BenchGouncil TBench

Volume 2, Issue 4

Transactions 2022

on Benchmarks, Standards and Evaluations

Research article

©HPC AI500 V3.0: A scalable HPC Al benchmarking

framework
Zihan Jiang, Chunjie Luo, Wanling Gao, Lei Wang, Jianfeng Zhan

© CpsMark+: A scenario-oriented benchmark system for
office desktop performance evaluation in centralized
procurement via simulating user experience
Yue Zhang, Tong Wu

© Optimizing the sparse approximate inverse
preconditioning algorithm on GPU
Xinyue Chu, Yizhou Wang, Qi Chen, Jiaquan Gao

© Performance characterization and optimization of

pruning patterns for sparse DNN inference
Yunjie Liu, Jingwei Sun, Jiagiang Liu, Guangzhong Sun

©loTBench: A data centrical and configurable loT
benchmark suite
Simin Chen, Chunjie Luo, Wanling Gao, Lei Wang

© Diagnosis of COVID-19 from X-rays using combined
CNN-RNN architecture with transfer learning

Md. Milon Islam, Md. Zabirul Islam, Amanullah Asraf,
Mabrook S. Al-Rakhami, ... Ali Hassan Sodhro

ISSN: 2772-4859

Copyright © 2023 International Open Benchmark Council (BenchCouncil); spon-
sored by the Institute of Computing Technology, Chinese Academy of Sciences.
Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.

Review article

© An extensive study on Internet of Behavior (loB) enabled

Healthcare-Systems: Features, facilitators, and challenges
Mohd Javaid, Abid Haleem, Ravi Pratap Singh, Shahbaz Khan, Rajiv Suman

Short Communication

© Enabling Reduced Simpoint Size Through LiveCache and

Detail Warmup
Jose Renau, Fangping Liu, Hongzhang Shan, Sang Wook Stephen Do

Reports

© Edge AlBench 2.0: A scalable autonomous vehicle
benchmark for loT-Edge-Cloud systems
Tianshu Hao, Wanling Gao, Chuanxin Lan, Fei Tang, ... Jianfeng Zhan
© An era of ChatGPT as a significant futuristic support tool:

A study on features, abilities, and challenges
Abid Haleem, Mohd Javaid, Ravi Pratap Singh

BenchCouncil Transactions on Benchmarks, Standards and
Evaluations (TBench) is an open-access multi-disciplinary
journal dedicated to benchmarks, standards, evaluations,
optimizations, and data sets. This journal is a peer-reviewed,
subsidized open access journal where The International Open
Benchmark Council pays the OA fee. Authors do not have to
pay any open access publication fee. However, at least one of
the authors must register BenchCouncil International
Symposium on Benchmarking, Measuring and Optimizing

(Bench) (https://www.benchcouncil.org/bench/) and present

their work. It seeks a fast-track publication with an average

turnaround time of one month.

Contents

HPC AIS00 V3.0: A scalable HPC Al benchmarking

LR 0 0 TSN A 0) ol 7«

Z. Jiang, C. Luo, W. Gao, L. Wang and J. Zhan

CpsMark+: A scenario-oriented benchmark system for
office desktop performance evaluation in centralized
procurement via simulating user experiencey

K Zhang and T Wu ...

Optimizing the sparse approximate inverse precondition-

ing algorithm ON GPU - i

X. Chu, Y. Wang, Q. Chen and J. Gao

Performance characterization and optimization of

pruning patterns for sparse DNN inference-----------coeovenennen.

Y. Liu, J. Sun, J. Liu and G. Sun

IoTBench: A data centrical and configurable IoT

[Y 1IN 100010 o T) U 1 R

S. Chen, C. Luo, W. Gao and L. Wang

Diagnosis of COVID-19 from X-rays using combined

CNN-RNN architecture with transfer learning....................

Md. M. Islam, Md.Z. Islam, A. Asraf, M.S. Al-Rakhami,
W. Ding and A.H. Sodhro

An extensive study on Internet of Behavior (IoB) enabled
Healthcare-Systems: Features, facilitators, and

chal]enges ...

M. Javaid, A. Haleem, R.P. Singh, S. Khan and R. Suman

Enabling Reduced Simpoint Size Through LiveCache

and Detail Warmup ...

J. Renau, F. Liu, H. Shan and S.W.S. Do

Edge AIBench 2.0: A scalable autonomous vehicle

benchmark for IoT_Edge_Cloud Systems 81
T. Hao, W. Gao, C. Lan, F. Tang, Z. Jiang and J. Zhan

An era of ChatGPT as a significant futuristic support

tool: A study on features, abilities, and challenges----------------.. 89
A. Haleem, M. Javaid and R.P. Singh

TBench Editorial Board .. 97

TBench Call For Paper ... 08

Bench 2022 Call For Paper .. 100

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100083

KeAi

BenchCouncil Transactions
on Benchmarks, Standards

Contents lists available at ScienceDirect
BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

and Evaluations

KeAi

CHINESE ROOTS
GLOBAL IMPACT

Research Article

HPC AI500 V3.0: A scalable HPC Al benchmarking framework N

Check for
updates

Zihan Jiang *>*, Chunjie Luo ?, Wanling Gao?, Lei Wang ?, Jianfeng Zhan *"

2 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
b University of Chinese Academy of Sciences, Beijing, China

ARTICLE INFO ABSTRACT

Keywords:

Artificial intelligence

High performance computing
Benchmarking

Scalability

In recent years, the convergence of High Performance Computing (HPC) and artificial intelligence (AI) makes
the community desperately need a benchmark to guide the design of next-generation scalable HPC Al systems.
The success of the HPL benchmarks and the affiliated TOP500 ranking indicates that scalability is the
fundamental requirement to evaluate HPC systems. However, being scalable in terms of these emerging Al

workloads like deep learning (DL) raises nontrivial challenges. This paper formally and systematically analyzes
the factor that limits scalability in DL workloads and presents HPC AI500 v3.0, a scalable HPC Al benchmarking
framework. The HPC AI500 V3.0 methodology is inspired by bagging, which utilizes the collective wisdom of
an ensemble of base models and enables the benchmarks to be adaptively scalable to different scales of HPC
systems. We implement HPC AI500 V3.0 in a highly customizable manner, maintaining the space of various
optimization from both system and algorithm levels. By reusing the representative workloads in HPC AI500
V2.0, we evaluate HPC AI500 V3.0 on typical HPC systems, and the results show it has near-linear scalability.
Furthermore, based on the customizable design, we present a case study to perform a trade-off between Al
model quality and its training speed. The source code of HPC AI500 V3.0 is publicly available from the HPC
AI500 project homepage https://www.benchcouncil.org/aibench/hpcai500/.

1. Introduction

Deep Learning (DL) has been a dominating technology in Artificial
Intelligence (AI) as its huge success in many challenging AI problems,
such as image classification [1-3], object detection [4-6], and natural
language processing [7-9]. DL allows building a computational model
composed of multiple processing layers with trainable weights to learn
the presentation of data [10]. To harness larger datasets and achieve
higher model quality (e.g., Topl accuracy), in recent years, tremendous
DL models have been proposed endlessly, both for commercial applica-
tions [11-16] and scientific computing [17-20]. These giant models
usually have deeper layers and billions of weights, which is extremely
computation-intensive. Hence, academia and industry are greatly in-
terested in designing and building next-generation HPC systems to run
these emerging Al workloads for their computation requirement [21,
22]. Benchmark plays an important role in this process, as it provides
the input and methodology for evaluation [23].

