model or dataset would not be automatically discovered and
reused by existing modules in the system and has to be scripted by a
programmer.

Last but not least, because the system automatically discovers poten-
tial benchmarking tasks, it is desired that the system can concurrently
schedule computation resources to them. As different benchmarking
tasks may require different computing environments, it is crucial that
the system can elastically provision the environment for each task
in a standardized manner, including the operating system, runtime
libraries, setup scripts, and test fixture data. The challenge lies in how
to design the system to efficiently support such needs and minimize the
deployment overhead.

4. System design

In this section, we illustrate the overall design of the system and tap
into each system component, and discuss how to address the aforemen-
tioned challenges. The architecture of the system is depicted in Fig. 1.
The workflow is straightforward. The planner pulls all modules from
the module repository and joins them into feasible tuples according to
the metadata descriptors. The execution plan is then dispatched to the
elastic

computing platform which provides storage, processors, and accel-
erators, where each benchmarking task tuple is executed in a ‘‘bench-
marking pod’’. The purpose of the BenchPod is to provide task-level
isolation to computation resources, a communication endpoint to in-
teract with the planner, and experiment orchestration. A problem
definition module either generates data on-the-fly or retrieves a well-
known dataset into the BenchPod instance. The hardware definition
module acquires hardware resources. The software definition module
constructs a containerized environment, based on a standardized soft-
ware package requirement descriptor. The entry point of the container
is a shim program provided by the BenchPod instance that orchestrates
the actual execution of the solver, metric collection, and aggregation.

4.1. SAIL: Scientific AI domain-specific language

Previous AI benchmarking systems either implicitly define a series
of built-in modules [19,20], or expose a markup language schema to
define modules [21]. For better programmability, discoverability, and
user ergonomics, we propose to define modules with an embedded
domain-specific language (eDSL) called SAIL. The eDSL is implemented

as a Python package so that a module implementer can take advantage

Y. Li and J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100063
Fig. 1. System architecture.
Fig. 2. MNIST Problem Definition.
of modern IDE features such as auto-completion and type checking
while writing the module definition. To design an eDSL means that
the desired features must be retrofitted into the target language. To
achieve this, we take advantage of various Python language constructs
that best fit the required features. Some features can be implemented
with static analysis, for example, we use Python decorators to identify
module entry points. This way we can easily scan for modules with
reflection, and build our module repository. We use Python classes to
represent type descriptors for our type system, which is a dual-role
construct that both encodes the type information for static analysis, and
dispatches code during benchmarking runtime. Benchmarking concepts
are modeled as well-known global objects, and the methods attached
to them represent benchmarking primitives. This gives a hint to the
user that these concepts are stateful, and the primitives can function as
both computation routine and data storage. Finally, we use declarative
methods to construct the computation graph for AI models. Table 3
shows some language construct examples.

The module script, rather than directly executed in a Python inter-
preter, is first sent to the SAIL parser. The SAIL parser substitutes the
actual execution logic with computation nodes and connects the nodes
with computational dependencies to construct the computation graph,
similar to the tape-recording technique in automatic differentiation
frameworks [22]. The parser then analyzes the computation graph and
synthesizes actual benchmarking code. The eDSL provides its own type
system with both tensors and symbolic equations as first-class citizens,
and helper functions to help connect different modules. In fact, with
proper type inference, there is even no need to explicitly declare the
input/output types of a module.

The flexibility of a scripting language also simplifies module defini-
tions, for example, Fig. 2 illustrates a ‘‘hello world’’ problem definition

module — the MNIST [23] image classification problem. This is a

13
Table 3
Examples of SAIL language constructs.

Feature Construct Instances

Module entry points Decorators @ProblemDefinition
@MetricDefiniton . . .

Type descriptors Classes class Tensor
class Scalar . . .

Concepts and Primitives Well-known Train. Classify
Global Objects Model. Predict

Test. Compare . . .

AI models Declarative methods Pipeline
Linear
Relu
Softmax . . .

typical ‘‘defined by cases’’ problem as we illustrated in Section 2. The
definition of this problem reads from four input files, joins them into
pairs, and declares the data points and associated classification tasks
into Train and Test collections. Note that the existence of both train
and test collections is not necessary for some kinds of problems — for
example, a PDE ‘‘problem class’’ definition may define a few equations
in the test collection and expect a solver to accomplish the task without
training or hints.

Note that the problem definition of MNIST resembles a machine
learning training loop — but not entirely. The key point is that it
only defines the problem, and does not try to solve or evaluate the
results. This allows us to plug different evaluation metrics into the
workflow. For example, the Machine Learning community traditionally
focuses on the average performance over the whole dataset, while in
a production critical environment, one may prefer to evaluate 99%

Y. Li and J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100063
Fig. 3. Custom Evaluation Metric Definition.

percentile precision, or a hard fail condition, as shown in Fig. 3. Also
shown in the code is a simple timer metric, and a task can be evaluated
with multiple metrics. For example, the two in the code will combine
into a work–critical loss 2D graph. For iterative tasks, a metric will also
be evaluated iteratively, and a module can choose to keep states across
multiple iterations, memorize the data points or obtain the average, etc.

Even for the same task, different research communities have dif-
ferent interests in performance evaluation. For example, scientific re-
search groups focus on the quality of the end result, while com-
puter system researchers focus on system performance metrics, such
as throughput and latency [24]. This is why we further split the
ranking module from problems and metrics. A ranking module can
reference multiple metrics and aggregate them to obtain a total order,
or implement a comparison between two instances to obtain partial
order.

Another advantage of this approach is that the module definition
can take input parameters and programmatically generate configura-
tions. For example, in Fig. 4 we define how to pick the correct docker
image tag for TensorFlow based on the hardware configuration, which
is hard to model with a markup language. This also allows us to define
generic AI modules that adapt to different input sizes and types and
suggest hyper-parameter values. Fig. 5 shows the definition of a simple
neural network, which not only defines the computation graph, but also
the intended tasks, input/output type conversion, and layer width sug-
gestions, so that the planner can grid search this hyperparameter. Also
shown in the code snippet are two type converters, when combined,
can automatically convert the input of an atom sequence into a single
concatenated tensor.

4.2. Automatic benchmarking task discovery

As discussed before, the module definitions are not used for the
actual execution of the benchmarking tasks. Rather, they are metapro-
gramming constructs that can be seen as a ‘‘dryrun’’ for the actual
benchmarking. The system scans all python files and uses reflection
to identify module entry points, and create records for them in the
module repository. The system then enumerates all the modules from
the repository and constructs candidate test fixtures, which are tuples
of different kinds of modules. For each candidate tuple, the system
executes the modules in it, providing input parameters, and extracting
information such as the problems a model can solve, the research field
of a problem, the suggested hyperparameters, and compatible metrics
for a kind of task and so on. The execution order is determined by the
type of modules and the implied dependencies — problem definitions
execute first because they generally do not depend on other modules,
and populate the metadata required to associate metrics and ranking.
During execution, the system maintains the context for the current test
fixture and accumulates the metadata from already executed modules
in the candidate tuple, and later modules can either be filtered by
metadata matching (for example, by matching data types) or actively
14
reject the context. This is demonstrated in earlier examples, where a
module can use the DSL primitive Fail to indicate that it does not
know how to solve the problem, or the hardware does not support
the current software configuration. Additionally, the system builds a
graph where the nodes are data types and edges are converters, and
employs breadth-first search to also allow type converter composition
so that multiple converters can work together to relax type constraints
and improve module compatibility. This process is akin to the inner
join operation in relational databases, and the system builds complete
tuples of the modules as test scenarios. Apart from automatic discovery,
a module can also explicitly declare relationships with other modules so
as to narrow down the search space. The logic is presented in algorithm
1.

4.3. Experiment orchestration

When the planner is done generating benchmarking configuration
tuples, it is necessary to prune unnecessary entries and make a sched-
ule for the rest. There are multiple invariances in the benchmarking
tasks to help pruning. For example, given the same AI model, soft-
ware/hardware configuration, and similar problem size (of different
problems), the throughput (in terms of FLOPS) can be comparable.
Likewise, the precision evaluation should not be heavily impacted for
the same model and problem on different software/hardware configu-
rations. The executor should only pick significant tuples to maximize
the diversity in measurements for all the metric dimensions, including
model performance, scalability, generalization, and so on. Once the
pruning is done, the scheduling problem concerns how to estimate the
costs of each tuple, and efficiently pack them onto the hardware-task

timeline.

Y. Li and J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100063
Fig. 4. TensorFlow Software Configuration.
Fig. 5. AI Model Definition.

5. Case study

Now we discuss the details of a particular use case, Molecular Dy-
namics (MD). Given the initial states of the atoms (position and velocity
vectors), the problem asks for a prediction of the movement of the
atoms. In practice, the problem is decomposed into the problem of force
prediction (Molecular Mechanics), and the integrated force over time to
compute new states. In particular, force prediction is achieved in mul-
tiple ways developed by the Molecular Dynamics research community.
‘‘Classical MD’’ employs empirical models to compute pairwise forces
between atoms, and first-principle methods (AIMD) employ quantum
mechanic methods as DFT [25] and CCSD(t) [26] to first predict the
potential energy of the system, and then obtain the forces by computing
the partial derivatives of the energy over atom positions.

The problem definition module is shown in Fig. 6. It consists of two
phases. First, an AI model is trained to predict the potential energy of
a system, guided by a Molecular Dynamics software package, such as
ORCA or Gaussian. Then, the performance of the model is evaluated on
a different set of atom configurations. Unlike traditional AI benchmarks
that merely evaluate the output of a model, here we provide multiple
fixtures, including both the energy prediction, and the position and
velocity updates computed from the prediction. It is the flexibility of
problem scripting that gives us the ability to model additional fixtures
other than the energy, which can be extended to benchmark fields other
than Molecular Dynamics, for example, Raman Spectroscopy. This is
15
a typical ‘‘defined by setting’’ problem as we illustrated in Section 2,
because although it reads multiple data points from input files, each
data point is not fed into the AI model, but rather into a simulation
software to compute data points for the AI model.

There are multiple ways to specify an AI model for this problem
— namely, given a set of atoms (atom types, positions, and velocities),
predict a single scalar energy value. One way is to implement an end-
to-end energy prediction model [27,28]. The other way aims to capture
the essence of the end-to-end solutions and let the system synthesize the
whole model. One key insight of the aforementioned energy prediction
models is that the atom configuration is permutation invariant, which
means that the input should be modeled as a set of atoms, not a list.
Therefore, our goal here is to enable the system to compose an AI model
to honor this property and take advantage of existing building blocks.
A possible solution is shown in Fig. 7, where the input is typechecked
to be a list, and the module requires a submodule that can complete
the specified task (prediction in the Molecular Dynamics context) to
map the element type to the output type. The element-wise results are
then summed to combine a permutation invariant output. This way,
the system is able to pick up the modules we defined earlier, such
as the atom embedding converter, and the MLP model for conducting
element-wise prediction.

Now we discuss another benchmarking scenario, deep-learning-
based electron microscopy image segmentation, which is becoming
a popular topic in Biological Chemistry [29–31]. One of the main
challenges in this topic is the scarce of training data, due to complex
and costly data acquisition process. Given limited data, supervised
deep-learning methods require heavy human intervention and may
fail to generalize to unseen data [32,33]. One way to circumvent the
data problem is to introduce semi-supervised deep-learning techniques,
such as pre-training with high volume unlabeled data [34]. To support
pre-training in the benchmarking system means that a model under
evaluation should be able to carry a part of its internal states (weights)
from one task to another, and adjust its computation graph accordingly.
The problem definition should also evaluate the performance of the
model given different amounts of training data, to test its sample
efficiency. The code for this scenario is shown in Fig. 8.

5.1. Comparison to other benchmarking systems

As mentioned above, previous systems focus on a fixed set of
test scenarios [19–21]. Additionally, the lack of declarative modules
means that it is hard to share data between the benchmarking suite
and external scientific computing software packages, which is crucial
in scientific AI benchmarking. For example, the Gradient primitive
in SAIBench allows a training pipeline to extract gradients from an
external package, which is usually not exposed programmatically. The
differences are shown in Table 4.

6. Discussion

We have elaborated on the methodology and the overview of the
system design, yet we look forward to further development in the

Y. Li and J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100063
Fig. 6. Molecular Dynamics Problem Definition.
Fig. 7. Permutation Invariant Model Definition.

Table 4
Comparison to other benchmarking systems.

SAIBench MLPerf MLHarness

Focus Different scientific
tasks/criterion

Accuracy, system
throughput

Scalability,
MLCommon
coverage

Modules Declarative Hard-coded Markup

Test scenarios Automatic discovery Fixed Fixed

components. Brute-force enumeration of all possible test hyperparame-
ters may not be feasible and while pruning can mechanically improve
the situation, it is desirable that a particular problem module can
suggest parameters suitable for a research field. More design work
could be done to address model development and debugging needs, for
example, to allow model validation in addition to training and testing.
Python-based eDSL has its limitations, mostly due to the syntactic
constraints of the language. To represent the modules more naturally, a
16
programming language more geared towards scientific computing can
be investigated [35].

Currently, SAIBench targets tractable scientific tasks, which are
mechanical procedures that can be computed and measured. It is
challenging to extend it to more creative scientific research activities
because it would require the system to formally model the scientific
concepts, and gain a deeper understanding of research topics, motiva-
tions, methodologies, and goals, and how various concepts interact with
each other. Also, automated benchmarks require well-defined metrics,
while open-ended scientific research ideas, in general, are hard to
quantify.

Apart from type-based model composition, automatic AI model
synthesizing given a particular problem definition is also a promising
direction, given the advancement in AI-based code generation [36,37].

7. Conclusion

We have presented our definition of scientific AI benchmarking,
which is an ensemble of scientific task definition, AI benchmarking,
and system performance benchmarking. We have then presented our
methodology for scientific AI benchmarking, with the key idea of de-
coupling and modularizing various components, automatically bench-
marking sensible combinations. We have proposed a system design
where the various modules are implemented with a domain-specific
language for scientific AI computing. We have demonstrated that this
design is flexible enough to support benchmarking different types of
scientific tasks, defining AI models, deriving multiple metrics, com-
bining metrics into ranking criteria, and configuring required hard-

ware/software.

Y. Li and J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100063
Fig. 8. Electron Microscopy Image Segmentation.
Declaration of competing interest

One or more of the authors of this paper have disclosed potential or
pertinent conflicts of interest, which may include receipt of payment,
either direct or indirect, institutional support, or association with an
entity in the biomedical field which may be perceived to have potential
conflict of interest with this work. For full disclosure statements refer to
https://doi.org/10.1016/j.tbench.2022.100063. Yatao Li reports finan-
cial support was provided by Microsoft Research Asia. Yatao Li reports
administrative support was provided by Institute of Computing Tech-
nology Chinese Academy of Sciences. Jianfeng Zhan reports financial
support was provided by Institute of Computing Technology Chinese
Academy of Sciences.

References

[1] A.N. Laboratory, AI for science report.URL https://publications.anl.gov/anlpubs/
2020/03/158802.pdf.

[2] K. Albertsson, P. Altoe, D. Anderson, J. Anderson, M. Andrews, J.P.A. Espinosa,
A. Aurisano, L. Basara, A. Bevan, W. Bhimji, D. Bona-corsi, B. Burkle, P.
Calafiura, M. Campanelli, L. Capps, F. Carmi-nati, S. Carrazza, Y.-f. Chen, T.
Childers, Y. Coadou, E. Coniavitis, K. Cranmer, C. David, D. Davis, A. De Simone,
J. Duarte, M. Erd-mann, J. Eschle, A. Farbin, M. Feickert, N.F. Castro, C.
Fitzpatrick, M. Floris, A. Forti, J. Garra-Tico, J. Gemmler, M. Girone, P. Glaysher,
17
S. Gleyzer, V. Gligorov, T. Golling, J. Graw, L. Gray, D. Greenwood, T. Hacker,
J. Harvey, B. Hegner, L. Heinrich, U. Heintz, B. Hoober-man, J. Junggeburth,
M. Kagan, M. Kane, K. Kanishchev, P. Karpiński, Z. Kassabov, G. Kaul, D. Kcira,
T. Keck, A. Klimentov, J. Kowalkowski, L. Kreczko, A. Kurepin, R. Kutschke,
V. Kuznetsov, N. Köhler, I. Lako-mov, K. Lannon, M. Lassnig, A. Limosani, G.
Louppe, A. Mangu, P. Mato, N. Meenakshi, H. Meinhard, D. Menasce, L. Moneta,
S. Moort-gat, M. Neubauer, H. Newman, S. Otten, H. Pabst, M. Paganini, M.
Paulini, G. Perdue, U. Perez, A. Picazio, J. Pivarski, H. Prosper, F. Psihas, A.
Radovic, R. Reece, A. Rinkevicius, E. Rodrigues, J. Rorie, D. Rousseau, A. Sauers,
S. Schramm, A. Schwartzman, H. Severini, P. Seyfert, F. Siroky, K. Skazytkin,
M. Sokoloff, G. Stewart, B. Stienen, I. Stockdale, G. Strong, W. Sun, S. Thais,
K. Tomko, E. Upfal, E. Usai, A. Ustyuzhanin, M. Vala, J. Vasel, S. Vallecorsa,
M. Verzetti, X. Vilasís-Cardona, J.-R. Vlimant, I. Vukotic, S.-J. Wang, G. Watts,
M. Williams, W. Wu, S. Wunsch, K. Yang, O. Zapata, Machine learning in high
energy physics community white paper. URL http://arxiv.org/abs/1807.02876.

[3] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips, A.
Mahesh, M. Matheson, J. Deslippe, M. Fatica, M. Houston Prabhat, Exascale deep
learning for climate analytics, in: Proceedings of the International Conference for
High Performance Computing, Networking, Storage, and Analysis,

[4] J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese, T. Ewalds,
R. Hafner, A. Abdolmaleki, D. de las Casas, C. Don-ner, L. Fritz, C. Galperti,
A. Huber, J. Keeling, M. Tsimpoukelli, J. Kay, A. Merle, J.-M. Moret, S. Noury,
F. Pesamosca, D. Pfau, O. Sauter, C. Sommariva, S. Coda, B. Duval, A. Fasoli,
P. Kohli, K. Kavukcuoglu, D. Hassabis, M. Riedmiller, Magnetic control of
toka- mak plasmas through deep reinforcement learning 602 (7897) 414–419.
http://dx.doi.org/10.1038/s41586-021-04301-9. URL https://www.nature.com/
articles/s41586-021-04301-9.

https://doi.org/10.1016/j.tbench.2022.100063
https://publications.anl.gov/anlpubs/2020/03/158802.pdf
https://publications.anl.gov/anlpubs/2020/03/158802.pdf
https://publications.anl.gov/anlpubs/2020/03/158802.pdf
http://arxiv.org/abs/1807.02876
http://refhub.elsevier.com/S2772-4859(22)00050-3/sb3
http://refhub.elsevier.com/S2772-4859(22)00050-3/sb3
http://refhub.elsevier.com/S2772-4859(22)00050-3/sb3
http://refhub.elsevier.com/S2772-4859(22)00050-3/sb3
http://refhub.elsevier.com/S2772-4859(22)00050-3/sb3
http://refhub.elsevier.com/S2772-4859(22)00050-3/sb3
http://refhub.elsevier.com/S2772-4859(22)00050-3/sb3
http://dx.doi.org/10.1038/s41586-021-04301-9
https://www.nature.com/articles/s41586-021-04301-9
https://www.nature.com/articles/s41586-021-04301-9
https://www.nature.com/articles/s41586-021-04301-9

Y. Li and J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100063
[5] R.B. Neale, A. Gettelman, S. Park, C.-C. Chen, P.H. Lauritzen, D.L. Williamson,
A.J. Conley, D. Kinnison, D. Marsh, A.K. Smith, F. Vitt, R. Garcia, J.-F. Lamarque,
M. Mills, S. Tilmes, H. Morrison, P. Cameron-Smith, W.D. Collins, M.J. Iacono,
R.C. Easter, X. Liu, S.J. Ghan, P.J. Rasch, M.A. Taylor, Description of the NCAR
community atmosphere model (CAM 5.0) 289.

[6] J.S. Smith, R. Zubatyuk, B. Nebgen, N. Lubbers, K. Barros, A.E. Roit-berg, O.
Isayev, S. Tretiak, The ANI-1ccx and ANI-1x data sets, coupled-cluster and
density functional theory properties for molecules, Sci. Data 7 (1) 134. http://
dx.doi.org/10.1038/s41597-020-0473-z. URL http://www.nature.com/articles/
s41597-020-0473-z.

[7] L. Ruddigkeit, R. van Deursen, L.C. Blum, J.-L. Reymond, Enumeration of 166
billion organic small molecules in the chemical universe database GDB-17, J.
Chem. Inform. Model. 52 (11) 2864–2875. http://dx.doi.org/10.1021/ci300415d.
URL https://pubs.acs.org/doi/10.1021/ci300415d.

[8] D.S. Marcus, T.H. Wang, J. Parker, J.G. Csernansky, J.C. Morris, R.L. Buck-
ner, Open access series of imaging studies (OASIS): Cross-sectional MRI
data in young, middle aged, nondemented, and demented older adults, J.
Cogn. Neurosci. 19 (9) 1498–1507. http://dx.doi.org/10.1162/jocn.2007.19.
9.1498. URL https://direct.mit.edu/jocn/article/19/9/1498/4427/Open-Access-
Series-of-Imaging-Studies-OASIS-Cross.

[9] E. Weinan, J. Han, A. Jentzen, Deep learning-based numerical methods
for high-dimensional parabolic partial differential equations and back-
ward stochastic differential equations, Commun. Math. Stat. 5 (4)
349–380. http://dx.doi.org/10.1007/s40304-017-0117-6. URL https:
//collaborate.princeton.edu/en/publications/deep-learning-based-numerical-
methods-for-high-dimensional-parabo.

[10] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations, J. Computat. Phys. 378 686–707. http:
//dx.doi.org/10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/
science/article/pii/S0021999118307125.

[11] F. Noé, Machine learning for molecular dynamics on long timescales, in:
K.T. Schütt, S. Chmiela, O.A. von Lilienfeld, A. Tkatchenko, K. Tsuda, K.-R.
Müller (Eds.), Machine Learning Meets Quantum Physics, Springer International
Publishing, pp. 331–372, http://dx.doi.org/10.1007/978-3-030-40245-7_16.