In the past three decades, the HPL benchmark [24] and the affiliated
TOP500 ranking [25] witnessed the thriving of HPC systems. From
CM-5 (1993) [26] to Fugaku (2020) [27], the FLOPS performance of
the NO.1 supercomputer on the TOP500 list improves by more than
10°%. HPL has become the measurement standard [28] in the HPC field
for thirty years and will continue to be. The reason for its success is

twofold. On the one hand, HPL solves a (random) dense linear system in
double precision, which captures the general characteristic that many
scientific applications share. We conclude this property as relevancy.
On the other hand, HPL can adapt to scalable systems by adjusting
the input matrix size. We summarize this property as scalability. The
HPL lesson indicates that relevancy and scalability are two significant
properties for an ideal benchmark. Most of the previous work [29-34]
in AI benchmarking focus on relevancy and select represent workloads
in real-world Al applications. However, they ignored the scalability
issue.

Scalability is difficult to guarantee for AI workloads. According to
the experiences in the previous researches [36,46], each Al workload
has the best training batchsize, which is irrelevant to the system scale,
to achieve state-of-the-art quality. This observation indicates that no
matter how the scale of the system changes, the amount of parallel
computation processed remains the same. Although many system op-
timizations [13,47-52] are proposed, all they can do is process this
constant amount of computation as fast as possible by utilizing various
parallel techniques (e.g., data parallelism [53]). Therefore, with the
continuous growth of system scale, the speed of training existing Al
workloads is rapidly accelerated. As shown in Fig. 1, from 2017 to
2021, with the development of HPC Al systems, the training time of

* Corresponding author at: Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
E-mail addresses: jiangzihan@ict.ac.cn (Z. Jiang), luochunjie@ict.ac.cn (C. Luo), gaowanling@ict.ac.cn (W. Gao), wanglei 2011@ict.ac.cn (L. Wang),

zhanjianfeng@ict.ac.cn (J. Zhan).

https://doi.org/10.1016/j.tbench.2022.100083

Received 17 November 2022; Received in revised form 23 December 2022; Accepted 23 December 2022

Available online 29 December 2022

2772-4859/© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.tbench.2022.100083
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2022.100083&domain=pdf
https://www.benchcouncil.org/aibench/hpcai500/
mailto:jiangzihan@ict.ac.cn
mailto:luochunjie@ict.ac.cn
mailto:gaowanling@ict.ac.cn
mailto:wanglei_2011@ict.ac.cn
mailto:zhanjianfeng@ict.ac.cn
https://doi.org/10.1016/j.tbench.2022.100083
http://creativecommons.org/licenses/by-nc-nd/4.0/

Z. Jiang, C. Luo, W. Gao et al.

Nvidia (2021)
Fujitsu (2019)
Google (2018)
Sony (2018)
Tencent (2018)
PN (2017)
Berkeley (2018)
Intel (2017)

IBM (2017)
Facebook (2017)

0 10 20 30 40 50 60

Fig. 1. ImageNet/ResNet-50 is a popular showcase for optimizing HPC Al systems from
academia [35] and industry [36-44]. PN refers to Preferred Networks [45]. The x-axis
refers to the training time measured in minutes.

ResNet-50 [2] has dropped exponentially, and the result of Nvidia [44]
shows that it now can be done in under half a minute. From the
benchmarking perspective, such a short running time does not allow for
a thorough and endurable evaluation. Furthermore, the fixed amount
of computation is distributed on the HPC system with a growing scale,
which makes the resource utilization of each computing node extremely
unsaturated.

Two prior works attempt to address the scalability problem in HPC
Al benchmarking, namely AlPerf [54] and HPL-AI [55]. However, they
both have their own flaws. AIPerf uses network architecture search
(NAS) [56] as the primary workload. NAS automatically searches the
network architecture with a predefined probability, introducing ran-
domness to the benchmarking process. HPL-AI allows mixed-precision
LU decomposition to solve a linear equation system and tends to be
irrelevant to most Al workloads [57].

Bagging (Bootstrap Aggregation) [58] is designed to improve the
stability and quality of the prediction by utilizing the collective wisdom
of an ensemble of base models. As a meta-algorithm of ensemble learn-
ing [59], a critical feature of bagging is the independence between each
base model. This independence makes bagging can be implemented as
a highly parallel way to scale out with the number of nodes in an HPC
system. Another merit of bagging is its flexibility and not being bound
to any Al algorithm. In other words, we can easily and quickly achieve
relevancy by integrating a state-of-the-art or state-of-the-practice algo-
rithm into our bagging-based benchmarking framework. Considering
the advantages above, this paper presents a bagging-based scalable Al
benchmarking framework, which we call HPC AI500. HPC AI500 V3.0
extends our previous works: HPC AI500 V1.0 [50] and HPC AI500
V2.0 [57]. Table 1 summarizes the differences between HPC AI V3.0
from the other related works. HPC AI500 V3.0 not only leverages the
advantages of bagging to achieve scalability and relevancy but also
maintains user-customizable parallel optimization opportunities. HPC
AI500 V3.0 implements two modules, bagging management (BM) and
model parallelism management (MPM), to achieve this customizability.
BM determines the algorithm adopted in data sampling and the number
of base models. MPM determines the degree of parallelism inside each
base model. Through these two modules, users can customize the
number of base models and the degree of parallelism to make the
trade-off between the model quality and training speed. Based on HPC
AI500 [57], we evaluate HPC AI500 V3.0 on typical HPC systems to
show its scalability and customizability.

Our main contributions are summarized as follows:

+ According to the unique challenges of HPC AI Benchmarking, we
reformulated the HPC Al scalability issue (Section 2).

» We propose the bagging approach in HPC AI benchmarking to
achieve relevancy and scalability and implement HPC AI500
V3.0, a scalable and customizable framework for HPC Al bench-
marking (Section 3).

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100083

+ We evaluate HPC AI500 V3.0 by reusing HPC AI500 v2.0 work-
loads on typical HPC systems to show its scalability and customiz-
ability (Section 4).

2. Background and challenge
2.1. Deep learning preliminary

The whole training process of modern DL models is essentially a
non-convex optimization. Mathematically, it can be represented as:

VxeR"

N
min, £(x) =+ Y (), §
i=1

where f; is a loss function for data point i € {1,2,3,..., N}, which
measures the deviation of the model prediction from the data. x is the
vector of weights being optimized. The process of optimizing the loss

function is called training and is performed iteratively.

2.1.1. Mini-batch stochastic gradient descent

Stochastic Gradient Descent (SGD) is the dominant method for train-
ing DL models. Vanilla SGD updates weight x by adding the gradient
computed on a single data point of the whole dataset. Since only one
random data point is processed at one iteration, this approach has two
disadvantages. First, such a noisy update makes the training process
unstable [62]. Second, the computation is inefficient, especially when
using computing devices such as GPUs. Mini-batch SGD is proposed
to remedy these two deficiencies. It minimizes the loss function f
iteratively in the following form:

1

Xkl = X = Mg <m > Vfi(xk)> 2
k! ieB,

where B, € {1,2,3,..., N} is the batch sampled from the whole dataset

and #, is the learning rate of iteration k. | B; | refers to the batchsize. The

ratio of N and |B,| determines the number of iterations in a training

epoch.

2.2. The scalability issue

With the convergence of Al and HPC, both academia and industry
players [63-65] leverage the computing power of HPC systems to speed
up the training process of DL models. However, SGD training has a
significant drawback, limited by the batchsize.

2.2.1. The limitation of batchsize

Although there are millions of data in a DL dataset with the size
N [66], the intrinsic sequential property of SGD only allows a batch
with size B, (e.g., B, = 256) of data to be processed in parallel in
an iteration. We call the computation cost required by a batch as the
Amount of Parallel Computation in an Iteration(in short, APC). Compared
to Linpack, whose APC can be tuned by the size of the input matrix,
the APC of DL workloads is usually a constant and can be represented
as:

|By|
APC,, = 2 Computation(f;(x)) 3
j=1
where j € {1,2,3,...,|B|} is data that is randomly sampled from the
DL dataset with the size N and included in batch B;. And
Computation(f;(x)) is the computation cost required by the DL model
to process a single data and can be measured by FLOPs.

Eq. (3) indicates that APC,, is determined by the |B,|. However,
the value of By is usually a small number, where |B;| <« N. Specif-
ically, B, € {16,32,64,256..512} in many DL applications such as
image classification [2] and object detection [4,5]. In this context, it
is hard to fully utilize the computing power of HPC systems, which are
usually equipped with hundreds or even thousands of nodes. Taking

Z. Jiang, C. Luo, W. Gao et al.

Table 1

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100083

Comparison of HPC AI500 V3.0 against HPC AI500 V1.0, V2.0, and other HPC AI benchmarks. The equivalence, affordability, representativeness,
and repeatability issues are resolved in our previous work HPC AI500 V2.0 [57]. HPC AI500 V3.0 is an HPC Al benchmarking framework which
inherits and extends HPC AI500 V2.0 with scalability. HPC AI500 V3.0 can naturally integrate other HPC Al benchmarks. “X” and “v” indicate

whether they have the corresponding properties. “-” indicates not verified.
Related work Equivalence Representativeness Affordability Repeatability Scalability
HPC AI500 V1.0 (2018) [50] X v v X X
HPL-AI (2019) [55] v X v v v
Deep500 (2019) [60] X x v - X
HPC AI500 V2.0 (2020) [57] v v v v X
AlPerf (2020) [54] v v v - v
MLPerf (HPC) (2021) [61] v v v v X
HPC AI500 V3.0 v v v v v
the ImageNet/ResNet-50 training on Summit [50,57] as an example. 32
|B;| = 512, according to Eq. (3), the APC of ImageNet/ResNet-50 is 31 31 31
11776 GFLOPs. Considering Summit has 4608 nodes (six Nvidia Tesla
GPUs in each node), each node only can allocate the computation of 30
% = 2.55 GFLOPs, which is far away from the peak performance of 229 i
six V100 GPUs.! S 28 28
Naively enlarging |B,| to improve APC, leads to a degradation gzs
in the model quality due to the sharp minima [36,46,67]. The tricks 227
proposed in [36,46,67] indeed increase | B, | to a larger number, but it § - 26
is still far from the peak performance of the HPC system, leading to poor ks
resource utilization. Furthermore, the proposed tricks are empirical, 25
lack generalization ability, and depend on a specific DL workload. 24
So far, no research can systematically and theoretically quantify the
relationship between B, and model quality. 23 _— — = — — e

2.2.2. The reformulation of HPC Al scalability

Based on the aforementioned analysis, we reformulate the HPC
Al scalability from the following two perspectives. In the previous
work [57], we have discussed how to resolve equivalence, represen-
tativeness, affordability, and repeatability issues.

» The APC, should be large enough to accommodate the scale
and computing capability of HPC systems. To be specific, it is
necessary to maintain a high resource utilization and near-linear
speed up.

» The model quality should be maintained or improved while in-
creasing the APC,, and |B,|. Otherwise, the whole training pro-
cess is meaningless.

Compared to the traditional HPC scalability, which focuses on
scale efficiency and resource utilization [24], the reformulated HPC Al
scalability emphasizes the restraint of model quality and batchsize | By |.

2.3. Prior work

In addition to the other Al benchmarks [29-34], MLPerf (HPC) [61],
HPL-AI [55], AlPerf [54], and HPC AI500 [50,57] are representative
HPC AI benchmarking works. Among them, the earliest work is the
HPC AI500 V1.0 [50], dating back to 2018. HPC AI500 V1.0 [50]
and V2.0 [57] and MLPerf(HPC) fail to tackle the scalability issue
and focus on selecting typical HPC Al applications and parallel-based
optimizations. HPL-AI and AIPerf manage to achieve scalability but
bring other problems. HPL-AI evaluates HPC systems by performing
mixed-precision LU decomposition at the kernel level. Same to HPL,
it can increase the APC by adjusting the size of the input matrix.
However, LU decomposition is irrelevant to most Al workloads [57].
The AIPerf methodology is inspired by AutoML, whose core process
is performed by NAS. Although AutoML can scale automatically with
the number of nodes, the high randomness of NAS (Fig. 2) calls into
question whether AutoML is desirable as an HPC Al benchmark. Table 1
summarizes the related work chronologically and compares our work
with other related work in five dimensions.

! The peak performance of six V100 GPUs in terms of FLOPS is: 6 x
15.7 x 10° GFLOPS = 94.2 x 10> GFLOPS.

Fig. 2. The randomness of NAS. In different runs, the amount of computation required
to train NAS to the target model quality varies, which leads to unfair and unrepeatable
evaluation.

3. HPC AIS00 V3.0

This section first presents the HPC AI500 v3.0 methodology. Then
we detail the design, workflow, and customizable configuration. Fi-
nally, we introduce the measurement method and the proposed metrics.

3.1. Methodology

3.1.1. Ensemble learning and bagging

The ensemble learning idea is to solve a common problem by
combining the predictions of a group of base models. Rather than
making decisions depending on a single model, a group of models
makes it possible for ensemble learning to reduce the variance of pre-
dictions [59], so-called the wisdom of crowds [68]. Bagging (Bootstrap
AGGregatING) is a fundamental paradigm of Ensemble learning. As
its name suggests, bagging consists of two parts: bootstrapping and
aggregating. Bootstrapping is essentially a data sampling process with
replacement from the original dataset. The data generated through
this process is called the bootstrapped dataset. The training process
of bagging is highly parallel as each base model in the ensemble is
trained based on its corresponding bootstrapped dataset rather than
the original dataset. After finishing the training, the final decision is
aggregated by averaging all the predictions of the base models.