[12] A. Mardt, L. Pasquali, H. Wu, F. Noé, VAMPnets for deep learning of molec-
ular kinetics, Nature Commun. 9 (1) 5, http://dx.doi.org/10.1038/s41467-017-
02388-1. URL https://www.nature.com/articles/s41467-017-02388-1.

[13] W. Jia, H. Wang, M. Chen, D. Lu, L. Lin, R. Car, W. E, L. Zhang, Pushing the
limit of molecular dynamics with ab initio accuracy to 100 million atoms with
machine learning Version: 1. arXiv:2005.00223. URL http://arxiv.org/abs/2005.
00223.

[14] T. Hoefler, R. Belli, Scientific benchmarking of parallel computing sys- tems:
Ttwelve ways to tell the masses when reporting performance re- sults, in:
Proceedings of the International Conference for High Perfor- Mance Computing,
Networking, Storage and Analysis, ACM, pp. 1–12, http://dx.doi.org/10.1145/
2807591.2807644, URL https://dl.acm.org/doi/10.1145/2807591.2807644.

[15] E. Apra‘, E.J. Bylaska, W.A. de Jong, N. Govind, K. Kowalski, T.P. Straatsma, M.
Valiev, H.J.J. van Dam, Y. Alexeev, J. Anchell, V. Anisi-mov, F.W. Aquino, R.
Atta-Fynn, J. Autschbach, N.P. Bauman, J.C. Becca, D.E. Bernholdt, K. Bhaskaran-
Nair, S. Bogatko, P. Borowski, J. Boschen, J. Brabec, A. Bruner, E. Cauët, Y. Chen,
G.N. Chuev, C.J. Cramer, J. Daily, M.J.O. Deegan, T.H. Dunning, M. Dupuis,
K.G. Dyall, G.I. Fann, S.A. Fischer, A. Fonari, H. Früchtl, L. Gagliardi, J. Garza,
N. Gawande, S. Ghosh, K. Glaesemann, A.W. Götz, J. Ham-mond, V. Helms,
E.D. Hermes, K. Hirao, S. Hirata, M. Jacquelin, L. Jensen, B.G. Johnson, H.
Jónsson, R.A. Kendall, M. Klemm, R. Kobayashi, V. Konkov, S. Krishnamoorthy,
M. Krishnan, Z. Lin, R.D. Lins, R.J. Littlefield, A.J. Logsdail, K. Lopata, W.
Ma, A.V. Marenich, J. Martin del Campo, D. Mejia-Rodriguez, J.E. Moore, J.M.
Mullin, T. Nakajima, D.R. Nascimento, J.A. Nichols, P.J. Nichols, J. Nieplocha,
A. Otero-de-la Roza, B. Palmer, A. Panyala, T. Pirojsirikul, B. Peng, R. Peverati,
J. Pittner, L. Pollack, R.M. Richard, P. Sadayappan, G.C. Schatz, W.A. Shelton,
D.W. Silverstein, D.M.A. Smith, T.A. Soares, D. Song, M. Swart, H.L. Taylor,
G.S. Thomas, V. Tipparaju, D.G. Truh-lar, K. Tsemekhman, T. Van Voorhis,
Vázquez-Mayagoitia, P. Verma, O. Villa, A. Vishnu, K.D. Vogiatzis, D. Wang,
J.H. Weare, M.J. Williamson, T.L. Windus, K. Woliński, A.T. Wong, Q. Wu, C.
Yang, Q. Yu, M. Zacharias, Z. Zhang, Y. Zhao, R.J. Harrison, NWChem: Past,
present, and future 152 (18) 184102. http://dx.doi.org/10.1063/5.0004997. URL
http://aip.scitation.org/doi/10.1063/5.0004997.

[16] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang,
Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, S. Chintala, PyTorch: An imperative style, high- performance deep
learning library, in: Advances in Neural Information Processing Systems,
Vol. 32, Curran Associates, Inc., URL https://papers.nips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

[17] M. Brehm, SANscript – A scientific algorithm notation language. URL https:

//brehm-research.de/sanscript.php.

18
[18] M.D. Wilkinson, M. Dumontier, I.J. Aalbersberg, G. Appleton, M. Ax-ton, A.
Baak, N. Blomberg, J.-W. Boiten, L.B. da Silva Santos, P.E. Bourne, J. Bouwman,
A.J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C.T. Evelo,
R. Finkers, A. Gonzalez-Beltran, A.J.G. Gray, P. Groth, C. Goble, J.S. Grethe,
J. Heringa, P.A.C. ’t Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S.J. Lusher,
M.E. Martone, A. Mons, A.L. Packer, B. Persson, P. Rocca-Serra, M. Roos,
R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn,
M.A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J. Vel-terop,
A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, B. Mons, The FAIR
guiding principles for scientific data management and stewardship, Sci. Data 3
(1) 160018. http://dx.doi.org/10.1038/sdata.2016.18. URL https://www.nature.
com/articles/sdata201618.

[19] W. Gao, C. Luo, L. Wang, X. Xiong, J. Chen, T. Hao, Z. Jiang, F. Fan, M. Du,
Y. Huang, F. Zhang, X. Wen, C. Zheng, X. He, J. Dai, H. Ye, Z. Cao, Z. Jia, K.
Zhan, H. Tang, D. Zheng, B. Xie, W. Li, X. Wang, J. Zhan, Aibench: Towards
scalable and comprehensive datacenter AI benchmarking, in: C. Zheng, J. Zhan
(Eds.), Benchmarking, Measuring, and Optimizing, Vol. 11459, in: Lecture Notes
in Computer Science, Springer International Publishing, pp. 3–9, http://dx.doi.
org/10.1007/978-3-030-32813-9_1, URL http://link.springer.com/10.1007/978-
3-030-32813-9 1.

[20] P. Mattson, C. Cheng, C. Coleman, G. Diamos, P. Micikevicius, D. Pat-terson, H.
Tang, G.-Y. Wei, P. Bailis, V. Bittorf, D. Brooks, D. Chen, D. Dutta, U. Gupta, K.
Hazelwood, A. Hock, X. Huang, A. Ike, B. Jia, D. Kang, D. Kanter, N. Kumar,
J. Liao, G. Ma, D. Narayanan, T. Ogun-tebi, G. Pekhimenko, L. Pentecost, V.J.
Reddi, T. Robie, T.S. John, T. Tabaru, C.-J. Wu, L. Xu, M. Yamazaki, C. Young,
M. Zaharia, MLPerf training benchmark 14.

[21] Y.-H. Chang, J. Pu, W.-m. Hwu, J. Xiong, MLHarness: A scalable benchmarking
system for ML Commons, BenchCouncil Trans. Benchmarks, Standards Eval. 1
(1) 100002. http://dx.doi.org/10.1016/j.tbench.2021.100002. URL https://www.
sciencedirect.com/science/article/pii/S2772485921000028.

[22] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A.
Desmaison, L. Antiga, A. Lerer, Automatic differentiation in PyTorch 4.

[23] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied
to document recognition, Proc. IEEE 86 (11) 2278–2324. http://dx.doi.org/10.
1109/5.726791. URL http://ieeexplore.ieee.org/document/726791/.

[24] J. Thiyagalingam, M. Shankar, G. Fox, T. Hey, Scientific machine learn- ing
benchmarks.URL http://arxiv.org/abs/2110.12773.

[25] R. Haunschild, A. Barth, B. French, A comprehensive analysis of the history
of DFT based on the bibliometric method RPYS, J. Cheminform. 11 (1) 72,
http://dx.doi.org/10.1186/s13321-019-0395-y.

[26] H.G. Kümmel, A biography of the coupled cluster method 17 (28)
5311–5325, http://dx.doi.org/10.1142/S0217979203020442. URL https://www.
worldscientific.com/doi/abs/10.1142/S0217979203020442.

[27] J. Han, L. Zhang, R. Car, W. E, Deep potential: A general representation
of a many-body potential energy surface, Commun. Computat. Phys. 23 (3).
arXiv:1707.01478, http://dx.doi.org/10.4208/cicp.OA-2017-0213. URL http://
arxiv.org/abs/1707.01478.

[28] O.T. Unke, M. Meuwly, PhysNet: A neural network for predicting energies,
forces, dipole moments and partial charges, J. Chem. Theory Computat. 15 (6)
3678–3693. arXiv:1902.08408, http://dx.doi.org/10.1021/acs.jctc.9b00181. URL
http://arxiv.org/abs/1902.08408.

[29] E. Gómez-de Mariscal, M. Maška, A. Kotrbová, V. Pospíchalová, P. Mat-ula,
A. Munõz-Barrutia, Deep-learning-based segmentation of small extracellular
vesicles in transmission electron microscopy images, Sci. Rep. 9 (1) 13211.
http://dx.doi.org/10.1038/s41598-019-49431-3. URL https://www.nature.com/
articles/s41598-019-49431-3.

[30] L. von Chamier, R.F. Laine, J. Jukkala, C. Spahn, D. Krentzel, E. Nehme, M.
Lerche, S. Hernández-Pérez, P.K. Mattila, E. Karinou, S. Holden, A.C. Solak,
A. Krull, T.-O. Buchholz, M.L. Jones, L.A. Royer, C. Leterrier, Y. Shecht-
man, F. Jug, M. Heilemann, G. Jacquemet, R. Henriques, Democratising deep
learning for microscopy with ZeroCostDL4Mic, Nature Commu. 12 (1) 2276.
http://dx.doi.org/10.1038/s41467-021-22518-0. URL https://www.nature.com/
articles/s41467-021-22518-0.

[31] J.M. Ede, Deep learning in electron microscopy, Mach. Learning: Sci. Technol.
2 (1) 011004. http://dx.doi.org/10.1088/2632-2153/abd614.

[32] S.M. Plaza, J. Funke, Analyzing image segmentation for connectomics, Front.
Neural Circ. 12, 102. DOI: http://dx.doi.org/10.3389/fncir.2018.00102. URL
https://www.frontiersin.org/article/10.3389/fncir.2018.00102/full.

[33] J.W. Lichtman, H. Pfister, N. Shavit, The big data challenges of connectomics,
Nature Neurosci. 17 (11) 1448–1454. http://dx.doi.org/10.1038/nn.3837. URL
http://www.nature.com/articles/nn.3837.

[34] R. Conrad, K. Narayan, CEM500K, a large-scale heterogeneous unlabeled cellular
electron microscopy image dataset for deep learning, eLife 10 e65894, eLife
Sciences Publications, Ltd. DOI: http://dx.doi.org/10.7554/eLife.65894.

[35] M. Innes, A. Edelman, K. Fischer, C. Rackauckas, E. Saba, V.B. Shah, W. Tebbutt,
A differentiable programming system to bridge machine learning and scientific

computing. URL http://arxiv.org/abs/1907.07587.

http://dx.doi.org/10.1038/s41597-020-0473-z
http://dx.doi.org/10.1038/s41597-020-0473-z
http://dx.doi.org/10.1038/s41597-020-0473-z
http://www.nature.com/articles/s41597-020-0473-z
http://www.nature.com/articles/s41597-020-0473-z
http://www.nature.com/articles/s41597-020-0473-z
http://dx.doi.org/10.1021/ci300415d
https://pubs.acs.org/doi/10.1021/ci300415d
http://dx.doi.org/10.1162/jocn.2007.19.9.1498
http://dx.doi.org/10.1162/jocn.2007.19.9.1498
http://dx.doi.org/10.1162/jocn.2007.19.9.1498
https://direct.mit.edu/jocn/article/19/9/1498/4427/Open-Access-Series-of-Imaging-Studies-OASIS-Cross
https://direct.mit.edu/jocn/article/19/9/1498/4427/Open-Access-Series-of-Imaging-Studies-OASIS-Cross
https://direct.mit.edu/jocn/article/19/9/1498/4427/Open-Access-Series-of-Imaging-Studies-OASIS-Cross
http://dx.doi.org/10.1007/s40304-017-0117-6
https://collaborate.princeton.edu/en/publications/deep-learning-based-numerical-methods-for-high-dimensional-parabo
https://collaborate.princeton.edu/en/publications/deep-learning-based-numerical-methods-for-high-dimensional-parabo
https://collaborate.princeton.edu/en/publications/deep-learning-based-numerical-methods-for-high-dimensional-parabo
https://collaborate.princeton.edu/en/publications/deep-learning-based-numerical-methods-for-high-dimensional-parabo
https://collaborate.princeton.edu/en/publications/deep-learning-based-numerical-methods-for-high-dimensional-parabo
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2018.10.045
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
http://dx.doi.org/10.1007/978-3-030-40245-7_16
http://dx.doi.org/10.1038/s41467-017-02388-1
http://dx.doi.org/10.1038/s41467-017-02388-1
http://dx.doi.org/10.1038/s41467-017-02388-1
https://www.nature.com/articles/s41467-017-02388-1
http://arxiv.org/abs/2005.00223
http://arxiv.org/abs/2005.00223
http://arxiv.org/abs/2005.00223
http://arxiv.org/abs/2005.00223
http://dx.doi.org/10.1145/2807591.2807644
http://dx.doi.org/10.1145/2807591.2807644
http://dx.doi.org/10.1145/2807591.2807644
https://dl.acm.org/doi/10.1145/2807591.2807644
http://dx.doi.org/10.1063/5.0004997
http://aip.scitation.org/doi/10.1063/5.0004997
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://brehm-research.de/sanscript.php
https://brehm-research.de/sanscript.php
https://brehm-research.de/sanscript.php
http://dx.doi.org/10.1038/sdata.2016.18
https://www.nature.com/articles/sdata201618
https://www.nature.com/articles/sdata201618
https://www.nature.com/articles/sdata201618
http://dx.doi.org/10.1007/978-3-030-32813-9_1
http://dx.doi.org/10.1007/978-3-030-32813-9_1
http://dx.doi.org/10.1007/978-3-030-32813-9_1
http://link.springer.com/10.1007/978-3-030-32813-9
http://link.springer.com/10.1007/978-3-030-32813-9
http://link.springer.com/10.1007/978-3-030-32813-9
http://dx.doi.org/10.1016/j.tbench.2021.100002
https://www.sciencedirect.com/science/article/pii/S2772485921000028
https://www.sciencedirect.com/science/article/pii/S2772485921000028
https://www.sciencedirect.com/science/article/pii/S2772485921000028
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.726791
http://ieeexplore.ieee.org/document/726791/
http://arxiv.org/abs/2110.12773
http://dx.doi.org/10.1186/s13321-019-0395-y
http://dx.doi.org/10.1142/S0217979203020442
https://www.worldscientific.com/doi/abs/10.1142/S0217979203020442
https://www.worldscientific.com/doi/abs/10.1142/S0217979203020442
https://www.worldscientific.com/doi/abs/10.1142/S0217979203020442
http://arxiv.org/abs/1707.01478
http://dx.doi.org/10.4208/cicp.OA-2017-0213
http://arxiv.org/abs/1707.01478
http://arxiv.org/abs/1707.01478
http://arxiv.org/abs/1707.01478
http://arxiv.org/abs/1902.08408
http://dx.doi.org/10.1021/acs.jctc.9b00181
http://arxiv.org/abs/1902.08408
http://dx.doi.org/10.1038/s41598-019-49431-3
https://www.nature.com/articles/s41598-019-49431-3
https://www.nature.com/articles/s41598-019-49431-3
https://www.nature.com/articles/s41598-019-49431-3
http://dx.doi.org/10.1038/s41467-021-22518-0
https://www.nature.com/articles/s41467-021-22518-0
https://www.nature.com/articles/s41467-021-22518-0
https://www.nature.com/articles/s41467-021-22518-0
http://dx.doi.org/10.1088/2632-2153/abd614
http://dx.doi.org/10.3389/fncir.2018.00102
https://www.frontiersin.org/article/10.3389/fncir.2018.00102/full
http://dx.doi.org/10.1038/nn.3837
http://www.nature.com/articles/nn.3837
http://dx.doi.org/10.7554/eLife.65894
http://arxiv.org/abs/1907.07587

Y. Li and J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100063
[36] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement, D.
Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou, M. Tu-fano, M.
Gong, M. Zhou, N. Duan, N. Sundaresan, S.K. Deng, S. Fu, S. Liu, CodeXGLUE:
A machine learning benchmark dataset for code understanding and generation.
URL http://arxiv.org/abs/2102.04664.
19
[37] D. Peng, S. Zheng, Y. Li, G. Ke, D. He, T.-Y. Liu, How could neural networks
understand programs? in: Proceedings of the 38th International Conference on
Machine Learning, PMLR, pp. 8476–8486, URL https://proceedings.mlr.press/
v139/peng21b.html.

http://arxiv.org/abs/2102.04664
https://proceedings.mlr.press/v139/peng21b.html
https://proceedings.mlr.press/v139/peng21b.html
https://proceedings.mlr.press/v139/peng21b.html

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062
Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

An efficient encrypted deduplication scheme with security-enhanced proof of
ownership in edge computing
Yukun Zhou a,b,c, Zhibin Yu a,∗, Liang Gu b, Dan Feng c

a Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
b Sangfor Technologies Inc, Shenzhen, China
c Wuhan National Laboratory for Optoelectronics, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China

A R T I C L E I N F O

Keywords:
Deduplication
Message-locked encryption
Proof of ownership
Edge computing

A B S T R A C T

With the rapid expansion of Internet of Things (IoT), relevant files are stored and transmitted at the network
edge by employing data deduplication to eliminate redundant data for the best accessibility. Although
deduplication improves storage and network efficiency, it decreases security strength and performance.
Existing schemes usually adopt message-locked encryption (MLE) to encrypt data, which is vulnerable to
brute-force attacks. Meanwhile, these schemes utilize proof-of-ownership (PoW) to prevent duplicate-faking
attacks, while they suffer from replay attacks or incur large computation overheads. This paper proposes
SE-PoW, an efficient and location-aware hybrid encrypted deduplication scheme with a dual-level security-
enhanced Proof-of-Ownership in edge computing. Specifically, SE-PoW firstly encrypts files with an inter-edge
server-aided randomized convergent encryption (RCE) method and then protects blocks with an intra-edge
edge-aided MLE method to balance security and system efficiency. To resist duplicate-faking attacks and
replay attacks, SE-PoW performs the dual-level PoW algorithm. Then it combines the verification of a cuckoo
filter and the homomorphism of algebraic signatures in sequence to enhance security and improve ownership
checking efficiency. Security analysis demonstrates that SE-PoW ensures data security and resists the mentioned
attacks. Evaluation results show that SE-PoW reduces up to 61.9% upload time overheads compared with the
state-of-the-art schemes.
1. Introduction

With the high-speed development of 5G and edge computing, large
amounts of data are collected in the core and edge devices, such as
smartphones, wearables, automatic driving [1], and traffic flow detec-
tion [2]. In the big data era, IDC predicts that the digital universe will
reach 175ZB in 2025 [3], and more than 44% of IoT-created data will be
processed and analyzed at the network edge. Edge computing deploys
computing and storage resources at the network edge to handle time-
sensitive tasks while offering fast and convenient services to users [4].
Research analysis shows that there exist large amounts of redundant
data (up to 76%) for workloads like VM images and car multimedia IoT
data [5–7]. Data deduplication has been adopted in the modern central
cloud (e.g., Dropbox [8], OneDrive [9]) and also pushed to the network
edge for both optimized space and network efficiency. Fig. 1 describes
a simple architecture of edge computing that deploys deduplication,
for example, Ctera [10]. Edge computing can be seen as a three-tiered
architecture. The central cloud stores and retrievals data from edge
nodes and users. The edge nodes provide limited computing, indexing,
storage, and other services [11,12]. Deduplication eliminates duplicate

∗ Corresponding author.
E-mail address: zb.yu@siat.ac.cn (Z. Yu).

data on a file or block, which keeps only one physical copy and others
refer to it. Deduplication can be classified into client-side or server-side
approaches, while the former also saves network transmission. Edge
computing deployed with deduplication has attracted lots of attention
in both academia and industry [10–13], but it remains many security
issues and potential threats [14,15].

Users usually encrypt data before outsourcing them to the edge and
cloud for security and privacy concerns. However, encrypting the same
data with different keys will result in different ciphertexts and makes
deduplication impossible. Many researchers propose convergent en-
cryption(CE) and message-locked encryption(MLE) [16–21] that adopt
the hash value as the symmetric key to encrypt data, which users
carry out deduplication over ciphertexts. Unfortunately, MLE suffers
from resist brute-force attacks [18] that the attacker can recover the
target file from a known set by offline encryption. To mitigate the at-
tacks, researchers propose an oblivious pseudorandom function(OPRF)
to generate MLE keys aided by secret messages of the server. How-
ever, client-side deduplication suffers from various attacks and privacy
leakages, such as duplicate-faking attacks [15,22,23] and position
attacks. That is, a malicious user can gain access to files belonging
https://doi.org/10.1016/j.tbench.2022.100062
Received 16 April 2022; Received in revised form 9 May 2022; Accepted 9 May 20
Available online 24 May 2022
2772-4859/© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

20
22

KeAi Communications Co. Ltd. This is an open access article under the CC

https://doi.org/10.1016/j.tbench.2022.100062
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2022.100062&domain=pdf
mailto:zb.yu@siat.ac.cn
https://doi.org/10.1016/j.tbench.2022.100062
http://creativecommons.org/licenses/by-nc-nd/4.0/

Y. Zhou, Z. Yu, L. Gu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062

𝑇
e
k
i
𝑇
c
M

b
p
w
e
a
a
w
I
c

Fig. 1. An example of edge computing deployed with data deduplication.

to other users based on a hash value or upload corrupted data with
valid hash values [24]. Some deduplication with Proof of ownership
(PoW) schemes [22,25–27] are proposed to verify ownership of data
users, such as MHT-PoW [22] or BF-PoW [21,26]. The user convinces
the server that it owns the hash value and holds the file content.
PoW is a protocol in which a server sends challenges, and the client
returns the proofs as a response. Specifically, MHT-PoW encodes files
into a fixed-size buffer and conducts a Merkle hash tree via a pairwise
independent hash function [20,28]. BF-PoW divides files into fixed-
size blocks, calculates the hash digests, and inserts them into a bloom
filter [29]. However, existing encrypted deduplication schemes with
PoW face new challenges.