3.1.2. Applying bagging in HPC Al benchmarking

For HPC Al benchmarking, to tackle the scalability problem, the first
thing is to enlarge the APC to keep up with the increasingly larger scale
of HPC systems. Inspired by the Bagging, we introduce the base model
ensemble on the basis of the training of a single model in the previous
Al benchmark like HPC AI500 V2.0. We rewrite Eq. (3) in the following
bagging form:

M |By|

APCy = z Z Computation(f,, ;(x)) “

m=1 j=1

Z. Jiang, C. Luo, W. Gao et al.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100083

Al Models

| [

Batchsize: By

APC:
B x Computation(f, ; (x))

HPC AI500 V3.0

Bagging

Model Ensemble with

batchsize: Bx x Ml

APC after bagging:
B, x Computation(f,, ; (x)) x M

HPC System 7

& 4 ¥ LY S
| Node 1 | | Node2‘ |Nod93 ‘ ‘chezt | |Nod95| ‘NodeM|

Fig. 3. The system overview of HPC AI500 V3.0. APC refers to the amount of parallel computing in an iteration.

HPC AI500 V3.0 HPC System
1 [571.8 |—o>
a 2
£ 3 E -—t®— Node 1: Node 3:
g 8 |- Job 1 Job 3
FO > & —
. g g8 Local st : Local st :
o -] ® £ ® .ocal storage: .ocal storage:
s 4 og Bootstrap Data Bootstrap Data
£ a @ 1 3
>
£ | NFS
o Es @ Node 2: Node 4: i
o £ g 3 ’_] Job 2 Job 4 i
=1 SE| BE |7 ! i
28| 53
@ E g < Local storage: Local storage:
=g 5 Bootstrap Data | | Bootstrap Data
% 2| g8 @ > 2 4
= | 85
3
[— =] !
i i

Fig. 4. System design and workflow of HPC AI500 V3.0. NFS refers to the Network File System of HPC systems that each node shares.

where M is the number of the base models in the ensemble, f,, is the
m,, base model. Note that each base model is the instance of the orig-
inal model, so the computation cost of each base model is equivalent
to that in Eq. (3). Compared to AutoML, the re-sampled bootstrapped
dataset makes every base model dissimilar, but the computational logic
of each model is consistent, guaranteeing no randomness shown in
Fig. 2. All the base model in the ensemble is trained independently,
enlarging the |B,| by M times, and so does APC,,. Considering each
base model may train in a distributed manner across several nodes,
the ensemble size M and the parallelism degree inside a base model
P_degree should satisfy Eq. (5), where Sys refers to how many
nodes are contained in an HPC system.

scale
Sys_scale = M X P_degree 5)

3.2. System overview

Based on the Bagging approach, we present HPC AI500 V3.0 and the
system overview shown in Fig. 3. HPC AI500 V3.0 does not focus on
workload selection and construction as previous Al benchmarks [29,31,
34]. Instead, it is a framework that is compatible with these efforts. We
briefly introduce the positioning and role of HPC AI500 V3.0 through
Fig. 3. This figure shows that HPC AI500 V3.0 scales out the upper-layer
Al workloads on lower-layer HPC systems by adaptively increasing
APC ;. Specifically, the batchsize of each AI workload is initially only
a fixed By. After Bagging, a set of M base models are generated, which
increases APC,; by concurrently running M base models. This way,
thereby, achieves higher resource utilization. In addition, the size of
the base model set, M, can be adjusted according to the system size,
corresponding to the same adjustable input matrix size in HPL, to adapt
to the future growth of the HPC system scale.

3.3. System design and workflow

HPC AI500 V3.0 consists of three components, namely, User Con-
figuration (UC), Bagging Management (BM), and Model Parallelism
Management (MPM). BM focuses on managing Bagging, including Job
Controller and Data Sampler. Job Controller schedules M jobs to the
corresponding nodes, then launch training, and finally aggregates the
predictions. Note that each job corresponds with a base model training.
Data Sampler controls the data sampling algorithm. MPM is divided
into Parallelism Controller and Data Duplicator. Parallelism Controller
sets the parallel mode and P_degree. Data Duplicator is responsible for
copying and migrating data according to parallelism-related configura-
tion. As shown in Fig. 4, we summarize the workflow of HPC AI500
V3.0 as follows:

1. UC sends the configurations to BM and MPM. BM receives the
configurations, including job number, equal to ensemble size M,
and saves the DL model and original dataset that needs to be
trained. MPM receives the configurations, such as parallelism
mode, Pyogrees and Sys;.qze-

2. Parallelism Controller in MPM checks if M, P40, and Sys,.q .
satisfy Eq. (5) and generates the mapping of the jobs to the nodes
according to the received messages (e.g., Taskl — Nodel), then
sends this mapping to Job Scheduler in BM.

3. Data Sampler in BM determines the sampling algorithm and
generates the bootstrap data for each task. All the generated data
is sent to the NFS of the HPC system.

4. Data Duplicator in MPM duplicates the bootstrap data according
to the mapping that Parallelism Controller generates. For exam-
ple, Jobl— > Nodel means the bootstrap data in Jobl only need

Z. Jiang, C. Luo, W. Gao et al.

Table 2
The Customizable Configuration of HPC AI500 V3.0. Node_acc refers to the number of
accelerators equipped in a node of the HPC system.

Type Default setting Alternatives

Basic Pyogree = Node_acc Any M and P,
K

that satisfy Eq. (5)

Learning Rate warm-up schema and LARS [35], LAMB [70]

Scheduler linear scaling [69]

Optimizer SGD with momentum Adam [71], AdaGrad
[72]

Data Precision FP16 mixed-precision, Int8

for Training

Data Precision FP32
for Communication

FP16, Int8

Parallel Mode data parallelism model parallelism,
pipeline parallelism
[731,

mixed parallelism

Communication synchronous all-reduce 2D-Torus [41],

Mode Hierarchical all-reduce
[40]

Framework TensorFlow [74] PyTorch [75],

Mindspore [76]

to be duplicated once. All the duplicated data is sent to the local
storage of the corresponding node.

5. Job Scheduler sends the job to the corresponding nodes and
launches the training of the whole ensemble.

6. After the training is finished, Job Scheduler collects all the
ensemble output and then makes the final prediction.

3.4. Customizable configuration

In order to maintain the optimization space, in addition to the
basic configuration, such as M and |P,,..|, we summarize other
customizable configurations in Table 2. We provide a default setting
and some alternatives in each configuration type. Note that alternatives
just list the favored option, and the user can customize the efficient
implementation according to their situation.

3.5. Metrics

Same as HPL, we use FLOPS (Floating point operations per second)
as our primary metric:
ZN/|B;(| APC,,

FLops ===t ¢ (6)

Tepoch

where T,,,., refers to the training time of one epoch and N /|B,| refers
to the number of iterations in one training epoch. In addition to FLOPS,
we also adopt a metric that considers both system throughput and
model quality, namely Valid FLOPS (VFLOPS) [57]. The definition of
VFLOPS is shown as follows:

VFLOPS = FLOPS * penalty_coef ficient 7

penalty_coef ficient = (achieved_quality/target_quality)" 8)

where penalty_coef ficient is used to penalize or award the FLOPS based
on the achieved quality. achieved_quality refers to the actual model
quality achieved in the evaluation. rarger_quality is predefined in the
Table 4. The value of n defines the sensitivity to the model quality.
According to the setting of HPC AI500 V2.0 [57], we set n as 10 for
Extreme Weather Analytics and 5 for Image Classification.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100083

Table 3

The FLOPs calculation rules for primary operators in a DL model.
K refers to the kernel size, C,, and C,, refers to the input and
output channel, H and W refers to the data size, Group,;., refers
to the group size of the convolution, and FL refers to the flatten
layer used in the Fully-connected.