First, existing schemes adopt MLE [17,30] or RCE [20,21] to protect
data security, but they are vulnerable to brute-force attacks for the
low-entropy files especially. Moreover, other encrypted deduplication
schemes, such as OPRF [18], data re-encryption [20,21], and public
encryption [31] bring a significant computational burden. They are not
suitable for resource-constrained edge nodes and IoT devices.

Second, existing schemes introduce proof-of-ownership to resist
duplicate-faking attacks. They nevertheless incur large computation
overheads or suffer from replay attacks. Generally speaking, MHT-PoW
brings a heavy computation burden because of the encoding of files
and constructions of the Merkle hash tree. BF-PoW suffers from replay
attacks and the privacy leakage of the false positive in a bloom filter.
An attacker passes the verification of BF-PoW by generating valid proof
from previous proofs without owning the original data. The replay
attacks also have occurred in many scenes, such as provable data
possession(PDP) and proof of retrievability (PoRs) [32].

To overcome these challenges, we propose an efficient encrypted
deduplication with Security-Enhanced Proof-of-Ownership (SE-PoW).
We observe that the capabilities and security risks for inter-/intra edge
nodes are different [4], and duplicate files are mainly from multiple
users [33,34]. The core idea behind SE-PoW is to employ different ran-
domized MLE methods based on the location of deduplication. Specifi-
cally, SE-PoW first performs inter-edge encrypted deduplication for files
via a server-aided RCE method. If the file is non-duplicate, SE-PoW
further performs intra-edge encrypted deduplication for blocks via an
edge-aided MLE method. Moreover, SE-PoW utilizes a dual-level proof-
of-ownership to guarantee higher security. SE-PoW performs own-
ership checking based on a cuckoo filter to resist duplicate-faking
attacks. SE-PoW adds unique labels and verifies the homomorphism of
the algebraic signature [35] to resist replay attacks. Security analysis
demonstrates that SE-PoW resists the above attacks from inside and
outside attackers. Therefore, SE-PoW significantly reduces computation
overheads compared with state-of-the-art schemes and ensures data
security.

This paper makes the following contributions.

• We propose SE-PoW, a location-aware hybrid encrypted dedupli-
cation scheme in edge computing. SE-PoW performs inter-edge
21
file-level and intra-edge block-level encrypted deduplication via
server-aided RCE and edge-aided MLE algorithms, respectively.
Thus SE-PoW balances data confidentiality and efficiency.

• SE-PoW proposes a dual-level security-enhanced proof-of-
ownership by leveraging a cuckoo filter and algebraic signatures.
SE-PoW achieves a higher security level and only increases little
overheads, in which SE-PoW resists duplicate-faking attacks and
replay attacks.

• We present a prototype of SE-PoW. Security analysis demon-
strates that SE-PoW can ensure data confidentiality and resist
duplicate-faking attacks and replay attacks under the proposed
threat model. Experimental results based on real-world datasets
show that SE-PoW reduces 21.9–61.9% upload time overheads
compared with the state-of-the-art MHT-PoW.

The reset of our paper is organized as follows. Section 2 intro-
duces the background and problems of SE-PoW in edge computing. In
Section 3 the system model, threat model and security requirements are
defined. Section 4 introduces the design and implementation details of
SE-PoW. Section 5 discusses the security of SE-PoW. Section 6 presents
the performance evaluation on real-world datasets. In Section 7, the re-
lated works on encrypted deduplication schemes are reviewed. Finally,
Section 8 concludes this paper.

2. Background & problems

This section briefly introduces encrypted deduplication in edge
computing and proof of ownership schemes. We further present the
problems and motivation of SE-PoW.

2.1. Encrypted deduplication in edge computing

Many users store files at the network edge and respond to users’
requests with low latency [4,34]. In Fig. 1, edge computing employs
data deduplication at the network edge for space and network effi-
ciency [11–13]. The user uploads/retrieves data and relevant informa-
tion to the edge nodes. Then edge nodes could compute the tags of data
via a hash function (i.e., SHA256) and encrypt data. Edge nodes main-
tain a deduplication index structure for local or cross-domain duplicate
checking. Decentralized deduplication distributes data to multiple edge
nodes for load balancing [13].

To protect data confidentiality, Douceur et al. [16] propose con-
vergent encryption(CE) and Bellare et al. [17] propose Message-locked
Encryption(MLE) and random to enable deduplication over ciphertexts.
Specifically, the client derives a key 𝐾 ← 𝐻(𝑃 ,𝑀) from message 𝑀 ,
and 𝑃 is a public parameter and 𝐻 is a cryptographic hash function.
And it encrypts the message as 𝐶 ← Encry(𝐾,𝑀), where 𝐸𝑛𝑐𝑟𝑦∕𝐷𝑒𝑐𝑟𝑦
is a pair of encryption and decryption functions. The tag 𝑇 derives

← 𝐻(𝑃 , 𝐶). In randomized convergent encryption(RCE), the client
ncrypts a message 𝐶1 ← 𝐸𝑛𝑐𝑟𝑦(𝐿,𝑀), where 𝐿 is a randomly chosen
ey. Then it encrypts the key 𝐿 and generate 𝐶2 ← 𝐿 ⊕ 𝐾, where 𝐾
s derived from the message 𝐾 ← 𝐻(𝑃 ,𝑀). The client generates tag
← 𝐻(𝑃 ,𝐾). When any owner receives 𝐶1‖𝐶2‖𝑇 from the server, he

omputes 𝐿 ← 𝐶2⊕𝐾, and obtains 𝑀 via 𝑀 ← 𝐷𝑒𝑐𝑟𝑦(𝐿,𝐶1). However,
LE and RCE are vulnerable to brute-force attacks.

Bellare et al. [18] present server-aided MLE algorithms via an RSA-
ased oblivious PRF protocol to resist brute-force attacks. In edge com-
uting, Ni et al. [36] put forward edge-based encrypted deduplication
ith BLS-OPRF and adopted proxy re-encryption on edge nodes. Yang
t al. [15] propose a cross-domain deduplication scheme with server-
ided MLE via HPS-OPRF in blockchain-enabled edge computing. In
ddition, Hur et al. [20] propose authorized encrypted deduplication
ith dynamic ownership management via proxy re-encryption [21].

n summary, encrypted deduplication has been widely used in edge
omputing.

Y. Zhou, Z. Yu, L. Gu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062

n
i
r
b
o
c

[
l
c
a
e

Fig. 2. We describe the procedure of MHT-PoW and BF-PoW. In figure (a), MHT-PoW encodes a file into a fixed-size buffer and constructs a Merkle hash tree. In figure (b),
BF-PoW splits a file into blocks, generates tokens (e.g., 𝑒𝑖), and inserts them into a bloom filter. Finally, the verifier randomly selects 𝑁 challenged blocks for ownership checking.
Fig. 3. The system model of SE-PoW in edge computing.
2.2. PoW Schemes & problems

Client-side encrypted deduplication schemes occur from the en-
tities(i.e., IoT devices) and diminish bandwidth consumption signifi-
cantly. However, the risks of privacy leakage arise in existing schemes,
for example, duplicate-faking attacks [15,22]. In particular, an attacker
uses a hash value to gain unauthorized access and download files
in Dropbox [23]. Researchers propose proof-of-ownership to tackle
the problem, which checks ownership and achieves authorized ac-
cess. Existing schemes are classified into two categories: Merkle Hash
Tree based PoW (MHT-PoW) [15,22,25] and Bloom Filter based PoW
(BF-PoW) [21,37] in Fig. 2.

MHT-PoW. Halevi et al. [22] propose MHT-PoW to resist duplicate-
faking attacks. In Fig. 2(a), the client and server simultaneously encode
the file into a buffer via erasure coding and the pairwise independent
hash function. The buffer is divided into fixed-size blocks as 𝐵𝑖 (0
< 𝑖 < 𝑛), and computes the hash value 𝑛𝑖 for each data block 𝐵𝑖
as the leaf node. And the parent node is to calculate the hash value
of the two child nodes. Finally, they get the root node 𝑛15. During
the verification of MHT-PoW, the server randomly selected 𝑁 leaf
ode indexes as the challenge information. The client returns the path
nformation from the leaf node to the root node, and the server finally
ecalculates and compares the value of the root node. Similarly, ECC-
ased accumulators are adopted in [15]. Unfortunately, the encoding
f files and the construction of structures in MHT-PoW will bring great
omputational and I/O overhead.
BF-PoW. To reduce the computation and I/O overheads, BF-PoW

21,26,30] uses a bloom filter to resist duplicate-faking attacks with a
ow error rate. In Fig. 2(b), BF-PoW divides the file into blocks and
alculates the token 𝑒𝑖 (1 ≤ 𝑖 < 5) of the corresponding block with
pseudo-random function, and inserts it into the bloom filter. For

xample, the server selects data blocks 1 and 3 as challenge blocks. The
client calculates tokens 𝑒1 and 𝑒3 and queries whether they exist in the
bloom filter to check the ownership. When the false positive occurs in
a bloom filter or the attackers utilize the previous valid proofs, BF-PoW
leads to privacy leakage.

According to our analysis, existing schemes face security and perfor-
mance challenges. First, encrypted deduplication schemes suffer from
brute-force attacks or a heavy computational burden. Second, MHT-

PoW incurs extensive time and I/O overheads. BF-PoW is subjected to

22
replay attacks. We analyze the redundant distribution and architectural
features in edge computing to solve these problems. From previous
work in [4,33,34,38], more than 90.5%–99% redundant data remains
in cross-domain duplicate files and duplicate blocks within users. In
edge computing, performing deduplication at edge nodes is highly effi-
cient and prevents privacy risks and information leakage. Meanwhile,
client-side deduplication between edge nodes and the central saves net-
work bandwidth and achieves security guarantees [14]. These motivate
us to propose SE-PoW, a hybrid encrypted deduplication scheme for
intra- and inter-edge with proof-of-ownership to achieve higher security
in edge computing.

3. System model & threat model

This section firstly describes the system model and threat model of
SE-PoW. Next, the security requirements and design goals of SE-PoW
are listed as follows.

3.1. System model

Fig. 3 describes our system model that consists of three entities:
Central Cloud(CC), Edge Node(EN), and End User (EU). The CC cannot
offer high-quality services for large-scale data in a restricted network
environment. Edge nodes locate on the user side and provide computing
and storage services with limited resources. In the cloud offloading
applications, deduplication will be done at edge nodes and the central
cloud to save storage space and network bandwidth.

• Central Cloud(CC). The CC provides centralized storage
/retrieval services. When a user is connected to the CC, CC will
verify his password and credential. CC maintains file-level indices
for inter-edge data deduplication. CC also stores ciphertexts of
blocks, keys, information of PoW, and metadata. It assigns tasks
to multiple edge nodes to handle a large amount of data.

• Edge Node(EN). The EN is an entity located at the network
edge, which provides computing and storage services with limited
resources. EN connects to CC via inter-network (e.g., Wide Area
Network(WAN)) but communicates with users in a restricted do-

main (via intra-network). EN acts as a proxy between CC and the

Y. Zhou, Z. Yu, L. Gu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062
user, supporting duplicate checking, encryption, and challenge-
and-response of PoW. A trusted EN assists the user in generating
random keys.

• End User(EU). The EU is a client or outsourcing entity (e.g., Mo-
bile and IoT devices) consisting of initial and subsequent up-
loaders. EU uploads data to and retrievals data from the CC
through the EN. The EU connects to edge nodes via intra-network
(e.g., Local Area Network(LAN)). Moreover, EN can generate keys
and encrypt/decrypt data with limited computation and storage
resources. The initial uploader transmits data to CC and initializes
the PoW. The subsequent uploaders with duplicate files need to
verify the PoW protocol.

3.2. Threat model

We assume that the CC is ‘‘honest-but-curious’’ in edge computing.
The CC will not maliciously delete or modify users’ data, but the CC
tries to learn the sensitive information as much as possible, such as
data, keys, tags(i.e., hash value), and proofs PoW. Without loss of
generality, we assume that the malicious CC may collude with other
adversaries. The EN will perform our proposed protocol honestly. We
assume that the EN is hard to be compromised in the intra-network [14]
and is protected by firewalls and access control systems. A trusted
EN helps users to generate secure keys. In our threat model, the
adversaries can be classified into two types: outside adversaries and
inside adversaries.

• Outside adversaries may be malicious users or hackers. They
obtain some sensitive data (e.g., a hash value, proofs of PoW) via
a public network, such as a web crawler and artificial intelligence.
Outside adversaries aim to get target users’ sensitive data content
and keys from CC and EN. They may disguise themselves as a
legitimate user to interact with the CC or EN.

• Inside adversaries follow the prescribed protocols but try to ob-
tain users’ information, such as plaintexts of data, tags, and proofs
of a specific file. The inside adversaries try to cheat the EN and
CC by using previous proofs and make the verification of PoW
successful.

3.3. Security requirements & design goals

We aim to achieve the following security requirements and design
goals based on the above threat model.

• Data confidentiality: We require that the encrypted data and
keys will be achieved semantically secure and resist brute-force
attacks [17].

• Tag consistency: The deduplication scheme should allow the
users to verify data integrity. It can resist poison attacks, in which
a malicious attacker cannot upload a valid hash value but replaces
a file with a poisoned one.

• Backward privacy: When a user uploads a duplicate file that
exists in the CC, CC will check the ownership. Unauthorized data
owners who cannot pass the verification of the PoW would not
access files.

• Resistance to duplicate-faking attacks: An attacker who only
has the data tag cannot download the corresponding ciphertexts
of files.

• Resistance to replay attacks: An attacker cannot pass the verifi-
cation of PoW, even if it generates valid proofs from the previous
message without owning files.

Design goals. Our scheme should achieve the following design
goals. First, SE-PoW should meet the mentioned security requirements.
SE-PoW also realizes upload and download protocols using encrypted
deduplication, key generation, and proof-of-ownership among the EU,
EN, and CC. Second, SE-PoW ensures system efficiency, which re-
duces the cost of computation, transmission, and storage. At last,
other problems, such as data reliability [39], updating, and ownership
management, are beyond the scope of this paper.
23
Table 1
Notations used in the proposed scheme.

Notation Description

𝑢𝑖 An end user
𝐼𝐷𝑢𝑖 The identity of 𝑢𝑖
𝐹𝑖 A file
𝐵𝑖 A block
𝑛 Number of blocks
𝐶 Ciphertext of a block/key
𝑂𝐿𝑖𝑠𝑡𝐹𝑖

An owner list of 𝐹𝑖
𝐾𝑢𝑖 /𝐾𝐹𝑖

/𝐾𝐵𝑖
A user/file/block key

𝐶𝐹𝑃 𝑜𝑊 [𝐹𝑖] A cuckoo filter based PoW
𝑆𝑖𝑔𝑔 (𝐵𝑖) An algebraic signature
𝑉𝑖 A tag to resist replay attacks

3.4. Preliminaries

Before introducing the design of SE-PoW, we describe two data
structures: cuckoo filter and algebraic signature.

Cuckoo Filter. A cuckoo filter [40] is a data structure that is used
to provide approximate set membership tests whether a given item is
in a set or not. It is similar to Bloom filter [29]. A cuckoo filter is a
compact variant of a cuckoo hash table that stores only fingerprints
instead of key–value pairs. A set membership query for item 𝑥 searches
the hash table for the fingerprint of 𝑥 and returns true if an identical
fingerprint is found. A cuckoo filter can show false positives but not
false negatives. It supports adding and removing items dynamically. It
provides a higher lookup performance than Bloom filters. The cuckoo
filter has various advantages over the Bloom filter. (1) It takes less time
for lookups. (2) It has fewer false positives than the bloom filter for the
same number of items stored. (3) It supports the deletion of items.

Algebraic Signature. Algebraic signature [35,41] is a hash function
with homomorphic and algebraic properties. Algebraic signature has
been widely used in remote data possession checking in distributed
system [35] and cloud storage [42]. An algebraic signature consists of
𝑛 symbols to verify the uniqueness of data content. The basic feature of
the algebraic signature method is that the sum of the algebraic signa-
ture of data blocks is equal to the signature result of the corresponding
sum of data blocks. Concretely speaking, let 𝜆 be a tuple in Galois Field,
which 𝜆 = (𝜆1, 𝜆2, ⋯, 𝜆𝑛) is a vector of distinct non-zero elements. The
file 𝐹 is divided into 𝑛 blocks 𝑓 [1], 𝑓 [2], ⋯, 𝑓 [𝑛], and the formula for
calculating the algebraic signature of file 𝐹 is

𝑆𝜆(𝐹) =
𝑛
∑

𝑖=1
𝑓 [𝑖] ⋅ 𝜆𝑖−1 (1)

The properties of an algebraic signature are as follows:

Property 1. Concatenating two data blocks 𝑓 [𝑖] and 𝑓 [𝑗] of length 𝑙 and 𝑚,
into a super block denoted 𝑓 [𝑖] ∥ 𝑓 [𝑗]. Then the signature 𝑆𝜆(𝑓 [𝑖] ∥ 𝑓 [𝑗])
is as follows.

𝑆𝜆(𝑓 [𝑖] ∥ 𝑓 [𝑗]) = 𝑆𝜆(𝑓 [𝑖]) + 𝜆𝑙𝑆𝜆(𝑓 [𝑗]) (2)

Property 2. The algebraic signature of the sum of all data blocks of file 𝐹
equals the sum of the algebraic signatures of each data block.

𝑆𝜆(𝑓 [1]) + 𝑆𝜆(𝑓 [2]) +⋯ + 𝑆𝜆(𝑓 [𝑛])

= 𝑆𝜆(𝑓 [1] + 𝑓 [2] +⋯ + 𝑓 [𝑛])
(3)

4. Design and implementation of SE-PoW

In this section, we first describe the overview of SE-PoW. Then we
present the design and proof of ownership algorithms used in SE-PoW.
Table 1 describes the notations.

Y. Zhou, Z. Yu, L. Gu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062
Fig. 4. The procedure of initial and subsequent data upload.
4.1. Overview of SE-PoW

We perform an inter-edge and intra-edge encrypted deduplication
scheme for files and blocks in the upload phase. In Fig. 4, the EU
is allowed to transfer files to the EN and CC and retrieves relevant
files on demand. Data are encrypted via different MLE algorithms
according to the location of deduplication to balance security and
system efficiency. Specifically, the EU generates a file tag and encrypts
the file before sending it to an EN. The EN outsources the file tag to
CC for inter-edge(cross-domain) file-level deduplication via a server-
aided RCE algorithm. If unique, EU encrypts blocks via an edge-aided
MLE algorithm and initializes the tokens and algebraic signatures. EU
outsources them to the EN for re-encryption and performs intra-edge
block-level deduplication. Besides, the EN stores the data of SE-PoW
based on a cuckoo filter and algebraic signatures for PoW verification.
The EN transfers non-duplicated blocks and metadata to the CC and
initializes a PoW protocol.

In the subsequent upload phase, the EU sends a tag of a duplicate
file to the CC. Then the user performs a dual-level proof of ownership
for duplicate files in edge computing to ensure data privacy. Concretely
speaking, we first perform the challenge-and-response protocol over
CF-PoW. If it passes, we will verify the homomorphism of algebraic
signatures as the second-level PoW. Only verifying the ownership of
SE-PoW, the end-user will send the file metadata without uploading
data content.

4.2. Encrypted deduplication in SE-PoW

To resist brute-force attacks and minimize bandwidth overheads
in edge computing, we proposed a location-aware hybrid encrypted
deduplication in SE-PoW. SE-PoW combines server-aided RCE for inter-
edge files and edge-aided MLE for intra-edge blocks. The encryption
methods, such as MLE [17], RCE [17], and RSA-OPRF [18], are adopted
from previous works. Details are shown as follows.

System setup. We choose two hash functions 𝐻1 and 𝐻2 ∶ {0, 1}∗ →

Z𝑝. And the uploader adopts the AES APIs [43], such as Encry() and
Decry(). The public parameters 𝑒 and 𝑁 of RSA are initialized and 𝑑 is
generated via 𝑒 ⋅𝑑 ≡ 1𝑚𝑜𝑑𝜙(𝑁). Each edge node will initialize a master
key 𝐾𝑒𝑖 .

Data Upload. As show in Fig. 4(a), an user 𝑢𝑖 uploads a file 𝐹𝑖 to
the central cloud. The CC will verify the identity 𝐼𝐷𝑢𝑖 and password.
The following details are the file/block-level encrypted deduplication.

(1) 𝑢𝑖 computes the tag 𝑇𝐹𝑖 ←𝐻1(𝐻1(𝐹𝑖)). Then 𝑢𝑖 generates a server-
aided RCE key 𝐾𝐹𝑖 via oblivious pseudorandom protocol [18].
Specifically, for 𝐹𝑖, 𝑢𝑖 chooses a random number 𝑟 ∈ 𝑁 , and
sends 𝑥 = 𝐻1(𝐹𝑖) ⋅ 𝑟𝑒 𝑚𝑜𝑑 𝑁 to a trusted edge node. The
trusted edge node computes 𝑦 = 𝑥𝑑 𝑚𝑜𝑑 𝑁 and sends 𝑦 back.
𝑢𝑖 calculates 𝑧 = 𝑦 ⋅ 𝑟−1 𝑚𝑜𝑑 𝑁 . 𝑢𝑖 could verify whether or
not 𝐻1(𝐹𝑖) ≡ 𝑧𝑒 𝑚𝑜𝑑 𝑁 . Thus, 𝑢𝑖 chooses a random key via

𝑘(𝜆)
𝐿𝐹𝑖 ← {0, 1} , and denotes as 𝐾𝐹𝑖 = (𝐿𝐹𝑖 , 𝑧).

24
(2) 𝑢𝑖 sends 𝑇𝐹𝑖 to the edge nodes(EN) and forwards it to the central
cloud(CC) for inter-edge file-level deduplication. The CC will
check whether 𝑇𝐹𝑖 exists in the inter-edge global file index.
If no, 𝑢𝑖 performs block-level deduplication and jumps to (3).
Otherwise, the CC will check the ownership, and details are in
Section 4.3.