Operators FLOPs

Convolution 2X K2 X C,y x HXW xC,

out

Depth-wise Convolution 2XK?XCi\y X HXW
2XK?XC,, x HXW XC,,,

Group,,.,

Group Convolution

Fully-connected FL, xFL,,
Element-wise Copu X HXW
Pooling C,xHXW
Normalization C,XxHxW

3.6. Measurement

According to Eq. (4) and Eq. (6), to determine the FLOPS, we
need to first measure the Computation(f(x)). Although profiling tools
such as Nsight [77] are able to count the FLOPs by kernel replay, it
is dependent on the Nvidia hardware. In order to reduce the influence
of the hardware and the hardware-specific optimizations performed by
bundled low-level libraries (e.g., CuDnn for Nvidia GPUs), we present
an analytical method to calculate the FLOPs that a DL model requires.

Modern Al frameworks, such as TensorFlow, describe the computa-
tion of a DL model using a directed acyclic graph (DAG) that consists
of multiple nodes and edges. The Node in the DAG represents a kind of
operator, and the edge represents the data flow. Each operator defines
a computation logic and receives the data from the input edge, and
then sends the intermediate result to the next operator after finishing
its computation. Unlike HPL, which has only one kind of operator (LU
decomposition), a DL model usually consists of multiple operators with
different kinds. Hence, we summarize the most frequent operators in DL
as shown in Table 3. In addition to these listed operators, we ignore
other low-proportion operators contained in the DL model. Based on
this table, we can calculate the Computation(f(x)) by traversing the
DAG.

3.7. Implementation details

Job scheduler of the Bagging management module is based on
SLURM (Simple Linux Utility for Resource Management) [78]. SLRUM
is the most commonly used scheduling system in HPC Al systems,
fault-tolerant and highly scalable, and suitable for Linux clusters of
different sizes. We implement the submitted job script based on the
sbatch interface of SLRUM and use sinfo and smap to monitor the
training progress of the base model in each job, and the basic unit of
job scheduling is a container implemented by Docker [79]. According
to the literature [58], the implemented random sampling algorithm
guarantees that the i,, training sample is selected n (n € {0,1,2...})
times. The probability of the times approximates the Poisson distribu-
tion of 4 = 1, so the probability of at least one occurrence of the i,,
sample is 1 — (%) = 0.632. So for any Bagging base classifier, about
36.8% of the samples of the original dataset will not be used at the
time of training. The default parallel implementation in the parallel
management module uses data parallelism implemented by Horovod
and OpenMPI, which is also the most common parallel method in
HPC Al systems [17-19]. The measurement of bandwidth is divided
into intra-node communication and inter-node communication, and we
use Nvidia-smi (NVIDIA System Management Interface) tool [80] to
monitor communication within nodes and use iftop tool [81] to monitor
communication between nodes.

Z. Jiang, C. Luo, W. Gao et al.

2504 ~°" ideal case (FLOPS) /-‘
actual case (FLOPS) ‘/'
-e- ideal case (VFLOPS) W
200 | —¢ actual case (VFLOPS) ,./’
2 150
9
[T
=
100 A
50
10 20 30 40 50 60
GPUs
(a) Extreme Weather Analytics.
500 1~ —«- ideal case (FLOPS) 2
actual case (FLOPS) 2P
—e«- ideal case (VFLOPS) Z
400 | = actual case (VFLOPS) 2
2
g 300
9
[T
(=
200 A
100 +
10 20 30 40 50 60

GPUs
(b) Image Classification.

Fig. 5. The scalability experiments of HPC AI500 V3.0 in terms of FLOPS and VFLOPS.
The penalty_coef ficient is 0.44 for Extreme Weather Analytics and 0.96 for Image
Classification.

4. Evaluation
4.1. Experimental setup

4.1.1. Hardware

Our experiments are conducted on a 64GPUs-cluster, consisting of
eight nodes, each of which is equipped with one Intel(R) Xeon(R)
Platinum 8268 CPU and eight NVIDIA Tesla V100 GPUs. Each GPU
in the same node has 32 GB HBM memory, connected by NVIDIA
NVLink—a high-speed GPU interconnection whose theoretical peak
bi-directional bandwidth is 300 GB/s. The nodes are connected with
Ethernet networking with a bandwidth of 10 Gb/s. Each node has 1.5
TB system memory and an 8 TB NVMe SSD disk.

4.1.2. Software

We use TensorFlow v1.14, compiled with CUDA v10.1 and cuDnn
v7.6.2 backend. We use Horovod v0.16.4 for synchronous distributed
training, compiled with OpenMPI v3.1.4 and NCCL v2.4.8. NCCL is
short for the NVIDIA Collective Communications Library, which is a
closed-source library of multi-GPU collective communication primitives
that are topology-aware.

4.2. Workloads

HPC AI500 V3.0 is a benchmarking framework, which means any
Al benchmark can be integrated into this framework in a bagging

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100083

manner. Here, our default implementation is based on HPC AI500
V2.0 [57], a well-received HPC AI benchmark that mainly consists
of two workloads, covering Al applications in business and scientific
computing. As shown in Table 4, Image Classification uses ResNet-
50 [2]and ImageNet [66] for training, which is a well-known showcase
for optimizing HPC Al systems. Extreme Weather Analytics [82] is a
representative scientific application, it uses Faster-RCNN for detecting
the extreme weather in the climate image. Each climate image in
Extreme Weather Dataset consists of 16 channels and contains four
extreme weather patterns.

4.3. The scalability experiments

The scalability experiments are conducted with the default setting
of HPC AI500 V3.0, as shown in Table 2. We set the Pegree = 8,
which is equal to the number of GPUs in a node. In each node, a
job is distributed to 8 GPUs by using data parallelism. We perform
the experiment sequentially on different system scales, typically the
Sysgcale = 8,16,24,32,40,48,56,64 GPUs. According to Eq. (5), the
corresponding job number is M = 1,2,3,4,5,6,7, 8. The results of scala-
bility experiments are shown in Fig. 5. As we can see, HPC AI500 V3.0
shows near-linear scalability in both FLOPS and VFLOPS. Note that, in
Fig. 5(a), the penalty coef ficient = 0.44 leads to a gap between the
VFLOPS line and FLOPS of Extreme Weather Analytics. Furthermore,
we measure the GPU utilization by Nsight at the scale of 64 GPUs and
the result is shown in Fig. 6. Both Extreme Weather Analytics and Image
Classification achieve high GPU utilization.

4.4. The customizability experiments

4.4.1. Trade-off between the model quality and training speed

To exhibit this trade-off, we take Image Classification as the show-
case. We set the M = 8,4, 1 while the corresponding P,,,,.. = 8, 16,64.
As shown in Fig. 7, the training speed increases along with a decrease in
M. When M = 1, the process becomes training a single model through
the whole cluster, achieving the highest training speed. However, since
only one model makes decisions in the ensemble, the model quality
suffers about a 3% drop compared to the case of M = 8. In practical
scenarios, users can choose appropriate M and P,,,,,, according to their
training speed and model quality requirements.