(3) 𝑢𝑖 performs intra-edge block-level encrypted deduplication via
an edge-aided MLE. In particular, 𝑢𝑖 divides 𝐹𝑖 into 𝑛 blocks via
{𝐵𝑖} ← Chunking (𝐹𝑖). For a block 𝐵𝑖 (0 ≤ 𝑖 < 𝑛), 𝑢𝑖 generates
a MLE key 𝐾𝐵𝑖

via 𝐾𝐵𝑖
← 𝐻1(𝐵𝑖). Then 𝑢𝑖 encrypts the block

into ciphertexts 𝐶𝑖||𝐶2
𝑖 ||𝐶3

𝑖 via 𝐶𝑖 ← 𝐸𝑛𝑐𝑟𝑦(𝐾𝐵𝑖
, 𝐵𝑖) and 𝐶2

𝑖 ←

𝐸𝑛𝑐𝑟𝑦(𝐿𝐹𝑖 , 𝐾𝐵𝑖
), and 𝐶3

𝑖 ← 𝑧 ⊕ 𝐿𝐹𝑖 .
(4) 𝑢𝑖 transmits all block ciphertexts (𝐶𝑖, 𝐶2

𝑖 , 𝐶
3
𝑖) to the EN. Then

EN re-encrypts 𝐶𝑖 via 𝐶1
𝑖 ← Encry(𝐾𝑒𝑖 , 𝐶𝑖). The tag of block

𝐵𝑖 is generated via 𝑇𝐵𝑖
← 𝐻1(𝐶1

𝑖). The EN performs intra-edge
block-level encrypted deduplication by checking 𝑇𝐵𝑖

in the local
block-level index. Then, the EN will upload all the ciphertext of
non-duplicated blocks 𝐶1

𝑖 || 𝐶2
𝑖 || 𝐶3

𝑖 and metadata information
𝑇𝐵𝑖

|| 𝐼𝐷𝑢𝑖 to the central cloud. The CC receives and stores
ciphertexts and metadata. Then the central cloud adds the 𝐼𝐷𝑢𝑖
to the owner list 𝑂𝐿𝑖𝑠𝑡𝐹𝑖 .

(5) The EN has to generate tokens and algebraic signatures to ini-
tialize a dual-level PoW protocol. Details are present in the
initialization of SE-PoW in Section 4.3.

Subsequent Upload. In Fig. 4(b), an subsequent uploader 𝑢𝑗 sends
the file 𝐹𝑖 to the edge nodes and central cloud. First, 𝑢𝑗 generates the
file tag 𝑇𝐹𝑖 as described in the upload phase. 𝑢𝑗 outsources them to the
central cloud. The central cloud finds that 𝑇𝐹𝑖 exists in the file index
via duplicate checking. Second, the central cloud performs a challenge-
and-response phase to verify the ownership of 𝑢𝑖. (1) The central cloud
randomly generates 𝑐 challenged blocks and returns the position of
blocks. (2) The edge node computes tokens and algebraic signatures of
challenged blocks based on the position of blocks and transfers them
to the central cloud. (3) The central cloud firstly checks the tokens
whether or not they exist in the cuckoo filter. If it passes, the CC
will verify the homomorphism of algebraic signatures. Otherwise, the
central cloud returns failed results. Details are present in the Algorithm
2. Third, if 𝑢𝑗 passes the verification of PoW, his identify 𝐼𝐷𝑢𝑗 will be
added to the owner list 𝑂𝐿𝑖𝑠𝑡𝐹𝑖 . And the CC returns results to the EN
and 𝑢𝑗 .

Data Download. If a user 𝑢𝑖 wants to download a file 𝐹𝑖, 𝑢𝑖 will
firstly send the identity 𝐼𝐷𝑢𝑖 and file tag 𝑇𝐹𝑖 to the edge nodes and
central cloud. The central cloud will firstly verify his identity 𝐼𝐷𝑢𝑖
whether or not in the owner list. If no, the download request will be
rejected. Otherwise, the CC will read the metadata of 𝐹𝑖 to return the
ciphertexts of all blocks and keys 𝐶1

𝑖 || 𝐶2
𝑖 || 𝐶3

𝑖 (0 ≤ 𝑖 < 𝑛) to the
EN. After receiving the ciphertexts, EN decrypts 𝐶1

𝑖 with 𝐾𝑒𝑖 via 𝐶𝑖 ←

Decry(𝐾𝑒𝑖 , 𝐶
1
𝑖) And the EN forwards 𝐶𝑖 || 𝐶2

𝑖 || 𝐶3
𝑖 (0 ≤ 𝑖 < 𝑛) to 𝑢𝑖. Next,

𝑢𝑖 decrypts the block key via 𝐿𝐹𝑖 ← 𝐶3
𝑖 ⊕ 𝑧 and 𝐾𝐵𝑖

← Decry(𝐿𝐹𝑖 , 𝐶
2
𝑖).

Thus, 𝑢𝑖 decrypts the ciphertext of block to get 𝐵𝑖 via 𝐵𝑖 ← Decry(𝐾𝐵𝑖
,

𝐶𝑖). At last, 𝑢𝑖 creates a new file 𝐹𝑖 and writes each block 𝐵𝑖(0 ≤ 𝑖 < 𝑛)
sequentially to recover the file 𝐹 .
𝑖

Y. Zhou, Z. Yu, L. Gu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062

𝐵
s

E
c
t
c
i
t

c
a

f
d
a
g
𝑢
a

P
f
A
o
𝐻
o
e
d
o
𝑢
c
b

O

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2

(
r
𝐼

4

t
d
S
s
i
a
e
p
F
m
t
n
u
f

f
b
a

Algorithm 1 The initialization of SE-PoW

Input: File 𝐹𝑖 & parameter 𝑚 of CF.
Output: 𝐶𝐹𝑃𝑜𝑊 [𝐹𝑖] & 𝑆𝑖𝑔𝑔(𝐵𝑖).
1: 𝑢𝑖 divides 𝐹𝑖 into blocks 𝐵𝑖(0 ≤ 𝑖 < 𝑛).
2: 𝑢𝑖 generates tokens 𝑡𝐵𝑖

← 𝐻2(𝐵𝑖).
3: 𝑢𝑖 generates algebraic signatures of blocks 𝑆𝑖𝑔𝑔(𝐵𝑖) ←

𝑆𝜆(𝐵𝑖||𝐼𝐷𝐹𝑖 ||𝑖).
4: 𝑢𝑖 generates 𝑉𝑖 ← 𝑆𝜆(𝐼𝐷𝐹𝑖 ||𝑖)
5: 𝑢𝑖 outsources 𝑡𝐵𝑖

||𝑆𝑖𝑔𝑔(𝐵𝑖)||𝑉𝑖 to the EN and CC.
6: CC initializes 𝐶𝐹𝑃𝑜𝑊 =InitCF(𝑚) and PRF.
7: for 𝑖 = 0 → 𝑛 − 1 do
8: 𝑒𝑖 ← PRF(𝑡𝐵𝑖

, 𝑖)
9: 𝐶𝐹𝑃𝑜𝑊 [𝐹𝑖] ← AddCF(𝑒𝑖)

10: end for
11: CC stores all 𝑆𝑖𝑔𝑔(𝐵𝑖)||𝑉𝑖 and 𝐶𝐹𝑃𝑜𝑊 [𝐹𝑖].

4.3. Proof of ownership in SE-PoW

We propose a dual-level PoW algorithm over encrypted deduplica-
tion with a cuckoo filter and algebraic signatures to resist duplicate-
faking attacks and replay attacks. The cuckoo filter [40] and alge-
braic signature have been used in storage systems [41]. SE-PoW is
a challenge-and-response protocol between two entities on a file 𝐹 :
𝛱 = (𝑃 , 𝑉). 𝑃 is the end-user and the edge node, and 𝑉 indicates the
central cloud. In addition, protocol 𝛱 consists of three phases: Initial-
ization(Data upload), challenge, and verification (Subsequent upload).
The details are present in Algorithm 1 and 2.

Initialization of SE-PoW. An initial uploader 𝑢𝑖 generates tokens
and algebraic signatures of each block in file 𝐹𝑖 for the ownership
verification. As shown in algorithm 1, 𝑢𝑖 firstly divides 𝐹𝑖 into blocks
𝑖(0 ≤ 𝑖 < 𝑛). 𝑢𝑖 generates tokens via 𝑡𝐵𝑖

← 𝐻2(𝐵𝑖) and algebraic
ignatures 𝑆𝑖𝑔𝑔(𝐵𝑖) ← 𝑆𝜆(𝐵𝑖‖𝐼𝐷𝐹𝑖‖𝑖) ←

∑𝑛
𝑗=1(𝐵𝑖,𝑗‖𝐼𝐷𝐹𝑖‖𝑖) ⋅ 𝜆

𝑗−1. 𝐼𝐷𝐹𝑖
is the identity of file 𝐹𝑖 and 𝑖 is the index of block 𝐵𝑖. 𝑢𝑖 also computes
𝑉𝑖 ← 𝑆𝜆(𝐼𝐷𝐹𝑖 ∥ 𝑖). Then SE-PoW resists replay attacks via unique labels
𝐼𝐷𝐹𝑖 ∥ 𝑖. 𝑢𝑖 sends tokens 𝑡𝐵𝑖

and algebraic signatures 𝑆𝑖𝑔𝑔(𝐵𝑖) to the
N. Next, the EN outsources tokens and signatures to the CC. Then the
entral cloud constructs a cuckoo filter 𝐶𝐹𝑃𝑜𝑊 [𝐹𝑖] ← InitCF(𝑚) with
he parameter of total items 𝑚. For each token 𝑡𝐵𝑖

(0 ⩽ 𝑖 < 𝑛), the CC
omputes 𝑒𝑖 ← PRF(𝑡𝐵𝑖

, 𝑖) with a pseudorandom function PRF. The CC
nserts all tokens into a cuckoo filter 𝐶𝐹𝑃𝑜𝑊 [𝐹𝑖] ← 𝐴𝑑𝑑𝐶𝐹 (𝑒𝑖). Finally,
he CC stores all the algebraic signatures 𝑆𝑖𝑔𝑔(𝐵𝑖) || 𝑉𝑖 and 𝐶𝐹𝑃𝑜𝑊 [𝐹𝑖].

If a subsequent uploader 𝑢𝑗 uploads a file 𝐹𝑖, 𝑢𝑗 will perform the
hallenge and verification of SE-PoW to resist duplicate-faking attacks
nd replay attacks in Algorithm 2.
Challenge of SE-PoW. An subsequent uploader 𝑢𝑗 generates the

ile tag and outsources it to the CC to perform inter-edge file-level
eduplication. Specifically, 𝑢𝑗 computes the file tag 𝑇𝐹𝑖 ← 𝐻1(𝐻1(𝐹𝑖))
nd outsources 𝑇𝐹𝑖 to the central cloud. The CC searches 𝑇𝐹𝑖 in the
lobal file index. If it does not exist, the CC will return the result to
𝑗 . Otherwise, CC randomly selects 𝑐 indices of blocks 𝐼[𝑘] (0 ⩽ 𝑘 < 𝑐)
s the challenge, and returns it to the edge node and 𝑢𝑗 .
Verification of SE-PoW. Then, CC will perform verification of SE-

oW among CC, EN, and 𝑢𝑗 via a dual-level PoW, including a cuckoo
ilter and algebraic signatures. Specifically, details are described in
lgorithm 2. (1) 𝑢𝑗 divides file 𝐹 ′

𝑖 into blocks and generates tokens
f the challenged position belong to 𝐼[𝑘] (0 ⩽ 𝑘 < 𝑐) via 𝑡𝐵′

𝑘
←

2(𝐵′
𝑘). Then 𝑢𝑗 sends 𝑡𝐵′

𝑘
to EN and CC for the first-level verification

f PoW. CC receives 𝑡𝐵′
𝑘

and computes 𝑒′𝑘 ← PRF(𝑡𝐵′
𝑘
, 𝑘). Then CC

xecutes 𝜂 = ContainCF(𝐶𝐹𝑃𝑜𝑊 [𝐹𝑖], 𝑒′𝑘) for all tokens. If any token
oes not exist in 𝐶𝐹𝑃𝑜𝑊 , 𝑢𝑗 does not pass the first-level verification
f SE-PoW. (2) If 𝑢𝑗 passes the first-level verification, CC will request
𝑗 to verify the homomorphism of algebraic signatures. 𝑢𝑗 reads the
hallenged blocks 𝐵′

𝑘(𝑘 ∈ 𝐼[𝑘]) and computes the sum of challenged
locks via 𝛾 ←

∑𝑐−1 𝐵′ . Then, 𝑢 sends 𝛾 to the EN. EN computes the
𝑘=0 𝑘 𝑗 a

25
Algorithm 2 The challenge and verification of SE-PoW

Input: 𝐶𝐹𝑃𝑜𝑊 [𝐹𝑖] & 𝑆𝑖𝑔𝑔(𝐵𝑘).
utput: The result of SE-PoW verification.

1: CC generates the index of challenged blocks 𝐼[𝑘] (0 ⩽ 𝑘 < 𝑐) and
sends to 𝑢𝑗 .

2: EN requests 𝑢𝑗 to divide 𝐹 ′
𝑖 into 𝐵′

𝑖 ((0 ≤ 𝑖 < 𝑛)) and selects
challenged blocks 𝐵′

𝑖 according to 𝐼[𝑘]
3: while 𝑘 ∈ 𝐼[𝑘] do
4: 𝑢𝑗 executes 𝑡𝐵′

𝑘
← 𝐻2(𝐵

′

𝑘) and sends to EN.

5: CC executes 𝑒′𝑘 ← PRF(𝑡𝐵′
𝑖
, 𝑘).

6: CC executes 𝜂 = ContainCF(𝑒′𝑘) (First-level PoW)
7: if 𝜂 = 0 then
8: return ⊥
9: end if
0: end while
1: CC verifies the second-level PoW.
2: while 𝑘 ∈ 𝐼[𝑘] do
3: 𝑢𝑗 reads the blocks 𝐵′

𝑘.
4: 𝑢𝑗 executes 𝛾 ←

∑𝑐−1
𝑘=0 𝐵

′

𝑘.
5: end while
6: 𝑢𝑗 and EN compute 𝜎 ← 𝑆𝑖𝑔𝑔(𝛾) and send 𝜎 to CC.
7: while 𝑘 ∈ 𝐼[𝑘] do
8: CC reads the signature 𝑆𝑖𝑔𝑔(𝐵𝑘) and 𝑉𝑘 of 𝐹𝑖.
9: CC executes 𝜇 ←

∑𝑐−1
𝑘=0 𝑆𝑖𝑔𝑔(𝐵𝑘)⊕ 𝑉𝑘

0: end while
1: if 𝜎 = 𝜇 then
2: return 1
3: else
4: return 0
5: end if

algebraic signature 𝜎 ← 𝑆𝑖𝑔𝑔(𝛾) and sends 𝜎 to the CC. (3) CC reads the
block signature 𝑆𝑖𝑔𝑔(𝐵𝑘) of 𝐹𝑖 and executes 𝜇 ←

∑𝑐−1
𝑘=0 𝑆𝑖𝑔𝑔(𝐵𝑘)⊕ 𝑉𝑘

𝑘 ∈ 𝐼[𝑘]). Finally, CC verifies whether 𝜎 equals 𝜇 or not. If no, CC will
eturn that 𝑢𝑗 does not pass the verification. Otherwise, CC will add
𝐷𝑢𝑗 to the owner list 𝑂𝐿𝑖𝑠𝑡𝐹𝑖 . 𝑢𝑗 just updates the metadata of 𝐹𝑖 and

does not upload the content of 𝐹𝑖.

.4. Implementation detail of SE-PoW

We propose a prototype based on the design of SE-PoW. To achieve
he balance between security and efficiency, SE-PoW implements a
ual-level hybrid encrypted deduplication in edge computing. Thus,
E-PoW lessens the pressure on network bandwidth and improves data
ecurity and privacy. Specifically, SE-PoW adopts a global file index
n the central cloud and block indices in the edge nodes. The index is

key–value storage structure for tags and data storage locations, for
xample, hash tables. The key is the block’s tag, and the value is the
hysical address of the data block (such as block offset and length).
urthermore, the hash and encryption function in SE-PoW is the CTR
ode of SHA-256 and AES-256 [43], and the token calculation uses

he SHA-1 function. The secure network transmission between the edge
odes and the central cloud uses SSL/TLS [43]. A trusted edge node is
sed to compute server-aided keys, and RSA-OPRF [18] is implemented
or evaluation.

To realize the dual-level PoW, SE-PoW uses an efficient cuckoo
ilter [40] with better performance and lower false positive rate than a
loom filter. The cuckoo filter supports InitCF(), AddCF(), ContainCF()
nd DeleteCF(). In addition, the overall collision probability of an
lgebraic signature used in SE-PoW is very low [35].

Y. Zhou, Z. Yu, L. Gu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062

t
e
𝐾
c
o
p
r
f
d
i
t
v
S

t
t
r
i
g
P
i
w
P
a

5

P
T
c

t
c
f
p
o

𝑃

v

𝜇

a
t

𝑝

b
f
p
e

𝑃

u
r
t

5

s
t
Y
v

5. Security analysis

SE-PoW is designed to ensure data confidentiality and backward pri-
vacy and resist attacks for encrypted deduplication in edge computing.
We consider two types of adversaries: inside and outside adversaries.
We assume that the following technologies are secure, such as sym-
metric encryption [43] and OPRF protocols [18]. In worst cases, the
adversaries may compromise the CC and collude with users.

5.1. Data confidentiality

In this case, the adversary gets the ciphertexts of blocks by com-
promising the CC or EU. SE-PoW resists brute-force attacks in the
hybrid deduplication scheme and ensures data confidentiality and tag
consistency.

In general, the adversary obtains the ciphertext of target block
𝐶1
𝑖 ‖𝐶

2
𝑖 ‖𝐶

3
𝑖 (0 ≤ 𝑖 < 𝑛) from a specific file 𝐹𝑖. The adversary knows

hat the blocks {𝐵′
𝑖}(0 ≤ 𝑖 < 𝑛) are from a specific set |𝑆|. For

ach block 𝐵′
𝑖 , the adversary first gets the hash to get the key via

𝐵𝑖
. The adversary gets the ciphertext via 𝐶1′

𝑖 ← 𝐸𝑛𝑐𝑟𝑦(𝐾𝐵′
𝑖
, 𝐵′

𝑖) and
ompares it with 𝐶1

𝑖 . However, 𝐶1
𝑖 is protected by the master key 𝐾𝑒𝑖

f each EN. SE-PoW generates a random file key 𝐾𝐹𝑖 via an oblivious
seudorandom function. All block keys 𝐾𝐵𝑖

are protected securely by
andom key 𝐿𝑖 || 𝐾𝐹𝑖 . Thus the adversary cannot get the plaintext of
ile 𝐹𝑖. As a result, SE-PoW can resist brute-force attacks to ensure
ata confidentiality. In addition, the adversary compromises the data
ntegrity by colluding with users. It uploads the valid tags but replaces
he blocks with poisoned data. SE-PoW computes the hash value of 𝐶1

𝑖
ia 𝑇𝐵′

𝑖
← 𝐻1(𝐶1

𝑖) and compares whether or not 𝑇𝐵′
𝑖

equals 𝑇𝐵𝑖
. Thus,

E-PoW ensures tag consistency.
We discuss the security of SE-PoW under different situations. In

he best case, the adversary compromises the CC but cannot access
he EN. All data and metadata stored in the CC are encrypted with
andom keys. The adversary cannot obtain the plaintext of files even
f it performs brute-force attacks. In the worst case, the adversary may
et the master key of a specific EN and collude with malicious users. SE-
oW can still ensure security for unpredictable data that are not falling
nto a known set. The users access the EN through an intra-network,
hich naturally faces fewer security threats than inter-network. SE-
oW makes the worst-case rarely occur by further protecting the EN
nd file metadata with access control policies.

.2. Security of proof of ownership

For a file 𝐹𝑖, the adversary’s goal is to pass the verification of SE-
oW by leveraging replay attacks or the false positive in a cuckoo filter.
he adversary knows parts of the file, but he does not own the entire
ontent of the file.

We define that the event 𝑣𝑖 is the adversary could pass the verifica-
ion of SE-PoW when he gets a token. It happens in the following two
ases: (1) The adversary receives the correct proof. (2) When the cuckoo
ilter checks the element, a false positive occurs. We define the false
ositive of the CF as 𝑝𝑓 . According to the above analysis, the probability
f event 𝑣𝑖 can be described as:

(𝑣𝑖) = 𝑃 (𝑣𝑖 ∩ (𝑡𝑜𝑘𝑒𝑛𝑖 ∪ 𝑡𝑜𝑘𝑒𝑛𝑖))

= 𝑃 (𝑣𝑖|𝑡𝑜𝑘𝑒𝑛𝑖)𝑃 (𝑡𝑜𝑘𝑒𝑛𝑖) + 𝑃 (𝑣𝑖|𝑡𝑜𝑘𝑒𝑛𝑖)𝑃 (𝑡𝑜𝑘𝑒𝑛𝑖)

= 𝑃 (𝑡𝑜𝑘𝑒𝑛𝑖) + 𝑝𝑓𝑃 (𝑡𝑜𝑘𝑒𝑛𝑖)

(4)

The adversary performs replay attacks by leveraging the previous
proofs and the false positive of the cuckoo filter. After receiving the
proofs, the CC will verify the ownership. To resist these attacks, SE-
PoW adopts algebraic signatures as the second verification of PoW. It
satisfies the property that the sum of algebraic signatures of challenged
 r

26
blocks equals the signature of the sum of challenged blocks. That is
whether or not 𝜎 = 𝜇.

𝜎 = 𝑆𝑖𝑔𝑔(𝛾)

= 𝑆𝜆(
𝑐−1
∑

𝑘=0
𝐵′
𝑘)

= 𝑆𝜆(𝐵′
0 + 𝐵′

1 +⋯ + 𝐵′
𝑐−1)

= 𝑆𝜆(𝐵′
0) + 𝑆𝜆(𝐵′

1) + 𝑆𝜆(𝐵′
𝑐−1)

=
𝑐−1
∑

𝑘=0
𝑆𝜆(𝐵′

𝑘)

(5)

After receiving the proofs from the EN and end user, the CC could
erify the ownership.

=
𝑐−1
∑

𝑘=0
𝑆𝑖𝑔𝑔(𝐵𝑘)⊕ 𝑉𝑖

=
𝑐−1
∑

𝑘=0
𝑆𝜆(𝐵𝑘‖𝐼𝐷𝐹𝑖‖𝑖)⊕𝑆𝜆(𝐼𝐷𝐹𝑖 ∥ 𝑖)

=
𝑐−1
∑

𝑘=0
𝑆𝜆(𝐵𝑘)⊕ 𝜆𝑙𝑆𝜆(𝐼𝐷𝐹𝑖 ∥ 𝑖)⊕𝑆𝜆(𝐼𝐷𝐹𝑖 ∥ 𝑖)

=
𝑐−1
∑

𝑘=0
𝑆𝜆(𝐵𝑘)

= 𝜎 (𝐵′
𝑘 = 𝐵𝑘)

(6)

Then, SE-PoW prevents the attacks of the false positive of CF via
dual-level PoW. Moreover, SE-PoW can resist replay attacks because

he adversary does not know 𝑉𝑖. Thus we denote:

𝑓𝑃 (𝑡𝑜𝑘𝑒𝑛𝑖) = 0, 𝑎𝑛𝑑 𝑃 (𝑣𝑖) = 𝑃 (𝑡𝑜𝑘𝑒𝑛𝑖) (7)

We define event 𝑔𝑖, the adversary gets tokens of the challenged
lock 𝐵𝑖, and the probability is 𝑝. The token is the output of the hash
unction of 𝐻2 with the length 𝑙. Based on the random oracle model, the
robability of guessing the correct token is 2−𝑙. Thus, the probability of
vent 𝑡𝑜𝑘𝑒𝑛𝑖 is:

(𝑡𝑜𝑘𝑒𝑛𝑖) = 𝑃 (𝑡𝑜𝑘𝑒𝑛𝑖 ∩ (𝑔𝑖 ∪ 𝑔𝑖))

= 𝑃 (𝑡𝑜𝑘𝑒𝑛𝑖|𝑔𝑖)𝑃 (𝑔𝑖) + 𝑃 (𝑡𝑜𝑘𝑒𝑛𝑖|𝑔𝑖)𝑃 (𝑔𝑖)

= 𝑝 + (1 − 𝑝) ⋅ 2−𝑙
(8)

The adversary needs to get at least 𝑐 tokens of challenged blocks.
Thus, the probability 𝑃 (𝑠𝑢𝑐𝑐) is defined as the adversary can pass the
verification of SE-PoW.

𝑃 (𝑠𝑢𝑐𝑐) = (𝑝 + (1 − 𝑝) ⋅ 2−𝑙)𝑐 (9)

We set up a security parameter 𝑘 to derive a lower bound for 𝑐,
that is 𝑃 (𝑠𝑢𝑐𝑐) ⩽ 2𝑘. To ensure the security of SE-PoW, the number of
challenged blocks is:

𝑐 ≥ 𝑘 ln 2
𝑝 + (1 − 𝑝) ⋅ 2−𝑙

(10)

The probability of running a successful SE-PoW should be negligible
nder the security parameter 𝑘 and the number of tokens 𝑐. SE-PoW can
esist duplicate-faking attacks, and it also prevents replay attacks and
he false positive of CF.

.3. Security discussion of SE-PoW

Table 2 shows the comparison results of encrypted deduplication
chemes. Halevi [22] and Xu [25] refer to the encrypted deduplica-
ion schemes that implement with MHT-PoW and the variants of CE.
ang [15] encrypts data with server-aided MLE and achieves MHT-PoW
ia ECC-based accumulators. In addition, Lorena [37] and Jiang [21]
ealize an encrypted deduplication via BF-PoW. The difference is that

Y. Zhou, Z. Yu, L. Gu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062

a

5
a
D
m
(
s
s
t
s

Table 2
Comparison of encrypted schemes with PoW.

Scheme Brute-force Duplicate- Replay Perf.a
attack faking attack attack

Halevi [22]/
×

√

× 𝐿Xu [25]

Yang [15]
√ √

× 𝐿
Lorena [37] ×

√

× 𝐻
Jiang [21] ×

√

× 𝐻
SE-PoW

√ √ √

𝐻

a ‘‘L’’ means Low and ‘‘H’’ refers to High.

they use CE and RCE, respectively. We discuss them regarding resis-
tance to brute-force attacks, duplicate-faking attacks and replay attacks,
and performance.

Since all the schemes allow users to encrypt data and realize dedu-
plication over ciphertexts, they can guarantee data confidentiality. On
the one hand, the method of Halevi et al. suffers from brute-force
attacks because of the utilization of CE. The scheme of Halevi et al. [22]
and Yang et al. [15] are both vulnerable to replay attacks and incur
large time overheads due to the Merkle Hash Tree. On the other hand,
Lorena et al. [37], and Jiang et al. [21] cannot prevent brute-force
attacks and replay attacks, but they achieve high performance. As
mentioned above, SE-PoW can resist brute-force attacks and ensure
data confidentiality and tag consistency. Furthermore, SE-PoW also
resists duplicate-faking attacks and replay attacks to ensure backward
privacy, only adding little overheads compared with the scheme of
Jiang [21].

6. Performance evaluation

6.1. Experimental setup

Platform: We conduct experiments to evaluate the performance of
SE-PoW. These machines are equipped with an Intel(R) Core(TM) i7-
4770@3.40 GHZ 8-core CPU, 96 GB memory and 2 TB hard disk.
They are installed with an Ubuntu 20.04 LTS 64-bit operation system.
These machines are connected with 100 Mbps and 1000 Mbps ethernet
network.
Methodology: To evaluate the performance of SE-PoW, we imple-
ment a research prototype to compare the related schemes, including
MHT-PoW [22,25] and BF-PoW [21,26,30,37]. MHT-PoW is a file-level
encrypted deduplication scheme based on the MHT and variants of
CE [22,25]. BF-PoW refers to Jiang et al. [21] scheme that is a block-
level encrypted deduplication scheme with BF-PoW and hybrid RCE
algorithms. Meanwhile, the encryption schemes consist of convergent
encryption(CE), server-aided Message-locked Encryption(MLE), and SE-
PoW. We mainly use quantitative metrics for encryption time, the
cumulative time of SE-PoW, initial and subsequent upload time, meta-
data, and storage overheads. The time of SE-PoW consists of phases:
initialization, challenge, and verification. We also observe the impacts
of varying block size, number of tokens, and file size.

Finally, the security parameters are set according to MHT-PoW [22]
and BF-PoW [21,37]. Where security parameters, the number 𝑘 is 66,
nd the token length is set to 16 bytes. According to formula (10) in

the security analysis, the number of challenge blocks is set {102, 204,
09, 1017}. Note that our evaluation results should be interpreted as an
pproximate assessment of other schemes.
atasets: There are two types of datasets used in SE-PoW for perfor-
ance evaluation, including synthetic datasets and real-world datasets.

1) Synthetic datasets: artificial files with random content of different
izes or different average block size, and each file is divided into fixed-
ize blocks. (2) Table 3 describes the real-world datasets, which contain
hree different types, namely LINUX-set, VMA-set and WEB-set. Linux-

et contains the tar package file of the 258 version of the Linux source

27
Table 3
Description of three real-world datasets.

Name Size (GB) Num. Description

LNX-set 111.32 258 258 tar files
of linux source code

VMA-set 58.67 135 Virtual machine images,
including Fedroa & Ubuntu.

WEB-set 43.31 16 16 days of snapshot files,
retrieval depth is 3 by wget

code. VMA-set [44] is collected images of different operating systems of
virtual machines, including Fedora and Ubuntu. WEB-set is a snapshot
of 15-day web pages downloaded from 𝑛𝑒𝑤𝑠.𝑠𝑖𝑛𝑎.𝑐𝑜𝑚 using the tool
𝑤𝑔𝑒𝑡, and the maximum retrieval depth is 3.

6.2. A sensitivity study on encryption & PoW

This subsection evaluates the performance of encryption and proof-
of-ownership algorithms varying different block sizes and file sizes with
synthetic datasets. First, to assess time overheads of encryption, we
upload a 1024 MB unique file repeatedly with varying block sizes, i.e., 2
kB, 4 kB, and 8 kB. Second, to evaluate time overheads of related pow
schemes, we use files that are generated with random contents of size
2𝑖 kB for 𝑖 ∈ {5,… , 21}, which ranging from 16 kB to 2048 MB. Third,
to evaluate the performance of SE-PoW, we use a 2 GB file varying
different average block sizes, file sizes, and the number of tokens.

Fig. 5(a) shows that the location-aware hybrid encryption scheme
used in SE-PoW reduces more time overheads than server-aided MLE,
and it is similar to CE and RCE as discussed in Section 4.2. In addition,
the larger the average block size, the shorter time overhead. It is
because the OPRF protocol costs a lot and the time of key generation
decreases, as discussed in Section 2. As described in other papers [30],
encrypted deduplication schemes based on proxy re-encryption [21]
also incur high computation cost.

We also evaluate the overheads on the edge side of SE-PoW. SE-PoW
mainly adds the time overheads of data re-encryption, tag generation,
and duplication checking in the block-level index. For example, we use
a 2 GB unique file with random content, and the average block size is 8
kB. We evaluate the server-side overhead of SE-PoW. The re-encryption
time is 10.639 s. The time of tag generation and duplication checking
are 0.841 s and 8.576 s, respectively.

Fig. 5(b) shows the results that SE-PoW significantly reduces the
cumulative time compared with MHT-PoW and only increases little
overheads than BF-PoW as discussed in Section 4.3. Specifically, for an
individual file of 1 GB, SE-PoW reduces 70–86.7% time overheads rel-
ative to MHT-PoW. The erasure coding and construction of the Merkle
hash tree used in MHT-PoW incur large time overheads. Compared
with BF-PoW, SE-PoW only increases 13.2–14.9% the cumulative time
overheads because of the calculation of algebraic signatures.

Fig. 6(a), (b) and (c) evaluate the time overheads of the proof of
ownership protocol in SE-PoW, including initialization, challenge and
verification phases. Fig. 6(a) shows that the cumulative time increases
with the file size, and the initialization phase accounts for more than
60%. The time overhead of PoW is low. For example, SE-PoW costs
0.88 s for a file with 2 GB. Fig. 6(b) evaluates the performance of vary-
ing different average block sizes. The result shows that the cumulative
time of SE-PoW decreases with the increase of the average block size.
Fig. 6(c) shows that only the verification phase costs more time for a
larger number of tokens, as discussed in Section 4.3.

6.3. Evaluating SE-PoW on real-world datasets

In this subsection, we evaluate the overall performance of SE-PoW
compared with MHT-PoW and BF-PoW on three real-world datasets.
First, we assess the storage and metadata overheads. Second, the user

Y. Zhou, Z. Yu, L. Gu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062
Fig. 5. The encryption time on different average block size and the cumulative time of three PoW methods.
Fig. 6. He cumulative time overheadT of SE-PoW varying on file size, average block length and the number of tokens.
Fig. 7. Comparison of storage overhead and metadata overhead under datasets of MHT-PoW, BF-PoW and SE-PoW.
Fig. 8. The relative time of the initial and subsequent uploads of files under datasets of MHT-PoW, BF-PoW and SE-PoW.
performs file-level and block-level deduplication in the first upload,
uploads non-duplicated data blocks, and initializes the PoW protocol.

Fig. 7(a), compared with MHT-PoW, SE-PoW reduces storage over-
head by 31.7–73.3%. SE-PoW reduces storage overhead by 10.8–52.9%
relative to BF-PoW. In Fig. 7(b), the growth trend of metadata over-
head is exactly the opposite of storage overhead. SE-PoW increases
56.6–68.2% and 7.7–15.6% metadata overheads compared with MHT-
PoW and BF-PoW. MHT-PoW has less metadata. BF-PoW needs to
store tokens of blocks, while SE-PoW stores extra algebraic signatures
28
of all blocks. Compared to MHT-PoW and BF-PoW, SE-PoW reduces
the overall data and metadata storage overhead by 31.7–73.3% and
10.8–52.9%, respectively. It is because that SE-PoW combines them
for inter-edge and intra-edge and utilizes a content-defined chunking
algorithm to balance efficiency and storage overheads.

As shown in Fig. 8(a), in the initial upload, SE-PoW reduces 21.9–
61.9% and 6.8–27.7% upload time compared with MHT-PoW and
BF-PoW under the real-world datasets. The encoding and construc-
tion of the Merkle Hash tree bring large computation overheads, as

Y. Zhou, Z. Yu, L. Gu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062
discussed in Section 2.2. Fig. 8(b) shows that SE-PoW reduces the
subsequent upload time by over 80% compared with MHT-PoW. And
SE-PoW increases about 14.4% subsequent upload time related to BF-
PoW. Compared with BF-PoW, SE-PoW adds the calculation overheads
of algebraic signatures (See Section 4.3).

7. Related work

Edge computing has been gaining much popularity in recent years.
Data deduplication at the network edge can exploit the geographic dis-
tribution and low latency to achieve high performance and optimized
storage cost. Li et al. [11] partition the resource-constrained edge nodes
into disjoint clusters. They perform decentralized deduplication within
these clusters to improve the deduplication ratio. They also present
HotDedup [13] to maximize edge service rate and storage efficiency
with deduplication at the network edge by exploiting data popularity
and similarity. Cheng et al. [12] proposed LOFS, a file storage strategy
via a three-layer hash mapping scheme to allocate files to the proper
edge servers for data deduplication. However, they do not solve the
problem of data confidentiality and proof-of-ownership.

Encrypted Deduplication. To protect data confidentiality of dedu-
plication, randomized convergent encryption(CE) and message-locked
encryption(MLE) and their variants have been proposed in [16,17]. To
resist brute-force attacks, DupLESS [18] and ClearBox [45] leverage
server-aided MLE via an oblivious pseudorandom protocol (e.g., RSA-
OPRF, BLS-OPRF). Liu et al. [46] present a secure deduplication scheme
without additional independent servers by using a PAKE protocol. The
convergent key management [38,47] are studied to ensure key relia-
bility and reduce space overheads. Moreover, encrypted deduplication
has gained much attention in fog and edge computing. Koo et al. [14]
combine server-side deduplication and client-side deduplication in fog
computing. Fo-SSD [48] leverages BLS-OPRF to support encrypted
deduplication and enables fog nodes to remove replicate data. Yang
et al. [15] use a hash proof system-based OPRF to resist brute-force
attacks and provide dynamic cross-domain deduplication in blockchain-
enabled edge computing. However, they do not address the problem of
PoW or suffer from potential attacks and time overheads.

Proof-of-Ownership. To solve the problem that attackers can ac-
cess files with a small hash value, Halevi et al. [22] present MHT-PoW,
using erasure coding to build a Merkle Hash Tree(MHT) for ownership
verification. Ng et al. [49] proposed a private PoW scheme over en-
crypted data. Xu et al. [25] firstly encrypt data and generate a hash
digest to construct a Merkle Hash Tree, which enhances data security
of client-side deduplication under a bounded leakage setting. Yang
et al. [15] adopt ECC-based accumulators for MHT-PoW and achieve
better performance. However, these schemes require high computation
and I/O overheads, which are not suitable for edge computing. Pietro
et al. [50] propose s-PoW to reduce computation and I/O overheads,
which outputs a proof with each bit that is selected at a random position
of the file. BF-PoW [21,26,30,37] generates a token for each block and
inserts tokens into a bloom filter for ownership checking under the
bounded leakage setting. In addition, access control and user revocation
have been studied. REED [39] encrypts data with a deterministic
version of the all-or-nothing transform. It achieves deduplication with
dynamic access control. Nevertheless, they suffer from privacy leakage
of false positives in a bloom filter and replay attacks.

8. Conclusion

Nowadays, edge computing employs data deduplication to reduce
storage and computation overheads. However, the state-of-the-art
schemes face some security and performance problems, including data
confidentiality and security of proof-of-ownership. We design SE-PoW,
which employs a location-aware hybrid encrypted deduplication
method and a dual-level security-enhanced proof-of-ownership algo-

rithm.

29
To resist brute-force attacks, SE-PoW exploits server-aided RCE for
inter-edge file-level encrypted deduplication. For non-duplicate files,
SE-PoW utilizes edge-aided MLE for intra-edge block-level encrypted
deduplication. To resist duplicate-faking attacks, we further exploit a
cuckoo filter as the first-level PoW to verify the ownership. Then we
prove the homomorphism of algebraic signatures to enhance the secu-
rity of SE-PoW and resist replay attacks. Finally, the security analysis
demonstrates that SE-PoW achieves higher security. And the perfor-
mance evaluation makes it clear that SE-PoW is efficient compared with
the state-of-the-art schemes. The problems of data reliability, updating,
and dynamic user management are our future work.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We want to thank the reviewers and editors for their construc-
tive comments and suggestions. This research is partly supported by
ZDSY20200811143600002. We also thank anyone who helped us im-
prove this work.

References

[1] Fengmin Tang, Feng Gao, Zilong Wang, Driving capability-based transition
strategy for cooperative driving: From manual to automatic, IEEE Access 8 (2020)
139013–139022.

[2] Wang Xiaoyang, Ma Yao, Wang Yiqi, Jin Wei, Wang Xin, Tang Jiliang, Jia
Caiyan, Jian Yu, Traffic flow prediction via spatial temporal graph neural
network, in: Proceedings of the Web Conference 2020(WWW’20), 2020, pp.
1082–1092.

[3] The future of data: Data age 2025, 2019, https://www.seagate.com/files/www-
content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf.

[4] Rethik data: Put more of your business data to work - from edge
to cloud, 2021, https://www.seagate.com/files/www-content/our-story/rethink-
data/files/Rethink_Data_Report_2020.pdf.

[5] Tim Süß, Tunahan Kaya, Markus Mäsker, Andre Brinkmann, Deduplication
analyses of multimedia system images, in: USENIX Workshop on Hot Topics in
Edge Computing (HotEdge’18), Boston, MA, 2018.

[6] Jianbing Ni, Kuan Zhang, Yong Yu, Xiaodong Lin, Xuemin Sherman Shen,
Providing task allocation and secure deduplication for mobile crowdsensing via
fog computing, IEEE Transactions on Dependable and Secure Computing(TDSC)
17 (3) (2020) 581–594.

[7] Yu Wang Hongyang Yan, Chunfu Jia, Centralized duplicate removal video storage
system with privacy preservation in IoT, Sensors 18 (6) (2018) 1814.

[8] Dropbox, 2022, https://www.dropbox.com/.
[9] Microsoft OneDrive, 2022, https://drive.google.com/.

[10] Ctera edge X series, 2022, https://www.ctera.com/x-series/.
[11] Shijing Li, Tian Lan, Bharath Balasubramanian, Moo-Ryong Ra, Hee Won Lee, Ra-

jesh Panta, EF-Dedup: Enabling collaborative data deduplication at the network
edge, in: 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS), 2019, pp. 986–996.

[12] Geyao Cheng, Deke Guo, Lailong Luo, Junxu Xia, Siyuan Gu, LOFS: A Lightweight
online file storage strategy for effective data deduplication at network edge, IEEE
Trans. Parallel Distrib. Syst. (TPDS) (01) (2021) 1.

[13] Shijing Li, Tian Lan, Hotdedup: managing hot data storage at network
edge through optimal distributed deduplication, in: IEEE INFOCOM 2020-IEEE
Conference on Computer Communications, IEEE, 2020, pp. 247–256.

[14] Dongyoung Koo, Youngjoo Shin, Joobeom Yun, Junbeom Hur, A hybrid dedu-
plication for secure and efficient data outsourcing in fog computing, in: IEEE
CloudCom’2016, 2016, pp. 285–293.

[15] Yang Ming, Chenhao Wang, Hang Liu, Yi Zhao, Jie Feng, Ning Zhang, Weisong
Shi, Blockchain-enabled efficient dynamic cross-domain deduplication in edge
computing, IEEE Internet Things J. (2022) 1.

[16] J. Douceur, A. Adya, W.J Bolosky, et al., Reclaiming space from duplicate files
in a serverless distributed file system, in: Proceedings of IEEE ICDCS, 2002, pp.
617–624.

[17] M. Bellare, S. Keelveedhi, T. Ristenpart, Message-locked encryption and secure
deduplication, in: Proceedings of EUROCRYPT, 2013, pp. 296–312.

[18] S. Keelveedhi, M. Bellare, T. Ristenpart, DupLESS: server-aided encryption for
deduplicated storage, in: Proceedings of Usenix Security, 2013, pp. 1–16.

http://refhub.elsevier.com/S2772-4859(22)00049-7/sb1
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb1
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb1
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb1
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb1
https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.seagate.com/files/www-content/our-story/rethink-data/files/Rethink_Data_Report_2020.pdf
https://www.seagate.com/files/www-content/our-story/rethink-data/files/Rethink_Data_Report_2020.pdf
https://www.seagate.com/files/www-content/our-story/rethink-data/files/Rethink_Data_Report_2020.pdf
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb5
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb5
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb5
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb5
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb5
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb6
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb6
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb6
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb6
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb6
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb6
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb6
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb7
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb7
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb7
https://www.dropbox.com/
https://drive.google.com/
https://www.ctera.com/x-series/
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb12
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb12
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb12
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb12
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb12
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb13
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb13
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb13
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb13
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb13
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb14
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb14
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb14
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb14
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb14
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb15
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb15
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb15
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb15
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb15

Y. Zhou, Z. Yu, L. Gu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062
[19] Jingwei Li, Zuoru Yang, Yanjing Ren, Patrick P.C. Lee, Xiaosong Zhang, Bal-
ancing Storage Efficiency and Data Confidentiality with Tunable Encrypted
Deduplication, Association for Computing Machinery, New York, NY, USA, 2020.

[20] Junbeom Hur, Dongyoung Koo, Youngjoo Shin, Kyungtae Kang, Secure data
deduplication with dynamic ownership management in cloud storage, IEEE
Transactions on Knowledge and Data Engineering(TKDE) 28 (11) (2016)
3113–3125.

[21] Shunrong Jiang, Tao Jiang, Liangmin Wang, Secure and efficient cloud data
deduplication with ownership management, IEEE Transactions on Services
Computing (TSC) 13 (6) (2018) 1152–1165.

[22] Shai Halevi, Danny Harnik, Benny Pinkas, Alexandra Shulman-Peleg, Proofs of
ownership in remote storage systems, in: Proceedings of ACM CCS, 2011.

[23] Dropship: dropbox aip utilities, 2012, https://github.com/driverdan/dropship.
[24] Martin Mulazzani, Sebastian Schrittwieser, Manuel Leithner, Markus Huber,

Edgar Weippl, Dark clouds on the horizon: Using cloud storage as attack vector
and online slack space, in: The 20th USENIX Security Symposium (Security’11),
2011, pp. 363–370.