4.4.2. Optimizations

To show the customizability of HPC AI500, we implement two
frequently-used optimizations, mixed-precision training, and commu-
nication compression. The former utilizes Tensor Cores in Nvidia Volta
architecture to accelerate the model’s fully-connected and convolution
layer, allowing a fused-multiply-add computation. When performing
mixed precision training with a Tensor Core, we use FP16 for calcu-
lation and FP32 for accumulation. The latter is the communication
compress-on that compresses the tensor precision for synchronizing
from 32FP to 16FP to reduce communication overhead. We configure
the optimization experiments in the same way as Section 4.3, and the
results are shown in Fig. 8. We compared the optimized version to
the original version to observe the corresponding effect. Since mixed-
precision Extreme Weather Analysis leads to a significant loss of the
model quality, here we only report the performance of the model
compression. As we can see, mixed-precision training brings about 2x
speed up for Image Classification. As for communication compression,
it brings about 1.2x for Extreme Weather Analytics but barely has
any speed up on Image Classification. The size of the communication
tensor in Extreme Weather Analytics is 1.6x larger than that of Image
Classification, allowing Extreme Weather Analytics to get a notable
benefit.

Z. Jiang, C. Luo, W. Gao et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100083

Table 4
The Specification of HPC AI500 V2.0 workloads [57]. HPC AI500 V3.0 can integrate any HPC Al benchmarks. In our evaluation,
we reuse the HPC AI500 V2.0 workloads for testing.

Problem domains Models Datasets Target quality
Image Classification ResNet-50 ImageNet TOP1 Accuracy
= 0.763
Extreme Weather Analytics Faster-RCNN Extreme Weather Dataset mAP@[IoU=0.5]
= 0.35
74 120
72 100
70 80 I I ' I
68 60
66 40
64 20
62 0
29888888888888888888888888s8 MNVNVXBVOOHAAATAAIIITVOYNNQOM™M®
g8esz39888RS3sRRoRgs38s28888 ISR RNNEeTIEdganna8885804853%
- EHANMOMOTTNOVORNNMNOOODONDOO " ANNMMST NN LLOWWOWOWWOLWWOWWWOLWWOVOWOLVWWLWWOLWLWWLVWWLWWLVWORNBNBENERNNNNERND®NNS
==l R R A ER I I I I R R R R e e e e e e
(a) Extreme Weather Analytics. (b) Image Classification.

Fig. 6. GPU utilization (%) of HPC AI500 V3.0. The X-axis represents different time steps.

77.0
14000 76.5
12000 A 76.0
75.5
75.0
O 74.5 A
4000 - 74.0
2000 - 73.5 l
0 73.0 -
M=8 M=4 M=1

Images/second
=
© o
[=3 o
o o
o o
. .
OP1 Accuracy

o
[=3
<]
S]
L

M=8 M=4 M=1
Ensemble Size (Job Number) Ensemble Size (Job Number)
(a) The training speed of different configurations. (b) The model quality of different configurations.

Fig. 7. The trade-off between the training speed and model quality. The workload is Image Classification. We use images per second to indicate how fast the training is.

300
—e— original —e— original
—+— Communication Compression 1000 1 e Mixed Presion
2504 e .
—+— Communication Compression
800
200 4
v n
§ S 600 A
i 1501 E
400 A
100 A
200 A
50 1
10 20 30 40 50 60 10 20 30 40 50 60
GPUs GPUs
(a) Extreme Weather Analytics. (b) Image Classification.

Fig. 8. The optimization experiments of HPC AI500 V3.0. In Fig. 8(b), the lines of the original and mixed precision overlap for their similar performance.

4.5. Comparison experiments this experiment, we focus on scale efficiency in terms of FLOPS. The
system scales from 8 GPUs to 64 GPUs. As shown in Fig. 9, the scaling

We compare our work with data parallelism (DP), which is a main- efficiency of DP is much lower than our approach in both Extreme
stream parallel method used in many previous work [17,18,47,61]. In Weather Analysis and Image Classification. The heavy communication

Z. Jiang, C. Luo, W. Gao et al.

200 4 —— Data Parallelsim ,
—+— HPC AI500 V3.0
1754 —<*- ldeal case
150 A
[%2]
o 125
S
[T
= 100 A
751
50
254
10 20 30 40 50 60
GPUs

(a) Extreme Weather Analytics.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100083

500
—#— Data Parallelsim
—+— HPC AI500 V3.0
400 - —e- |deal case
£ 300
S
[T
=
200 -
100 A
10 20 30 40 50 60
GPUs

(b) Image Classification.

Fig. 9. The comparison experiments between HPC AI500 V3.0 against a setting using data parallelism.

overhead of DP is the main reason for this phenomenon because all
the model copies of DP need to be synchronized globally at the end
of each training step. The base model in the model ensemble of HPC
AI500 V3.0 is trained highly independently without synchronization,
so the communication overhead is avoided.

5. Conclusion

In this paper, we reformulate the HPC AI scalability issue and
present HPC AI500 V3.0, a scalable and customizable framework for
HPC AI benchmarking. The methodology of HPC AI500 V3.0 allows
users to integrate existing Al benchmarks in a bagging manner, a
meta-algorithm of ensemble learning with intrinsic high parallelism,
leading to scalable benchmarking. The bagging management and model
parallelism management of HPC AIS00 V3.0 gives users the flexibility
to control the size of model ensembles and the degree of model paral-
lelism, enabling various optimizations from both system and algorithm
levels. Based on HPC AI500 V2.0, which tackles the equivalence,
representativeness, affordability, and repeatability issues, HPC AI500
V3.0 provide a complete HPC AI benchmarking framework. Reusing
the workloads of HPC AI500 V2.0, we evaluate HPC AI500 V3.0 on a
typical HPC system and the experimental results show the scalability
and customizability of the proposed benchmarking framework.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1]1 A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep
convolutional neural networks, Adv. Neural Inf. Process. Syst. 25 (2012).

[2] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770-778.

[3] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception
architecture for computer vision, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 2818-2826.

[4] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards real-time object
detection with region proposal networks, Adv. Neural Inf. Process. Syst. 28
(2015).

[5] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A.C. Berg, SSD:
Single shot multibox detector, in: European Conference on Computer Vision,
Springer, 2016, pp. 21-37.

[6] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified,
real-time object detection, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 779-788.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser,
I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017).

[8]

[9]
[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]
[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, 2018, arXiv preprint
arXiv:1810.04805.

K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, Y. Wang, Transformer in transformer,
Adv. Neural Inf. Process. Syst. 34 (2021).

Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)
436-444.

OpenAl, OpenAl: Al and Compute, https://openai.com/blog/ai-and-compute/.
A. Gholami, Medium: AI and Memory Wall, https://medium.com/riselab/ai-and-
memory-wall-2c¢b4265cb0b8/.

M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, B. Catanzaro, Megatron-
LM: Training multi-billion parameter language models using model parallelism,
2019, arXiv preprint arXiv:1909.08053.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J.D. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., Language models are few-shot
learners, Adv. Neural Inf. Process. Syst. 33 (2020) 1877-1901.

D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun, N. Shazeer, Z.
Chen, Gshard: Scaling giant models with conditional computation and automatic
sharding, 2020, arXiv preprint arXiv:2006.16668.