[25] Jia Xu, Ee-Chien Chang, Jianying Zhou, Weak leakage-resilient client-side dedu-
plication of encrypted data in cloud storage, in: Proceedings of ACM AsiaCCS,
2013, pp. 195–206.

[26] J. Blasco, R. DiPietro, A. Orfila, A. Sorniotti, A tunable proof of ownership
scheme for deduplication using Bloom filter, in: Proceedings of IEEE CNS, 2014,
pp. 481–489.

[27] Dongyoung Koo, Junbeom Hur, Privacy-preserving deduplication of encrypted
data with dynamic ownership management in fog computing, Future Generation
Computer Systems(FGCS) 78 (2018) 739–752.

[28] Haoran Yuan, Xiaofeng Chen, Jianfeng Wang, Jiaming Yuan, Hongyang Yan,
Willy Susilo, Blockchain-based public auditing and secure deduplication with
fair arbitration, Inform. Sci. 541 (2020) 409–425.

[29] B.H. Bloom, Spacetime trade-offs in hash coding with allowable errors, Commun.
ACM 13 (7) (1970) 422–426.

[30] Jinbo Xiong, Yuanyuan Zhang, Shaohua Tang, Ximeng Liu, Zhiqiang Yao, Secure
encrypted data with authorized deduplication in cloud, IEEE Access 7 (2019)
75090–75104.

[31] Xue Yang, Rongxing Lu, Kim Kwang Raymond Choo, Fan Yin, Xiaohu Tang,
Achieving efficient and privacy-preserving cross-domain big data deduplication
in cloud, IEEE Trans. Big Data 8 (1) (2022) 73–84.

[32] Yong Yu, Yafang Zhang, Jianbing Ni, Man Ho Au, Lanxiang Chen, Hongyu Liu,
Remote data possession checking with enhanced security for cloud storage, 52
(C), November 2015.

[33] Dutch T. Meyer, William J. Bolosky, A study of practical deduplication, in: The
9th USENIX Conference on File and Storage Technologies (FAST’11), USENIX
Association, San Jose, CA, USA, 2011, pp. 229–241.

[34] The digitization of the world - from edge to core, 2019, https:
//www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-
dataage-whitepaper.pdf.

[35] Thomas J.E. Schwarz, Ethan L. Miller, Store, forget and check: Using algebraic
signatures to check remotely administered storage, in: Proceedings of IEEE
ICDCS, 2006, pp. 1–12.

[36] Jianbing Ni, Xiaodong Lin, Kuan Zhang, Yong Yu, Secure and deduplicated
spatial crowdsourcing: A fog-based approach, in: IEEE GLOBECOM, 2016, pp.
1–6.

[37] Lorena Gonz’alez-Manzano, Agusti’n Orfila, An efficient confidentiality-
preserving proof of ownership for deduplication, J. Netw. Comput. Appl. 50
(2015) 49–59.

[38] Yukun Zhou, Dan Feng, Wen Xia, Min Fu, Fangting Huang, Yucheng Zhang,
Chunguang Li, SecDep: A user-aware efficient fine-grained secure deduplication
scheme with multi-level key management, in: Proceedings of IEEE MSST, 2015,
pp. 1–14.

[39] Jingwei Li Chuan Qin, Patrick P.C. Lee, The design and implementation of
a rekeying-aware encrypted deduplication storage system, ACM Trans. Storage
(TOS) 13 (1) (2017) 9:1–9:30.

[40] B. Fan, D. G. Andersen, M. Kaminsky, M. D. Mitzenmacher, Cuckoo filter:
Practically better than bloom, in: Proceedings of ACM CoNEXT, 2014, pp. 75–88.

[41] W. Litwin, T. Schwarz, Algebraic signatures for scalable distributed data
structures, in: Proceedings. 20th IEEE ICDE, 2004, pp. 412–423.

[42] Jian Shen, Dengzhi Liu, Debiao He, Xinyi Huang, Yang Xiang, Algebraic
signatures-based data integrity auditing for efficient data dynamics in cloud
computing, IEEE Trans. Sustain. Comput. (ISSN: 2377-3782) 5 (02) (2020)
161–173.

[43] OpenSSL Project, 2022, https://www.openssl.org/.
[44] W. Xia, Y. Zhou, H. Jiang, D. Feng, Y. Hua, Y. Hu, Q. Liu, Y. Zhang, FastCDC:

A fast and efficient content-defined chunking approach for data deduplication,
in: Proceedings of USENIX ATC’16, 2016, pp. 101–114.

[45] A. Frederik, B. Jens-Matthias, K. Ghassan O., Y. Franck, Transparent data
deduplication in the cloud, in: Proceedings of ACM CCS’15, 2015, pp. 886–900.
30
[46] Jian Liu, N. Asokan, Benny Pinkas, Secure deduplication of encrypted data
without additional independent servers, in: Proceedings of ACM CCS, 2015, pp.
874–885.

[47] Jin Li, Xiaofeng Chen, Mingqiang Li, Jingwei Li, Patrick PC Lee, Wenjing Lou,
Secure deduplication with efficient and reliable convergent key management,
IEEE TPDS 25 (6) (2014) 1615–1625.

[48] Jianbing Ni, Kuan Zhang, Yong Yu, Xiaodong Lin, Xuemin Sherman Shen,
Providing task allocation and secure deduplication for mobile crowdsensing via
fog computing, IEEE Transactions on Dependable and Secure Computing (TDSC)
(2018).

[49] Wee Keong Ng, Yonggang Wen, Huafei Zhu, Private data deduplication protocols
in cloud storage, in: Proceedings of ACM SAC, 2012, pp. 441–446.

[50] Roberto Di Pietro, Alessandro Sorniotti, Boosting efficiency and security in proof
of ownership for deduplication, in: Proceedings of the 7th ACM AsiaCCS, 2012,
pp. 81–82.

Yukun Zhou received the B.E. and Ph.D. degrees in com-
puter science and technology from Huazhong University of
Science and Technology in 2013, and 2019, respectively.
He is an expert at Sangfor Inc. His research interests
include storage security and edge computing. His research
works have been published in Usenix ATC, IEEE TC, TPDS,
INFOCOM, MSST, FGCS, etc.

Zhibin Yu received his Ph.D. degree in computer sci-
ence from Huazhong University of Science and Technology
(HUST) in 2008. He visited the Laboratory of Computer
Architecture (LCA) of ECE of the University of Texas at
Austin for one year and he worked in Ghent University
as a postdoctoral researcher for half of a year. Now he
is a professor in SIAT. His research interests are micro-
architecture simulation, computer architecture, workload
characterization and generation, performance evaluation,
multi-core architecture, GPGPU architecture, virtualization
technologies, big data processing and so forth. He won the
outstanding technical talent program of Chinese Academy of
Science (CAS) in 2014 and the ’peacock talent’ program of
Shenzhen City in 2013. He is a member of IEEE and ACM.
He serves for ISCA 2013, 2015, 2020, 2021, 2022, MICRO
2014, HPCA 2015, 2018, 2020, PACT 2016, and ICS2018.

Liang Gu received the Ph.D. degree in Computer Software
and Theory from Peking University in 2010. He worked as
an associate research fellow at Yale University from 2010
to 2015. He is currently the chief scientist and the director
of Sangfor Research Institute at Sangfor Technology Inc. As
the person in charge of R&D technology at Sangfor, he is
responsible for the technical framework improvement of a
series of core products, including NGAF, AC, a Cloud HCI,
aSAN, etc.

Dan Feng received the B.E., M.E., and Ph.D. degrees in
computer science and technology from Huazhong University
of Science and Technology (HUST), Wuhan, China, in 1991,
1994, and 1997, respectively. She is a Professor and the
Dean of the School of Computer Science and Technology,
HUST. Her research interests include computer architecture,
non-volatile memory technology, distributed and parallel
file system, and massive storage system. She published more
than 100 papers in IEEE TC, TPDS, TCAD, ACM TOS, FAST,
USENIX ATC, EuroSys, ICDCS, SC, ICS, IPDPS, and DAC. She
is a member of IEEE and ACM, chair of Information Storage
Technology Committee of Chinese Computer Academy.

http://refhub.elsevier.com/S2772-4859(22)00049-7/sb19
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb19
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb19
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb19
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb19
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb20
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb20
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb20
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb20
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb20
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb20
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb20
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb21
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb21
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb21
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb21
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb21
https://github.com/driverdan/dropship
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb27
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb27
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb27
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb27
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb27
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb28
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb28
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb28
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb28
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb28
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb29
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb29
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb29
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb30
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb30
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb30
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb30
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb30
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb31
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb31
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb31
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb31
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb31
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb33
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb33
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb33
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb33
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb33
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb36
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb36
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb36
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb36
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb36
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb37
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb37
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb37
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb37
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb37
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb39
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb39
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb39
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb39
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb39
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb42
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb42
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb42
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb42
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb42
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb42
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb42
https://www.openssl.org/
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb47
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb47
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb47
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb47
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb47
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb48
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb48
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb48
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb48
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb48
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb48
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb48

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100061
Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

Asynchronous memory access unit for general purpose processors
Luming Wang, Xu Zhang, Tianyue Lu, Mingyu Chen ∗

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China

A R T I C L E I N F O

Keywords:
Asynchronous memory access
Far memory
Micro-architecture

A B S T R A C T

In future data centers, applications will make heavy use of far memory (including disaggregated memory pools
and NVM). The access latency of far memory is more widely distributed than that of local memory accesses.
This makes the efficiency of traditional out-of-order load/store mechanism in most general-purpose processors
decrease in this scenario. Therefore, this work proposes an in-core asynchronous memory access unit to fully
utilize the far memory resources.
1. Introduction

In recent years, to improve the utilization of resources in cloud
data centers, more and more resources are organized into resources
pools. Memory resources trends to be the next resources organized as
a pool. However, nowadays remote memory pools usually use software
interfaces (such as key-value, RDMA, files, etc.) rather than direct
load/store [1]. Recently, new interconnect technologies and protocols
(such as OpenCAPI [2], Gen-Z [3] and CXL [4]) enable the construction
of load/store interface based disaggregated memory pool that contains
multiple nodes. Prototypes of such systems have already been con-
structed by researchers [5]. It is foreseeable that complex disaggregated
memory pools using direct load/store interface will emerge soon.

On the other hand, Non-volatile Main Memory (NVMM) start to
emerge, offering higher memory density and lower standby power
consumption. However, it faces similar challenges as remote memory
systems. Compared to traditional DRAM, NVMM has higher latency and
a wide range of latency variation (6x-30x higher write latency and
5x-10x higher read latency) [6]. Currently, there is no efficient and
standard interface for accessing NVMM. Commercial products, such as
Intel’s Optane DC [7], still use a modified synchronous DRAM interface.

Both remote memory and non-volatile main memory are some-
times called ‘‘far memory’’ as their access latency is larger than local
DRAM [8]. There are two main differences in accessing far memory
compared to accessing traditional DRAM-based local memory.

Widely distributed latency The memory allocated from a disaggre-
gated memory pool can locate on some faraway remote nodes.
Furthermore, the memory device can be DRAM, NVM, or other
emerging memory devices. As a result, memory access latency
becomes uncertain. Latency may distribute over a wide range.

∗ Corresponding author at: Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China.
E-mail addresses: wangluming@ict.ac.cn (L. Wang), zhangxu19s@ict.ac.cn (X. Zhang), lutianyue@ict.ac.cn (T. Lu), cmy@ict.ac.cn (M. Chen).

Potential large aggregated bandwidth As memory resources may
come from multiple different machines, the maximum aggre-
gated access bandwidth may increase significantly compared to
local memory which is limited by physical channels, making it
a challenge to make use of the abundant bandwidth.

Access latency in traditional memory systems is also uncertain due
to the multi-level cache hierarchy. However, the distribution of latency
is relatively narrow. The latency of a single access memory request is
around 1 ns (when L1 hits) to 100 ns (when accesses local DRAM).
Modern processors can tolerate this difference in latency by out-of-
order execution and non-blocking cache. Fig. 1 shows the limitations
of current Out-of-Order processors in far memory scenarios. The range
of latency they can tolerate is limited by the number of entries in
the instruction queue, ROB, MSHRs, etc. Once one of these resources
is exhausted, the OoO processor cannot issue more memory access
requests any longer. The resource insufficiency even occurs in the local
memory scenario. For example, due to the limited number of MSHRs,
a single core of Intel Skylake processor can only reach a memory
bandwidth of about 15 GB/S, which is even lower than that of a single
DDR4-2400 DIMM. It is difficult for modern processors to tolerate the
access latency fluctuations (300 ns-10 μs) of far memory.

Although improving the out-of-order execution capability of tra-
ditional general-purpose processor cores [9–12] (e.g., increasing the
number of entries of MSHRs and ROB, using multi-level MSHRs and
ROB, etc.) can also improve the performance of load/store in this
scenario. But such an improvement, even if it is feasible, requires sig-
nificant hardware resources. The key issue is that traditional load/store
instructions are synchronous, every outstanding memory access needs
to hold at least one hardware resource until the operation is completed.
The more parallelism the more hardware resources will be needed.

One approach to address this problem is asynchronous memory
access. A similar predicament had already existed in network program-
ming, where applications call blocking socket interfaces made program
https://doi.org/10.1016/j.tbench.2022.100061
Received 21 March 2022; Received in revised form 7 May 2022; Accepted 7 May 2
Available online 24 May 2022
2772-4859/© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

31
022

KeAi Communications Co. Ltd. This is an open access article under the CC

https://doi.org/10.1016/j.tbench.2022.100061
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2022.100061&domain=pdf
mailto:wangluming@ict.ac.cn
mailto:zhangxu19s@ict.ac.cn
mailto:lutianyue@ict.ac.cn
mailto:cmy@ict.ac.cn
https://doi.org/10.1016/j.tbench.2022.100061
http://creativecommons.org/licenses/by-nc-nd/4.0/

L. Wang, X. Zhang, T. Lu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100061
Fig. 1. Ways to improve memory bandwidth utilization.

performance suffer from network latency. To solve this problem, asyn-
chronous non-blocking interfaces such as select() and epoll() had been
built. Just as network programming has evolved from the early syn-
chronous blocking model to today’s asynchronous non-blocking model,
we suggest that an asynchronous non-blocking model for memory
access is also needed. Therefore, there should be some mechanisms for
invoking asynchronous memory access efficiently in a general purpose
processor.

Another approach is supporting memory access with variable gran-
ularity. As shown in Fig. 1, to improve performance, applications can
initiate memory requests with a large granularity to hide the latency
and fully utilize the bandwidth. Furthermore, applications can adjust
the granularity based on data semantics to access memory flexibly and
efficiently.

Concerning the above approaches, we propose an in-core Asyn-
chronous Memory access Unit (AMU) to support asynchronous access
in a general purpose processor. AMU enables applications to asyn-
chronously initiate many variable granularity memory access requests
by simple instructions, such as asynchronous load/store. AMU also
enables applications to start various complex memory access requests
with additional configuration registers. Processors can still use tra-
ditional synchronous load/store instructions for compatibility while
the data from both sources can be consumed by computation instruc-
tions transparently. We argue that this is a more practical and effi-
cient way than designing an un-core or off-chip asynchronous memory
accelerator.

The following chapters outline the main features of the asyn-
chronous memory access unit.

2. Asynchronous memory access unit

Traditionally, mostly used load/store instructions are implemented
as synchronous mode. Each pending memory operation will hold cer-
tain hardware resources such as GPR, ROB and MSHR entry. The
32
hardware resources will not be released until the memory operations
have finished.

We propose a new class of asynchronous memory access instruc-
tions that will not hold hardware resources during the operation. An
asynchronous instruction that invokes a memory access request will be
committed immediately once it is accepted by functional unit and sent
out. Thus, applications can continue to execute other operations rather
than waiting for the memory access operation to finish. Then, appli-
cations can poll whether there is a completed request later. Moreover,
even if an outstanding request did not finish for a long time, there is no
pipeline stall due to the shortage of ROB or other hardware resources.

Asynchronous memory access instructions are decoded and issued
as normal instructions. The functional unit to process asynchronous
instructions is called Asynchronous Memory access Unit (AMU). AMU is
inspired by the Vector Processing Unit (VPU) of many modern proces-
sors. The VPU is a separate functional unit in the CPU. Applications use
the VPU through a standalone instruction set (i.e., vector instruction
set), which contains a set of extra registers (i.e., vector registers)
to hold the wide data to be processed. Besides, vector instructions
are scheduled together with scalar instructions. Vector registers and
scalar registers can exchange data efficiently. Just as VPU, AMU can
coexist with synchronous load/store Unit and can be ignored when
compatibility comes first.

AMU is responsible for processing asynchronous instructions. How-
ever, it cannot depend on internal hardware registers or queues to
keep the status of outstanding memory operations, which will become
another potential bottleneck for parallelism. In fact, the status of pend-
ing requests are stored in SPM. Each processor core is equipped with
a ScratchPad Memory (SPM), which acts as vector registers in VPU
but has a larger capacity and flexible data structure. Data is moved
asynchronously and automatically between SPM and main memory by
AMU. To initiate asynchronous memory access requests, applications
can prepare data in SPM and then execute asynchronous memory
access instructions. After receiving the request, AMU will move the data
between memory and SPM in background.

From the view of an application, the SPM is a stand-alone mem-
ory space. Applications can use synchronous load/store instructions
to access the data in the SPM and process them with other regular
instructions. In addition, applications can copy data from main memory
to the SPM and vice versa. The SPM is fully compatible with the
processor’s original data access and processing mechanisms.

By asynchronous access, AMU can support as many requests as
the capacity of SPM can support in theory. However, AMU does not
assure the consistency among all outgoing memory operations. The
overhead of hardware consistency checking is one of the reasons that
limit the capacity of traditional load/store queue and MSHRs. In the
AMU design, we leave the consistency issue to software. We argue
that software and hardware cooperation is the right way to exploit the
memory parallelism over large latency.

2.1. Instructions

There are three core instructions of AMU. These instructions enable
the most basic asynchronous memory access.

Asynchronous load/store instructions In AMU, aload/astore instruc-
tion invokes a data movement request between SPM and mem-
ory. An SPM address and a memory address are passed to AMU
by registers. AMU will move data between the provided SPM
address and off-core memory address. Then a request id, which
is used for tracking the request, is stored in the destination
register.

Instruction for getting an id of finished request We propose getfin
instruction for getting an id of any completed request. If there is
no finished request, the instruction returns a failure code. This
instruction does not block execution regardless of whether there
is a completed request or not.

L. Wang, X. Zhang, T. Lu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100061

2

T
a
t
r
t

L

I

2.2. Registers

Due to the limited field space of instructions, some complex memory
access settings cannot be encoded in a single instruction. To solve this
problem, we designed several configuration registers, which contain
advanced parameters.

Memory Access Configuration Registers These registers contain ad-
vanced memory access configurations, including address for-
mat, granularity, priority, etc. Settings in the configuration will
be combined with each access instruction to form a rich se-
mantic memory request. Application can keep several different
configuration registers for different data regions.

Default Configuration Register Due to the limited encoding space of
some instructions, it is even not possible to specify all configu-
ration registers. For such case, the system automatically chooses
the configuration register specified in this register.

Access Pattern Registers The access pattern registers are used to ini-
tiate complex asynchronous memory access. They contain the
access pattern(such as stride, neighbor, stream, etc.) of a class
of complex memory access requests.

.3. Programming model

Listing 1 shows a basic example of asynchronous memory accessing.
he code initiates an asynchronous memory access request with the
load instruction. The code then keeps retrying the getfin instruction
o get the id of a completed request and can do other work while the
equest is still pending. After the request completes, the code then reads
he data from the SPM with the load instruction.

isting 1: Asynchronous Memory Access Basic Example

int memory_need_to_be_accessed ;
int ∗spm_space = (int ∗) A_SPM_ADDR ;
// Invoke an asynchronous memory a c c e s s
// r e q u e s t s . The r e q u e s t ’ s i d i s i g no r ed .
aload (spm_space ,

&memory_need_to_be_accessed) ;
while ((rd = g e t f i n ()) != 0) {
// Do some th ing e l s e

}
// Acce s s data from SPM v ia load / s t o r e
p r i n t f ("%d\n " , ∗spm_space) ;

AMU instructions can support a variety of programming paradigms.

• Vector Model Vector instructions and vector processors are ma-
ture techniques for exploiting data-level parallelism. As a tech-
nique to improve data-level parallelism, AMU instructions have
many similarities to vector instructions. Thus, it is possible to
combine AMU instructions with vector instructions efficiently.

• Event-Driven Model The event-driven model is a common para-
digm in single-thread non-blocking network programming. Fur-
thermore, the aload/astore instructions are like non-blocking
socket read()/write(). getfin instructions are like the select() in
network programming. Thus, the event-driven model can be
naturally applied to asynchronous memory accesses especially for
out of order scenarios.

• Coroutine Model For asynchronous access requests with com-
plex access patterns, coroutines or lightweight software threads
are more suitable programming paradigms. Coroutines can eas-
ily work with high performance concurrent data structures and

enable more interactions between software and AMU.

33
Fig. 2. Architecture design.

3. Architecture design

Fig. 2 shows the architecture design of AMU. There are three key
design choices:

CPU Pipeline Integration To support efficient asynchronous memory
access instructions, many state control registers are integrated
into CPU core pipeline. Some of these registers indicate the
AMU’s status, which allows programs to rapidly get the status
of outstanding instructions. In addition, speculative execution of
asynchronous memory access instructions brings new challenges
since some states are stored in SPM. This requires the pipeline
of the processor core to be designed carefully.

Re-configurable Cache/SPM Space We propose to dynamically con-
figure part of the CPU Cache as SPM. So there are no proprietary
SPM resources and interface needed. This design also allows
more flexibility for the software to decide how to use the SPM.
Applications can adjust the size of Cache and SPM themselves
based on the workload. For example, Random-Access bench-
mark needs only about 12 KB to support up to 512 in-flight 8B
memory requests.

ntegration with L2 Controller We propose to integrate the AMU
logic with the L2 cache controller. Since the size of L2 is large
enough compared to register file and reserve part of L2 will
not affect much performance as L1. The logic implements the
management and execution of asynchronous access requests and
the engine to move data between SPM and memory controller.

Because the main metadata of memory requests maintained by AMU
are stored in the SPM, the extra storage overhead is only about a few
KB and does not vary when the required MLP increases.

AMU can work with a standard memory controller for local memory
or far memory access. However to better support various asynchronous
memory instructions with rich semantics and various far memory re-
sources, there should also be newly designed memory controllers that
can do the transformation between local bus requests and network
packets, such as packing, unpacking, filtering, compressing, routing,
etc.

We do not specify the server-side of memory resources. For asyn-
chronous memory access supported by AMU, there are no latency or
granularity limitations for memory servers. Different kinds of memory
resources can be accessed through a unified interface. That is the
separation of memory organization and memory access.

4. Early evaluation

To demonstrate the concepts of AMU, an early simulator prototype
has been built. We modified GEM5 to implement a cycle-accurate

model of AMU and evaluated it by running Random-Access benchmark

L. Wang, X. Zhang, T. Lu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100061
Fig. 3. Performance of random access benchmark.

from HPCC (shown in Fig. 3). The far memory latency is set to several
different values (from 0.1 μs to 5 μs) respectively. 64 KB of the 256
KB Cache Capacity are reserved for SPM. AMU performs similarly
across different configurations, while the performance of baseline drops
rapidly when access latency increases. The results show that AMU can
better tolerate a large range of access latency.

5. Discussion

5.1. Efficient ID management

When initiating an asynchronous access request, an id needs to be
assigned to the request and be released after finishing. Since the id is
needed every time an asynchronous access is initiated, the overhead
of id management must be as low as possible. For this goal, we chose
to design an efficient hardware id management mechanism instead of
leaving id management to software. Also, this mechanism should be
integrated with out-of-order and speculation mechanisms smoothly.

5.2. Consistency

As mentioned in Section 2, this work relies on software to handle
the consistency. For many data-parallel programs (such Key-Value
databases and graph processing [13], etc.), they easily apply corou-
tine model mentioned above. As each interleaved coroutines processes
independent data, thus naturally avoiding data consistency problems.

For other programs that need strong consistency, it is possible to
use a combination of hardware and software solution to handle the
consistency problem of asynchronous access to far memory. For exam-
ple, consistency checking can be implemented in local memory or local
cache. Applications can check the consistency of requests locally before
invoking asynchronous accesses to far memory. In addition, some
explicit and efficient locking mechanisms might also be provided by
hardware to ensure consistency. Furthermore, software can deal with
locking asynchronously to avoid blocking. Although these approaches
introduce extra complexity, we argue that the overhead is acceptable
comparing with the benefit.

5.3. Comparison with prefetching

There are three major differences between asynchronous memory
access and prefetching. First, prefetching mechanisms do not provide
any method to query whether prefetch requests have been completed.
Thus, applications cannot know if the data has been transferred to local
cache. This may impact the efficiency of the application as the access
latency is distributed in a wide range. Second, modern processors’
prefetching mechanisms are also limited by the number of MSHR
entries, while the proposed AMU fully bypass the MSHRs. Third, the
memory space for prefetching results is not reserved so prefetched data
might be lost before access.
34
6. Future work

In this paper, only the basic instructions and structures of AMU are
presented. Further design and evaluation are undertaking. The AMU
design can be easily extended support more memory access protocols.
For example, we can add configuration registers and instructions for
issuing processing-in-memory related requests. The AMU will enable
more programming flexibility if the underlying memory system sup-
port more richer semantics, such as message interface based memory
systems [14].

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is partially supported by Strategic Priority Research
Program of Chinese Academy of Sciences (Grant No. XDC05030400),
and Huawei Technologies Company, Ltd.

References

[1] M.K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi, P. Subrahmanyam,
L. Suresh, K. Tati, R. Venkatasubramanian, M. Wei, Remote memory in the age
of fast networks, in: Proceedings of the 2017 Symposium on Cloud Computing,
in: SoCC ’17, Association for Computing Machinery, New York, NY, USA, 2017,
pp. 121–127, http://dx.doi.org/10.1145/3127479.3131612.

[2] openCAPI specification, 2017, Online URL http://opencapi.org. (Accessed
Febrary 2022).

[3] Gen-Z specification, 2018, Online URL https://genzconsortium.org/specifications.
(Accessed Febrary 2022).

[4] Compute express link, 2022, Online URL https://www.computeexpresslink.org/.
(Accessed Febrary 2022).

[5] C. Pinto, D. Syrivelis, M. Gazzetti, P. Koutsovasilis, A. Reale, K. Katrinis, H.P.
Hofstee, ThymesisFlow: A software-defined, HW/SW co-designed interconnect
stack for rack-scale memory disaggregation, in: 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO, 2020, pp. 868–880,
http://dx.doi.org/10.1109/MICRO50266.2020.00075.

[6] H.-K. Liu, D. Chen, H. Jin, X.-F. Liao, B. He, K. Hu, Y. Zhang, A survey of
non-volatile main memory technologies: State-of-the-arts, practices, and future
directions, J. Comput. Sci. Tech. 36 (1) (2021) 4–32, http://dx.doi.org/10.1007/
s11390-020-0780-z.

[7] Intel optane persistent memory, 2022, Online URL https://www.intel.
com/content/www/us/en/architecture-and-technology/optane-dc-persistent-
memory.html. (Accessed Febrary 2022).

[8] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal, R. Burny, S. Butt, J. Chang,
A. Chaugule, N. Deng, J. Shahid, G. Thelen, K.A. Yurtsever, Y. Zhao, P.
Ranganathan, Software-defined far memory in warehouse-scale computers, in:
Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, in: ASPLOS ’19,
Association for Computing Machinery, New York, NY, USA, 2019, pp. 317–330,
http://dx.doi.org/10.1145/3297858.3304053.

[9] J. Tuck, L. Ceze, J. Torrellas, Scalable cache miss handling for high memory-
level parallelism, in: 2006 39th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO’06, IEEE, 2006, pp. 409–422.

[10] M. Asiatici, P. Ienne, Stop crying over your cache miss rate: Handling effi-
ciently thousands of outstanding misses in fpgas, in: Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2019,
pp. 310–319.

[11] S.T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, M. Upton, Continual flow
pipelines: achieving resource-efficient latency tolerance, IEEE Micro 24 (6)
(2004) 62–73.

[12] A. Hilton, S. Nagarakatte, A. Roth, iCFP: Tolerating all-level cache misses
in in-order processors, in: 2009 IEEE 15th International Symposium on High
Performance Computer Architecture, IEEE, 2009, pp. 431–442.

[13] T.J. Ham, L. Wu, N. Sundaram, N. Satish, M. Martonosi, Graphicionado: A high-
performance and energy-efficient accelerator for graph analytics, in: 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO, IEEE,
2016, pp. 1–13.

[14] L.-C. Chen, M.-Y. Chen, Y. Ruan, Y.-B. Huang, Z.-H. Cui, T.-Y. Lu, Y.-G. Bao,
MIMS: Towards a message interface based memory system, J. Comput. Sci. Tech.
29 (2) (2014) 255–272, http://dx.doi.org/10.1007/s11390-014-1428-7.

http://dx.doi.org/10.1145/3127479.3131612
http://opencapi.org
https://genzconsortium.org/specifications
https://www.computeexpresslink.org/
http://dx.doi.org/10.1109/MICRO50266.2020.00075
http://dx.doi.org/10.1007/s11390-020-0780-z
http://dx.doi.org/10.1007/s11390-020-0780-z
http://dx.doi.org/10.1007/s11390-020-0780-z
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
http://dx.doi.org/10.1145/3297858.3304053
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb9
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb9
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb9
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb9
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb9
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb10
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb10
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb10
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb10
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb10
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb10
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb10
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb11
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb11
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb11
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb11
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb11
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb12
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb12
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb12
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb12
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb12
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb13
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb13
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb13
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb13
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb13
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb13
http://refhub.elsevier.com/S2772-4859(22)00048-5/sb13
http://dx.doi.org/10.1007/s11390-014-1428-7

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100060
Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

Performance and energy consumption tradeoff in server consolidation
Belen Bermejo ∗, Carlos Juiz
Computer Science Department, Universitat de les Illes Balears, Spain

A R T I C L E I N F O

Keywords:
Metrics
Consolidation
Performance
Energy
Servers
Benchmarking

A B S T R A C T

Server consolidation is one of the techniques used to increase energy efficiency in datacentres. Nevertheless,
the server consolidation has an inherent trade-off between performance degradation and energy consumption
which has to be quantified to be managed. In this paper, the 𝐶𝑖𝑆2 index is proposed to quantify the mentioned
trade-off. We validated de use of the 𝐶𝑖𝑆2 index through real experimentation. Also, these observations lead
us to propose the second contribution, which focuses on the consolidation overhead. We proposed a general
method to quantify this overhead and be able to manage its effect on performance degradation. To sum up,
this paper improved the management of energy efficiency in datacentres’ servers through the 𝐶𝑖𝑆2 index and
the server consolidation determination method.
1. Introduction

In the last years, organizations started to be concerned about the
impact of information technology (IT) on energy consumption. For this
reason, the Green IT initiatives appeared to make companies more
environment-friendly [1,2].

The datacentres consume a huge amount of power and emit green-
house gases in the form of CO2. In a current datacentre, 30% of
servers either are even not used or their utilization is very low, around
5%–10% [3,4]. Also, servers are the most power-demand device of a
datacentre [5].

During last years, Green IT was used as an umbrella covering
overlapping concepts like server consolidation and power manage-
ment, among many others. Then, the aspiration of Green IT is achiev-
ing higher energy efficiency in the use of the IT devices and to in-
crease the utilization of already installed devices in datacentres us-
ing the virtualization technology, specifically the server consolidation
technique [1].

The server consolidation technique is based on the reallocation of
virtual servers (could be virtual machines) among different physical
servers using machine migration (see Fig. 1). As a consequence, the
utilization of physical servers increases and the number of switched-on
physical servers can be reduced.

Therefore, server consolidation increases the utilization of physical
servers. However, due to the possibility of switch-off some physical
servers, the power consumption is reduced. Nevertheless, as [6] states,
the energy consumption depends on the overhead inherent to virtu-
alization. The virtualization overhead is the extra workload that the
physical server has to perform due to being virtualized, that is, tasks
of managing virtual machines and coordinating the access to physical

∗ Corresponding author.
E-mail address: belen.bermejo@uib.es (B. Bermejo).

resources. As a consequence, the larger the number of consolidated vir-
tual machines is, the higher the overhead is because of the coordination
of simultaneously demanding resources access [5].

In certain cases, the energy-saving is not compensated with the
performance degradation, which will be very high. It could also be
the opposite case, that is, high performance of the datacentre may not
be able to compensate servers to reduce it [5]. The current challenge
in server consolidation is how to determine if a consolidated server
is efficient or not in terms of energy consumption and performance
degradation.

Therefore, the research question we attempted to solve in this
work is: could the performance-energy trade-off of physical servers
when consolidating virtual machines be quantified?

2. State of the art

In this work, we are interested in the server consolidation point of
view tracking the management of these issues proposing several metrics
to quantify the performance and the efficiency of a datacentre and
servers.

The main developed work [7] explores the diverse metrics that
are currently available to measure numerous datacentre infrastructure
components behaviour. Also, they proposed a taxonomy of metrics
based on datacentre dimensions. In addition, authors argue for the
design of new metrics considering factors such as locations and resource
co-locations, to assist in the strategic datacentre design and operations
processes. One of the challenges authors announced is that it is hard
to know the energy consumption due to datacentre sub-components, as
operating systems and virtual machines. Due to that, in this work, we
https://doi.org/10.1016/j.tbench.2022.100060
Received 26 April 2022; Received in revised form 10 May 2022; Accepted 10 May
Available online 25 May 2022
2772-4859/© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

35
2022

KeAi Communications Co. Ltd. This is an open access article under the CC

https://doi.org/10.1016/j.tbench.2022.100060
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2022.100060&domain=pdf
mailto:belen.bermejo@uib.es
https://doi.org/10.1016/j.tbench.2022.100060
http://creativecommons.org/licenses/by-nc-nd/4.0/

B. Bermejo and C. Juiz BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100060
Fig. 1. Virtual machine consolidation, from [9].

proposed a metric for performance-energy trade-off, which took into
account the number of allocated virtual servers.

On the one hand, the performance metrics attempt to quantify
the suitability of the amount of work accomplished by a server or
a datacentre. The values can be directly monitored from the system
or inferred [8]. In the same manner, the energy and power metrics
quantify the consumption of power or energy of a datacentre and/or a
physical server. To take into account both previous aspects simultane-
ously, it is necessary to measure the relationship between performance
and energy. These metrics relate to the performance of servers or
datacentres with the power or energy consumption.

Power management metrics and techniques at different levels in
datacentres are shown in [7]. System’s administrators may measure
information from software and hardware optimization. In this work,
we are focused on metrics regarding software-oriented optimizations,
specifically virtual machine consolidation, and, hardware-oriented op-
timizations, focused on the power and energy reduction in physical
servers.

As we can observe from the previous works, all the used metrics are
focused on the performance degradation and energy consumption, but,
they are not considering the fact of having virtual servers consolidated.
Then, with the current metrics it is not possible to know the efficiency
of a consolidated server, or which number of virtual servers is more
efficient in a specific scenario.

As a result, to the best of our knowledge, this is the first attempt
to define metrics to quantify the performance and energy trade-off in
server consolidation.

3. The 𝑪𝒊𝑺𝟐 index

In this section, we presented a new metric: Consolidated index
for CPU- Server Saturation (𝐶𝑖𝑆2) which attempts to quantify the
performance and energy trade-off taking into account the number of
consolidated virtual machines (or containers) per server [10].

The 𝐶𝑖𝑆2 index is defined as the product of the speed-up of the
performance and the ratio of the consumed energy (see Eq. (1)). The
speed-up of the performance is calculated as the ratio between the
mean response time of the consolidation scenario and the physical
server execution (𝑆𝑃𝑝 = 𝑅𝑐∕𝑅𝑝). In the same manner, the ratio of the
consumed energy is the division between the energy consumed in the
consolidated scenario and the physical one (𝑆𝑃𝑒 = 𝐸𝑐∕𝐸𝑝) [10].

Therefore, it is a simple quadratic efficiency and also the name of
𝐶𝑖𝑆2. Also, in Fig. 2 the desirable index in function of the possible
number of consolidated virtual machines (or containers) is represented.
In the vertical axis, the combined performance and energy efficiency
values are represented. In the horizontal axis the number of machines
to be consolidated, either they are available in the datacentre or
they are only considered for future capacity planning and forecasting
bottlenecks.

𝐶𝑖𝑆2 = 𝑆𝑃𝑝 ⋅ 𝑆𝑃𝑒 (1)
36
Fig. 2. 𝐶𝑖𝑆2 index values and reference diagonal.

3.1. Graphical representation and interpretation

The representation of the 𝐶𝑖𝑆2 index values, concerning the incre-
mental number of consolidated machines, would be a square where
the reference diagonal separated the scenario configurations of high
performance and low energy from those that degrade and/or consume
excessive energy about the following rules of thumb:

• 𝑁 virtual machines consolidated in one physical machine should
be 𝑁 times slower than 𝑁 physical machines (linear performance
degradation).

• 𝑁 virtual machines in one physical machine should consume as
energy as 𝑁 physical machines (energy conservation).

One the hand, the more consolidated virtual servers hosted in physi-
cal servers, the more performance degradation and consequently, the
energy consumption would increase due to the increment of the mean
response time. On the other hand, the more physical machines used,
the more power is consumed, and consequently, the energy is also
increased. Thus, we argue that it is possible to measure the balance
between both situations. Due to that, the 𝐶𝑖𝑆2 index compares different
configurations in the performance-energy trade-off between different
server consolidation scenarios.

From the energy efficiency point of view, the balanced efficiency
metric shown through 𝐶𝑖𝑆2 should be the one in which the average
energy of a number of consolidated physical machines in a number of
a virtual servers is exactly the same of using corresponding physical
machines, i.e. the energy ratio is equal to one (𝑆𝑃𝑒 = 1). However, from
the performance speed-up point of view, the balanced efficiency shown
through 𝐶𝑖𝑆2 should be the one in which performance degradation is
linear, that is, the slowdown is the same of the number of consolidated
virtual servers per physical machine, i.e. 𝑁 is the number of machines
(𝑆𝑃𝑝 = 𝑁).

3.2. Desirable values

Being 𝐶𝑖𝑆2 values the result of the product of performance and
energy speed-up, 𝐶𝑖𝑆2 index acts as a qualifier of the consolidation
of several virtual machines in comparison with this balanced (and
pessimistic) reference diagonal described by the application of the rules
of thumb.

Therefore, we also defined the 𝐶𝑖𝑆2 reference diagonal as the
imaginary border separating the’’ inefficient’’ CiS2 values (above the
line) from the ’’efficient’’ 𝐶𝑖𝑆2 values (below the lines) as we de-
picted in Fig. 3. This reference diagonal represents the linearity of the

B. Bermejo and C. Juiz BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100060

s
a
i

t
t

c
I
b
d
b

s
b
I
𝐶

Fig. 3. Desirable values o 𝐶𝑖𝑆2 index.

Table 1
Physical servers of the experimentation.

Server Number of CPUs RAM size (GB)

Fujitsu RX600S5–1 48 1024
Dell PowerEdge T330 16 16
Dell PowerEdge T430 16 8
Dell PowerEdge R310 4 4
Dell PowerEdge T3400 2 8

consolidation in terms of performance and energy so that increasing
consolidation would mean lowering proportionally the performance
and also it means exchanging power by energy [11].

Having two different areas to distinguish among different consolida-
tions one server or to compare different servers’ consolidation spending
on the area position of values, another interesting feature of the 𝐶𝑖𝑆2

index for system administrators. Any consolidation configuration is
more efficient or more inefficient, depending on the Euclidean distance
of the index to the reference diagonal, above or below the reference
diagonal, respectively as it is shown in Fig. 3a.

For example, the point 2 represented in 3b, which is on the green
area, is more efficient than the point 1 because it is far from the
diagonal. On the contrary, the point 3 represented in 3b, which is on
the red area, is more efficient than the point 4 because it is closer to
the diagonal than the point 4.

3.3. 𝐶𝑖𝑆2 index evaluation

In the real experimentation, several factors should be considered,
such as the hypervisor type, the benchmark or workload kind and the
server hardware features. To simplify these factors, we represented the
system using a black-box model. The workload is submitted in the
system (consolidated servers) and we monitor the system behaviour
(mean response time and power consumption) until the workload is
completed [12,13].

The experimental set-up is composed of a set of different physical
servers, which the number of CPUs and the RAM size are described in
Table 1. Besides, the power consumption was measured by the Chroma
66200 power meter, the used hypervisors to deploy the consolidation
are KVM, Virtual Box and Docker. In addition, it is important to
note that the physical CPU executes the workload under the satu-
ration condition, that is, the % of utilization is around 100%. The
selected workloads are the Sysbench-CPU and the Stress-ng, which are
intensive-based CPU workloads [14].

3.4. 𝐶𝑖𝑆2 evaluation’s results

In Fig. 4 the 𝐶𝑖𝑆2 values for each physical server in the function of
the number of consolidated virtual machines can be shown. The first
that can observe is that the 𝐶𝑖𝑆2 values have the same shape, that is, it
tarts increment and then it goes down when the physical machine has
certain number of allocated virtual machines. Therefore, there is an

nflexion point that determines the number of minimum consolidated
37
Fig. 4. 𝐶𝑖𝑆2 index values.

Fig. 5. 𝐶𝑖𝑆2 index values for different workload.

virtual machines the server needs to have a good 𝐶𝑖𝑆2 value. The
inflexion point depends on the physical server, and, as a consequence,
it depends on the physical resources the server has.

Besides, the graphical representation of the 𝐶𝑖𝑆2 index allows us
to distinguish between the efficient and non-efficient consolidation
configurations. For example, taking the T430 server from Fig. 4, it can
be observed that 𝑁 = 6 is more efficient than 𝑁 = 3 because it is under
he diagonal. In addition, for the HPI server, 𝑁 = 4 is more efficient
han 𝑁 = 3 because it is far away from the diagonal.

Moreover, in Fig. 5 the 𝐶𝑖𝑆2 index for the Sysbench workload in
omparison with the Stress-ng workload for the T430 server is shown.
t can be observed that for different nature of CPU workload, the
ehaviour of the 𝐶𝑖𝑆2 index is the same. It starts growing, and it goes
own after the inflexion point. Also, the inflexion point is the same for
oth workloads.

In previous sections, we stated that the 𝐶𝑖𝑆2 index can be used for
erver’s benchmarking and comparison. In Fig. 6 the physical servers
y their consolidation efficiency considering the 𝐶𝑖𝑆2 value is shown.
t can be observed that the RX server is the most efficient because its
𝑖𝑆2 value at the inflexion point is the lowest one.

B. Bermejo and C. Juiz BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100060

t
t
a

(
c
h

Fig. 6. Server selection depending on the values of parameters obtained from
benchmarking (sorted by server efficiency).

Fig. 7. Server consolidation overhead sources.

4. Consolidation overhead quantification method

As we observed in previous results, the value of the 𝐶𝑖𝑆2 index
depends on the hardware features, the number of allocated virtual
machines and the workload nature, together with the performance
degradation inherent to the server consolidation. Therefore, the second
contribution of this work regards the server consolidation overhead [9].

The server consolidation overhead is defined as the extra workload
that the system has to perform to manage the consolidation. This
extra workload comes from the fact of having a hypervisor and the
current access to physical resources from several consolidated virtual
machines (or containers). Therefore, there are two sources of overhead
(see Fig. 7) [15]:

• 𝑂𝑉𝑣: overhead of virtualization.
• 𝑂𝑉𝑐 : overhead of consolidation.

Regarding the server consolidation overhead, the aim is to provide
a general method for quantifying 𝑂𝑉𝑣 and 𝑂𝑉𝑐 . Let us define 𝑅𝐶 and
he mean response of the consolidated server, 𝑅𝑉 as the mean response
ime of the physical server with a single consolidated virtual machine,
nd 𝑅𝑃𝑀 as the mean response time of the physical server. The 𝑂𝑉𝑣

can be defined as the difference between 𝑅𝑉 and 𝑅𝑃𝑀 (see Eq. (2)).
In the same manner, 𝑂𝑉𝑐 can be defined as the difference between 𝑅𝐶

and 𝑅𝑉 (see Eq. (3)).