W. Fedus, B. Zoph, N. Shazeer, Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity, 2021, arXiv preprint arXiv:2101.03961.
A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann, L. Shao, S. He,
T. Kédrnd, D. Moise, S.J. Pennycook, et al., CosmoFlow: Using deep learning
to learn the universe at scale, in: SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis, [EEE, 2018, pp.
819-829.

T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips, A.
Mahesh, M. Matheson, J. Deslippe, M. Fatica, et al., Exascale deep learning
for climate analytics, in: SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE, 2018, pp. 649-660.

W. Jia, H. Wang, M. Chen, D. Lu, L. Lin, R. Car, E. Weinan, L. Zhang, Pushing
the limit of molecular dynamics with ab initio accuracy to 100 million atoms
with machine learning, in: SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE, 2020, pp. 1-14.

Z. Guo, D. Ly, Y. Yan, S. Hu, R. Liu, G. Tan, N. Sun, W. Jiang, L. Liu, Y. Chen,
et al., Extending the limit of molecular dynamics with ab initio accuracy to 10
billion atoms, 2022, arXiv preprint arXiv:2201.01446.

Oak Ridge National Laboratory, Summit, https://www.olcf.ornl.gov/summit/.
Fujitsu, Fugaku, https://www.fujitsu.com/global/about/innovation/fugaku/.

J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach,
Elsevier, 2011.

J.J. Dongarra, P. Luszczek, A. Petitet, The LINPACK benchmark: Past, present
and future, Concurr. Comput.: Pract. Exper. 15 (9) (2003) 803-820.

J. Dongarra, Top500 Website, https://www.top500.0rg/.

J. Dongarra, CM-5 in TOP500 List, https://www.top500.0rg/lists/top500/1993/
06/.

J. Dongarra, Fugaku in TOP500 List, https://www.top500.0rg/news/japan-
captures-top500-crown-arm-powered-supercomputer/.

J. Zhan, Call for establishing benchmark science and engineering, 2021, arXiv
preprint arXiv:2112.09514.

R. Adolf, S. Rama, B. Reagen, G.-Y. Wei, D. Brooks, Fathom: Reference workloads
for modern deep learning methods, in: 2016 IEEE International Symposium on
Workload Characterization, IISWC, IEEE, 2016, pp. 1-10.

C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi, P. Bailis,
K. Olukotun, C. Ré, M. Zaharia, Dawnbench: An end-to-end deep learning
benchmark and competition, Training 100 (101) (2017) 102.

H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Phanishayee, B. Schroeder, G.
Pekhimenko, TBD: Benchmarking and analyzing deep neural network training,
2018, arXiv preprint arXiv:1803.06905.

http://refhub.elsevier.com/S2772-4859(22)00070-9/sb1
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb1
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb1
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb2
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb2
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb2
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb2
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb2
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb3
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb3
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb3
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb3
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb3
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb4
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb4
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb4
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb4
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb4
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb5
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb5
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb5
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb5
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb5
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb6
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb6
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb6
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb6
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb6
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb7
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb7
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb7
http://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb9
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb9
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb9
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb10
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb10
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb10
https://openai.com/blog/ai-and-compute/
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8/
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8/
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8/
http://arxiv.org/abs/1909.08053
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb14
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb14
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb14
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb14
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb14
http://arxiv.org/abs/2006.16668
http://arxiv.org/abs/2101.03961
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb17
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb17
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb17
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb17
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb17
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb17
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb17
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb17
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb17
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb18
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb18
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb18
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb18
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb18
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb18
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb18
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb19
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb19
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb19
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb19
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb19
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb19
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb19
http://arxiv.org/abs/2201.01446
https://www.olcf.ornl.gov/summit/
https://www.fujitsu.com/global/about/innovation/fugaku/
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb23
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb23
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb23
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb24
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb24
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb24
https://www.top500.org/
https://www.top500.org/lists/top500/1993/06/
https://www.top500.org/lists/top500/1993/06/
https://www.top500.org/lists/top500/1993/06/
https://www.top500.org/news/japan-captures-top500-crown-arm-powered-supercomputer/
https://www.top500.org/news/japan-captures-top500-crown-arm-powered-supercomputer/
https://www.top500.org/news/japan-captures-top500-crown-arm-powered-supercomputer/
http://arxiv.org/abs/2112.09514
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb29
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb29
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb29
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb29
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb29
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb30
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb30
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb30
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb30
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb30
http://arxiv.org/abs/1803.06905

Z. Jiang, C. Luo, W. Gao et al.

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

W. Gao, F. Tang, L. Wang, J. Zhan, C. Lan, C. Luo, Y. Huang, C. Zheng, J. Dai, Z.
Cao, et al., AlBench: An industry standard internet service Al benchmark suite,
2019, arXiv preprint arXiv:1908.08998.

V.J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J. Wu, B.
Anderson, M. Breughe, M. Charlebois, W. Chou, et al., Mlperf inference bench-
mark, in: 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture, ISCA, IEEE, 2020, pp. 446-459.

P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Micikevicius, D. Patterson, H.
Tang, G.-Y. Wei, P. Bailis, V. Bittorf, et al., Mlperf training benchmark, Proc.
Mach. Learn. Syst. 2 (2020) 336-349.

Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, K. Keutzer, Imagenet training
in minutes, in: Proceedings of the 47th International Conference on Parallel
Processing, 2018, pp. 1-10.

P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A.
Tulloch, Y. Jia, K. He, Accurate, large minibatch SGD: Training imagenet in 1
hour, 2017, arXiv preprint arXiv:1706.02677.

T. Akiba, S. Suzuki, K. Fukuda, Extremely large minibatch SGD: Training
resnet-50 on imagenet in 15 minutes, 2017, arXiv preprint arXiv:1711.04325.
M. Cho, U. Finkler, S. Kumar, D. Kung, V. Saxena, D. Sreedhar, Powerai DDL,
2017, arXiv preprint arXiv:1708.02188.

V. Codreanu, D. Podareanu, V. Saletore, Scale out for large minibatch SGD:
Residual network training on ImageNet-1K with improved accuracy and reduced
time to train, 2017, arXiv preprint arXiv:1711.04291.

X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo, Y. Yang, L.
Yu, et al., Highly scalable deep learning training system with mixed-precision:
Training imagenet in four minutes, 2018, arXiv preprint arXiv:1807.11205.

H. Mikami, et al., Imagenet/resnet-50 training in 224 seconds, 2018, arXiv
preprint arXiv:1811.05233.

C. Ying, S. Kumar, D. Chen, T. Wang, Y. Cheng, Image classification at
supercomputer scale, 2018, arXiv preprint arXiv:1811.06992.

M. Yamazaki, A. Kasagi, A. Tabuchi, T. Honda, M. Miwa, N. Fukumoto, T.
Tabaru, A. Ike, K. Nakashima, Yet another accelerated SGD: Resnet-50 training
on imagenet in 74.7 seconds, 2019, arXiv preprint arXiv:1903.12650.
MLCommons, MLPerf-Training-Result-V1.1, https://mlcommons.org/en/training-
normal-11//.

Preferred networks website, https://www.preferred.jp/en/.

N.S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, P.T.P. Tang, On large-
batch training for deep learning: Generalization gap and sharp minima, 2016,
arXiv preprint arXiv:1609.04836.