𝑂𝑉𝑣 = 𝑅𝑉 − 𝑅𝑃𝑀 (2)

𝑂𝑉𝑐 = 𝑅𝐶 − 𝑅𝑉 (3)

The main advantage of the proposed method is that it can be
applied to any consolidation scenario considering any physical server,
hypervisor and workload type.

The evaluation of the proposed method was performed using the
previous experimental set-up, monitoring the mean response time of the
required scenarios. We represented for each consolidation configura-

tion the value of 𝑂𝑉𝑣, 𝑂𝑉𝑐 and the useful work in percentage. The useful

38
Fig. 8. Consolidation overhead representation for T430 server and KVM hypervisor.

Fig. 9. Consolidation overhead representation for T430 server and Virtual-Box
hypervisor.

work represents the portion of the time that the system is executing just
the workload, in this case, the CPU operations.

In Figs. 8 and 9 the values of 𝑂𝑉𝑣 (blue), 𝑂𝑉𝑐 (orange) and %work
grey) for the T430 are represented, in function of the number of
onsolidated virtual machines. It can be observed, that for the KVM
ypervisor the values of 𝑂𝑉𝑣 and 𝑂𝑉𝑐 are smaller than the values for

the Virtual-Box hypervisor. Also, it can be seen that these values depend
on the number of consolidated machines and the hypervisor. However,
in any case, the consolidation is not for free, being more than 50% for
Virtual-Box hypervisor configurations.

5. Conclusion and future work

This paper aims to measure the performance-energy tradeoff in
server consolidation. Since there are no metrics to capture how server
consolidation is managed considering the relationship between perfor-
mance and energy, the 𝐶𝑖𝑆2 index is proposed to achieve this aim. As
the results show, this index can be applied to any type of server, under
any virtualization platform and any level of use of its resources, in this
case, the CPU. In addition, it enables the datacentre administrator to
make better consolidation decisions thanks to the proposed graphical
representation.

Also, the proposed index reflects a set of behaviours inherent to con-
solidated servers. The second contribution of this paper consists of the
classification and quantification of the factors that affect the behaviour
of server consolidation, in this case, two types of overhead (𝑂𝑉𝑣 and
𝑂𝑉𝑐). By the application of a simple method, these overheads can be
quantified through the proposed method, which is also independent of
the type of server, the executed workload, the virtualization and the
percentage of CPU utilization.

Therefore, through this work, a step has been made towards a
more efficient management of virtualized servers, and the datacentres.
Now, the performance and energy balance of servers can be mea-
sured through the 𝐶𝑖𝑆2 index and graphically analysed with a general

B. Bermejo and C. Juiz BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100060
method. Besides, system’s administrators dispose of a method to go in-
depth the overhead caused by the consolidation of servers and thus
be able to make better decisions regarding the improvement of these
systems.

As future work, the 𝐶𝑖𝑆2 index can be extended to multiple devices.
Also, it can be extended for scales workload and considering different
workload distributions. Moreover, system properties could be described
by the 𝐶𝑖𝑆2 index. Regarding the overhead quantification method, it
could be extended considering the power and energy consumption.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] M. Uddin, A.A. Rahman, Energy efficiency and low carbon enabler green IT
framework for data centers considering green metrics, Renew. Sustain. Energy
Rev. 16 (6) (2012) 4078–4094.

[2] C.-J. Tang, M.-R. Dai, H.-C. He, C.-C. Chuang, Evaluating energy efficiency of
data centers with generating cost and service demand, Bull. Netw. Comput. Syst.
Softw. 1 (1) (2012) pp–16.

[3] L.A. Barroso, U. Hölzle, The case for energy-proportional computing, Computer
(12) (2007) 33–37.
39
[4] L. Minas, B. Ellison, Energy Efficiency for Information Technology: How to
Reduce Power Consumption in Servers and Data Centers, Intel Press, 2009.

[5] F. Abaunza, A.-P. Hameri, T. Niemi, EEUI: A new measure to monitor and
manage energy efficiency in data centers, Int. J. Prod. Perform. Manag. 67 (1)
(2018) 111–127.

[6] G. Lovász, F. Niedermeier, H. De Meer, Performance tradeoffs of energy-aware
virtual machine consolidation, Cluster Comput. 16 (3) (2013) 481–496.

[7] A.M. Ferreira, B. Pernici, Managing the complex data center environment: An
integrated energy-aware framework, Computing 98 (7) (2016) 709–749.

[8] X. Molero, C. Juiz, M. Rodeño, Evaluación Y Modelado Del Rendimiento De Los
Sistemas Informáticos, Pearson Educación London, 2004.

[9] B. Bermejo, C. Juiz, C. Guerrero, Virtualization and consolidation: A system-
atic review of the past 10 years of research on energy and performance, J.
Supercomput. (2018) 1–29.

[10] C. Juiz, B. Bermejo, The CiS2: A new metric for performance and energy trade-off
in consolidated servers, Cluster Comput. 23 (4) (2020) 2769–2788.

[11] B. Bermejo, C. Juiz, C. Guerrero, On the linearity of performance and energy
at VMC: the 2 index for CPU workload in server saturation, in: IEEE High
Performance Computing and Communications, HPCC-2018, 2018.

[12] B. Bermejo, C. Juiz, N. Thomas, On the virtualization overhead and energy
consumption in consolidated servers, in: UK- Performance Engineering Workshop,
UKPEW, 2018.

[13] S.K. Panda, P.K. Jana, An energy-efficient task scheduling algorithm for
heterogeneous cloud computing systems, Cluster Comput. (2018) 1–19.

[14] E. Casalicchio, A study on performance measures for auto-scaling CPU-intensive
containerized applications, Cluster Comput. (2019) 1–12.

[15] B. Bermejo, C. Juiz, On the classification and quantification of server
consolidation overheads, J. Supercomput. 77 (1) (2021).

http://refhub.elsevier.com/S2772-4859(22)00047-3/sb1
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb1
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb1
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb1
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb1
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb2
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb2
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb2
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb2
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb2
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb3
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb3
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb3
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb4
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb4
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb4
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb5
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb5
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb5
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb5
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb5
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb6
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb6
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb6
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb7
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb7
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb7
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb8
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb8
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb8
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb9
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb9
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb9
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb9
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb9
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb10
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb10
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb10
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb11
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb11
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb11
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb11
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb11
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb12
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb12
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb12
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb12
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb12
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb13
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb13
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb13
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb14
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb14
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb14
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb15
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb15
http://refhub.elsevier.com/S2772-4859(22)00047-3/sb15

TBench Editorial Board

Co-EIC
Prof. Dr. Jianfeng Zhan, ICT, Chinese Academy of Sciences and BenchCouncil
Prof. Dr. Tony Hey, Rutherford Appleton Laboratory STFC, UK

Editorial office
Dr. Wanling Gao, ICT, Chinese Academy of Sciences and BenchCouncil
Shaopeng Dai, ICT, Chinese Academy of Sciences and BenchCouncil
Dr. Chunjie Luo, University of Chinese Academy of Sciences, China

Advisory Board
Prof. Jack Dongarra, University of Tennessee, USA
Prof. Geoffrey Fox, Indiana University, USA
Prof. D. K. Panda, The Ohio State University, USA

Founding Editor
Prof. H. Peter Hofstee, IBM Systems, USA and Delft University of Technology, Netherlands
Dr. Zhen Jia, Amazon, USA
Prof. Blesson Varghese, Queen's University Belfast, UK
Prof. Raghu Nambiar, AMD,USA
Prof. Jidong Zhai, Tsinghua University, China
Prof. Francisco Vilar Brasileiro, Federal University of Campina Grande, Brazil
Prof. Jianwu Wang, University of Maryland, USA
Prof. David Kaeli, Northeastern University, USA
Prof. Bingshen He, National University of Singapore, Singapore
Dr. Lei Wang, Institute of Computing Technology, Chinese Academy of Sciences, China
Prof. Weining Qian, East China Normal University, China
Dr. Arne J. Berre, SINTEF, Norway
Prof. Ryan Eric Grant, Sandia National Laboratories, USA
Prof. Rong Zhang, East China Normal University, China
Prof. Cheol-Ho Hong, Chung-Ang University, Korea
Prof. Vladimir Getov, University of Westminster, UK
Prof. Zhifei Zhang, Capital Medical University
Prof. K. Selcuk Candan, Arizona State University, USA
Dr. Yunyou Huang, Guangxi Normal University
Prof. Woongki Baek, Ulsan National Institute of Science and Technology, Korea
Prof. Radu Teodorescu, The Ohio State University, USA
Prof. John Murphy, University College Dublin, Ireland
Prof. Marco Vieira, The University of Coimbra (UC), Portugal
Prof. Jose Merseguer, University of Zaragoza (UZ), Spain
Prof. Xiaoyi Lu, University of California, USA
Prof. Yanwu Yang, Huazhong University of Science and Technology, China
Prof. Jungang Xu, University of Chinese Academy of Sciences, China
Prof. Jiaquan Gao, Professor, Nanjing Normal University, China

Associate Editor
Dr. Chen Zheng, Institute of Software, Chinese Academy of Sciences, China
Dr. Biwei Xie, Institute of Computing Technology, Chinese Academy of Sciences, China
Dr. Mai Zheng, Iowa State University, USA
Dr. Wenyao Zhang, Beijing Institute of Technology, China
Dr. Bin Liao, North China Electric Power University, China

More information about this series at https://www.benchcouncil.org/tbench/

40

https://www.benchcouncil.org/tbench/

TBench Call For Papers
BenchCouncil Transactions on Benchmarks, Standards and Evaluations (TBench)
ISSN:2772-4859

Aims and Scopes
BenchCouncil Transactions on Benchmarks, Standards, and Evaluations (TBench) publishes position articles that open new
research areas, research articles that address new problems, methodologies, tools, survey articles that build up
comprehensive knowledge, and comments articles that argue the published articles. The submissions should deal with the
benchmarks, standards, and evaluation research areas. Particular areas of interest include, but are not limited to:
 1. Generalized benchmark science and engineering (see

https://www.sciencedirect.com/science/article/pii/S2772485921000120), including but not limited to
 measurement standards
 standardized data sets with defined properties
 representative workloads
 representative data sets
 best practices

 2. Benchmark and standard specifications, implementations, and validations of:
 Big Data
 AI
 HPC
 Machine learning
 Big scientific data
 Datacenter
 Cloud
 Warehouse-scale computing
 Mobile robotics
 Edge and fog computing
 IoT
 Chain block
 Data management and storage
 Financial domains
 Education domains
 Medical domains
 Other application domains

 3. Data sets
 Detailed descriptions of research or industry datasets, including the methods used to collect the data and technical

analyses supporting the quality of the measurements.
 Analyses or meta-analyses of existing data and original articles on systems, technologies, and techniques that

advance data sharing and reuse to support reproducible research.
 Evaluating the rigor and quality of the experiments used to generate the data and the completeness of the data

description.
 Tools generating large-scale data while preserving their original characteristics.

 4. Workload characterization, quantitative measurement, design, and evaluation studies of:
 Computer and communication networks, protocols, and algorithms
 Wireless, mobile, ad-hoc and sensor networks, IoT applications
 Computer architectures, hardware accelerators, multi-core processors, memory systems, and storage networks
 High-Performance Computing
 Operating systems, file systems, and databases

41

https://www.sciencedirect.com/science/article/pii/S2772485921000120

 Virtualization, data centers, distributed and cloud computing, fog, and edge computing
 Mobile and personal computing systems
 Energy-efficient computing systems
 Real-time and fault-tolerant systems
 Security and privacy of computing and networked systems
 Software systems and services, and enterprise applications
 Social networks, multimedia systems, Web services
 Cyber-physical systems, including the smart grid

 5. Methodologies, metrics, abstractions, algorithms, and tools for:
 Analytical modeling techniques and model validation
 Workload characterization and benchmarking
 Performance, scalability, power, and reliability analysis
 Sustainability analysis and power management
 System measurement, performance monitoring, and forecasting
 Anomaly detection, problem diagnosis, and troubleshooting
 Capacity planning, resource allocation, run time management, and scheduling
 Experimental design, statistical analysis, simulation

 6. Measurement and evaluation
 Evaluation methodology and metric
 Testbed methodologies and systems
 Instrumentation, sampling, tracing, and profiling of Large-scale real-world applications and systems
 Collection and analysis of measurement data that yield new insights
 Measurement-based modeling (e.g., workloads, scaling behavior, assessment of performance bottlenecks)
 Methods and tools to monitor and visualize measurement and evaluation data
 Systems and algorithms that build on measurement-based findings
 Advances in data collection, analysis, and storage (e.g., anonymization, querying, sharing)
 Reappraisal of previous empirical measurements and measurement-based conclusions
 Descriptions of challenges and future directions the measurement and evaluation community should pursue

42

Bench 2022 Call For Papers
2022 BenchCouncil International Symposium on Benchmarking, Measuring and Optimizing
(Bench 2022) Calls For Papers
https://www.benchcouncil.org/bench22/index.html

Full Papers deadline: July 28, 2022, 23:59:59 AoE
Notification: September 6, 2022, 23:59:59 AoE
Final Papers due: October 11, 2022, 23:59:59 AoE
Conference date: Nov. 7th - Nov. 9th, 2022 (Virtual)
Submission site: https://bench2022.hotcrp.com/

Introduction
Benchmarks, Data, Standards, Measurements, and Optimizations are fundamental human activities and assets. The Bench
conference has two essential duties: promote data or benchmark-based quantitative approaches to tackle multidisciplinary
and interdisciplinary challenges; connect architecture, system, data management, algorithm, and application communities to
better co-design for the inherent workload characterizations.

The Bench conference provides a high-quality, single-track forum for presenting results and discussing ideas that further the
knowledge and understanding of the benchmarks, data, standards, measurements, and optimizations community as a whole.
It is a multidisciplinary and interdisciplinary conference. The past meetings attracted researchers and practitioners from the
architecture, system, algorithm, and application communities. It includes both invited sessions and contributed sessions.

Regularly, the Bench conference will present the BenchCouncil Achievement Award ($3000), the BenchCouncil Rising Star
Award ($1000), the BenchCouncil Best Paper Award ($1000), and the BenchCouncil Distinguished Doctoral Dissertation
Awards in Computer Architecture ($1000) and in other areas ($1000). This year, the BenchCouncil Distinguished Doctoral
Dissertation Award includes two tracks: computer architecture and other areas. Among the submissions of each track, four
candidates will be selected as finalists. They will be invited to give a 30-minute presentation at the Bench’22 Conference
and contribute research articles to BenchCouncil Transactions on Benchmarks, Standards and Evaluation. Finally, for each
track, one among the four will receive the award for each track, which carries a $1,000 honorarium.

Organization
General Co-Chairs
Emmanuel Jeannot, INRIA, France
Peter Mattson, Google, USA
Wanling Gao, University of Chinese Academy of Sciences, China

Program Co-Chairs
Chunjie Luo, ICT, Chinese Academy of Sciences, China
Ce Zhang, ETH Zurich, Switzerland
Ana Gainaru, Oak Ridge National Laboratory, USA

Publicity Co-Chairs
David Kanter, MLCommons
Rui Ren, Beijing Institute of Open Source Chip
Zhen Jia, Amazon

Web Co-Chairs
Jiahui Dai, BenchCouncil

43

Jiahui Dai, BenchCouncil
Qian He, Beijing Institute of Open Source Chip

Award Committees
BenchCouncil Distinguished Doctoral Dissertation Award Committee in Other Areas:
Jack Dongarra, University of Tennessee
Xiaoyi Lu, The University of California, Merced
Jeyan Thiyagalingam, STFC-RAL
Lei Wang, ICT, Chinese Academy of Sciences
Spyros Blanas, The Ohio State University

BenchCouncil Distinguished Doctoral Dissertation Award Committee in Computer Architecture:
Peter Mattson, Google
Vijay Janapa Reddi, Harvard University
Wanling Gao, Chinese Academy of Sciences

Bench Steering Committees
Jack Dongarra, University of Tennessee
Geoffrey Fox, Indiana University
D. K. Panda, The Ohio State University
Felix, Wolf, TU Darmstadt
Xiaoyi Lu, University of California, Merced
Resit Sendag, University of Rhode Island, USA
Wanling Gao, ICT, Chinese Academy of Sciences & UCAS
Jianfeng Zhan, ICT, Chinese Academy of Sciences &BenchCouncil

Call For Papers
The Bench conference encompasses a wide range of areas and topics in benchmarking, measurement, evaluation methods
and tools. We solicit papers describing original and previously unpublished work. The areas and topics of interest include,
but are not limited to the following.
 1. Areas:

 Architecture
 Data Management
 Algorithm
 Datasets
 System
 Network
 Reliability and Security
 Application

 2. Topics:
 Benchmark and standard specifications, implementations, and validations
 Dataset Generation and Analysis
 Workload characterization, quantitative measurement, design and evaluation studies
 Methodologies, abstractions, metrics, algorithms and tools
 Measurement and evaluation

Paper Submission

44

Papers must be submitted in PDF. For a full paper, the page limit is 15 pages in the LNCS format, not including references.
For a short paper, the page limit is 8 pages in the LNCS format, not including references. The submissions will be judged
based on the merit of the ideas rather than the length. The reviewing process is double-blind. Upon acceptance, the
proceeding will be published by Springer LNCS (Indexed by EI). Please note that the LNCS format is the final one for
publishing. Distinguished papers will be recommended to and published by the BenchCouncil Transactions on Benchmarks,
Standards and Evaluation (TBench).
At least one author must pre-register for the symposium, and at least one author must attend the symposium to present the
paper. Papers for which no author is pre-registered will be removed from the proceedings.

Submission site:https://bench2022.hotcrp.com/
LNCS Latex template:https://www.benchcouncil.org/file/llncs2e.zip

Awards
* BenchCouncil Achievement Award ($3,000)
- This award recognizes a senior member who has made long-term contributions to benchmarking, measuring, and
optimizing. The winner is eligible for the status of a BenchCouncil Fellow.

* BenchCouncil Rising Star Award ($1,000)
- This award recognizes a junior member who demonstrates outstanding potential for research and practice in benchmarking,
measuring, and optimizing.

* BenchCouncil Best Paper Award ($1,000)
- This award recognizes a paper presented at the Bench conferences, which demonstrates potential impact on research and
practice in benchmarking, measuring, and optimizing.

* BenchCouncil Distinguished Doctoral Dissertation Award ($2000)
- This award recognizes and encourages superior research and writing by doctoral candidates in the broad field of
benchmarks, data, standards, evaluations, and optimizations community. This year, the award includes two tracks, including
the BenchCouncil Distinguished Doctoral Dissertation Award in Computer Architecture ($1000) and BenchCouncil
Distinguished Doctoral Dissertation Award in other areas ($1000).

Technical Program Committee
Murali Krishna Emani, ANL
Shin-ying Lee, AMD
Steve Farrell, NERSC
Krishnakumar Nair, Meta
Greg Diamos, Landing.AI
Fei Sun, Alibaba
Narayanan Sundaram, Facebook
Zhen Jia, Amazon
Shengen Yan, SenseTime
Gang Lu, Tencent
Rui Ren, Beijing Open-Source IC Academy
Bin Hu, ICT, CAS
Khaled Ibrahim, Lawrence Berkeley National Laboratory
Sascha Hunold, TU Wien
Woongki Baek, UNIST
Mario Marino, Leeds Beckett University
Bin Ren, William & Mary

45

https://bench2022.hotcrp.com/
https://www.benchcouncil.org/file/llncs2e.zip

Gwangsun Kim, POSTECH
Vladimir Getov, University of Westminster
Guangli Li, ICT, CAS
Biwei Xie, ICT, CAS
Nicolas Rougier, INRIA

46

	A BenchCouncil view on benchmarking emerging and future computing
	Introduction
	Background and challenge: why metrology cannot be directly reused for benchmark science and engineering
	Background: metrology concepts
	The benchmarking challenges: extrinsic properties, process entanglement, and instantiation bias

	Emerging computing aggravates the challengesThis section is written based on an unpublished technique report zhan2019benchcouncil, of which I am the lead author.
	Building up benchmark science and engineering
	The unifying definition of benchmarks
	Definition
	Instantiation

	The conceptual framework of benchmark science and engineering
	The traceable and supervised-learning based benchmarking methodology
	Re-interpret five categories of benchmarks

	BenchCouncil's plan on emerging and future computing
	The collaboration with ComputerCouncil

	Conclusion
	Acknowledgments
	References

	SAIBench: Benchmarking AI for Science
	Introduction
	Problem definition
	Methodology
	System design
	SAIL: Scientific AI domain-specific language
	Automatic benchmarking task discovery
	Experiment orchestration

	Case study
	Comparison to other benchmarking systems

	Discussion
	Conclusion
	Declaration of competing interest
	References

	An efficient encrypted deduplication scheme with security-enhanced proof of ownership in edge computing
	Introduction
	Background problems
	Encrypted deduplication in edge computing
	PoW Schemes problems

	System model threat model
	System model
	Threat model
	Security requirements design goals
	Preliminaries

	Design and implementation of SE-PoW
	Overview of SE-PoW
	Encrypted deduplication in SE-PoW
	Proof of ownership in SE-PoW
	Implementation detail of SE-PoW

	Security analysis
	Data confidentiality
	Security of proof of ownership
	Security discussion of SE-PoW

	Performance evaluation
	Experimental setup
	A sensitivity study on encryption PoW
	Evaluating SE-PoW on real-world datasets

	Related work
	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

	Asynchronous memory access unit for general purpose processors
	Introduction
	Asynchronous memory access unit
	Instructions
	Registers
	Programming model

	Architecture design
	Early evaluation
	Discussion
	Efficient ID management
	Consistency
	Comparison with prefetching

	Future work
	Declaration of competing interest
	Acknowledgments
	References

	Performance and energy consumption tradeoff in server consolidation
	Introduction
	State of the art
	The CiS2 index
	Graphical representation and interpretation
	Desirable values
	CiS2 index evaluation
	CiS2 evaluation's results

	Consolidation overhead quantification method
	Conclusion and future work
	Declaration of competing interest
	References

	TBench Editorial Board
	TBench Call For Papers
	Bench 2022 Call For Papers