A. Sergeev, M. Del Balso, Horovod: Fast and easy distributed deep learning in
TensorFlow, 2018, arXiv preprint arXiv:1802.05799.

J. Rasley, S. Rajbhandari, O. Ruwase, Y. He, Deepspeed: System optimizations
enable training deep learning models with over 100 billion parameters, in:
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2020, pp. 3505-3506.

N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanantakool, P.
Hawkins, H. Lee, M. Hong, C. Young, et al., Mesh-tensorflow: Deep learning for
supercomputers, Adv. Neural Inf. Process. Syst. 31 (2018).

Z. Jiang, W. Gao, L. Wang, X. Xiong, Y. Zhang, X. Wen, C. Luo, H. Ye, X.
Lu, Y. Zhang, et al, HPC AI500: A benchmark suite for HPC AI systems,
in: International Symposium on Benchmarking, Measuring and Optimization,
Springer, 2018, pp. 10-22.

D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N.R. Devanur, G.R.
Ganger, P.B. Gibbons, M. Zaharia, PipeDream: Generalized pipeline parallelism
for DNN training, in: Proceedings of the 27th ACM Symposium on Operating
Systems Principles, 2019, pp. 1-15.

Z. Jia, M. Zaharia, A. Aiken, Beyond data and model parallelism for deep neural
networks, Proc. Mach. Learn. Syst. 1 (2019) 1-13.

data-parallelim, https://en.wikipedia.org/wiki/Data_parallelism.

Z. Ren, Y. Liu, T. Shi, L. Xie, Y. Zhou, J. Zhai, Y. Zhang, Y. Zhang, W. Chen,
AlPerf: Automated machine learning as an AI-HPC benchmark, Big Data Min.
Anal. 4 (3) (2021) 208-220.

S. Kudo, K. Nitadori, T. Ina, T. Imamura, Prompt report on exa-scale HPL-
Al benchmark, in: 2020 IEEE International Conference on Cluster Computing,
CLUSTER, IEEE, 2020, pp. 418-419.

B. Zoph, Q.V. Le, Neural architecture search with reinforcement learning, 2016,
arXiv preprint arXiv:1611.01578.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100083

[57]

[58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]
[77]
[78]
[79]

[80]

[81]
[82]

Z. Jiang, W. Gao, F. Tang, L. Wang, X. Xiong, C. Luo, C. Lan, H. Li, J. Zhan,
HPC AI500 v2. 0: The methodology, tools, and metrics for benchmarking HPC Al
systems, in: 2021 IEEE International Conference on Cluster Computing, CLUSTER,
IEEE, 2021, pp. 47-58.

L. Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123-140.

Z.-H. Zhou, Ensemble learning, in: Machine Learning, Springer, 2021, pp.
181-210.

T. Ben-Nun, M. Besta, S. Huber, A.N. Ziogas, D. Peter, T. Hoefler, A modular
benchmarking infrastructure for high-performance and reproducible deep learn-
ing, in: 2019 IEEE International Parallel and Distributed Processing Symposium,
IPDPS, IEEE, 2019, pp. 66-77.

S. Farrell, M. Emani, J. Balma, L. Drescher, A. Drozd, A. Fink, G. Fox, D.
Kanter, T. Kurth, P. Mattson, et al., MLPerf™ HPC: A holistic benchmark suite
for scientific machine learning on HPC systems, in: 2021 IEEE/ACM Workshop
on Machine Learning in High Performance Computing Environments, MLHPC,
IEEE, 2021, pp. 33-45.

S. Ruder, An overview of gradient descent optimization algorithms, 2016, arXiv
preprint arXiv:1609.04747.

R. Farber, AI-HPC is Happening Now, InsideHPC Special Report, InsideHPC, LLC,
2017.

E.A. Huerta, A. Khan, E. Davis, C. Bushell, W.D. Gropp, D.S. Katz, V. Kindratenko,
S. Koric, W.T. Kramer, B. McGinty, et al., Convergence of artificial intelligence
and high performance computing on NSF-supported cyberinfrastructure, J. Big
Data 7 (1) (2020) 1-12.

H. Lee, A. Merzky, L. Tan, M. Titov, M. Turilli, D. Alfe, A. Bhati, A. Brace,
A. Clyde, P. Coveney, et al., Scalable HPC & Al infrastructure for COVID-19
therapeutics, in: Proceedings of the Platform for Advanced Scientific Computing
Conference, 2021, pp. 1-13.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale
hierarchical image database, in: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, Ieee, 2009, pp. 248-255.

I. Kandel, M. Castelli, The effect of batch size on the generalizability of the
convolutional neural networks on a histopathology dataset, ICT Express 6 (4)
(2020) 312-315.

J. Surowiecki, The Wisdom of Crowds, Anchor, 2005.

A. Krizhevsky, One weird trick for parallelizing convolutional neural networks,
2014, arXiv preprint arXiv:1404.5997.

Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song, J. Demmel,
K. Keutzer, C.-J. Hsieh, Large batch optimization for deep learning: Training bert
in 76 minutes, 2019, arXiv preprint arXiv:1904.00962.

D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv
preprint arXiv:1412.6980.

J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning
and stochastic optimization, J. Mach. Learn. Res. 12 (7) (2011).

Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee, J. Ngiam,
Q.V. Le, Y. Wu, et al., Gpipe: Efficient training of giant neural networks using
pipeline parallelism, Adv. Neural Inf. Process. Syst. 32 (2019).

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.
Ghemawat, G. Irving, M. Isard, et al.,, TensorFlow: A system for large-scale
machine learning, in: 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 16, 2016, pp. 265-283.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-performance
deep learning library, Adv. Neural Inf. Process. Syst. 32 (2019).

Huawei, Mindspore, https://www.mindspore.cn/.

Nvidia, Nsight system, https://developer.nvidia.com/nsight-systems.

Lawrence Livermore National Laboratory, SLURM, https://slurm.schedmd.com/.
T. Combe, A. Martin, R. Di Pietro, To docker or not to docker: A security
perspective, IEEE Cloud Comput. 3 (5) (2016) 54-62.

Nvidia, Nvidia-smi, https://developer.nvidia.com/nvidia-system-management-
interface.

iftop, https://en.wikipedia.org/wiki/Iftop.

E. Racah, C. Beckham, T. Maharaj, S. Ebrahimi Kahou, M. Prabhat, C. Pal,
Extremeweather: A large-scale climate dataset for semi-supervised detection,
localization, and understanding of extreme weather events, Adv. Neural Inf.
Process. Syst. 30 (2017).

http://arxiv.org/abs/1908.08998
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb33
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb33
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb33
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb33
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb33
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb33
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb33
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb34
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb34
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb34
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb34
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb34
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb35
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb35
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb35
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb35
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb35
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1711.04325
http://arxiv.org/abs/1708.02188
http://arxiv.org/abs/1711.04291
http://arxiv.org/abs/1807.11205
http://arxiv.org/abs/1811.05233
http://arxiv.org/abs/1811.06992
http://arxiv.org/abs/1903.12650
https://mlcommons.org/en/training-normal-11//
https://mlcommons.org/en/training-normal-11//
https://mlcommons.org/en/training-normal-11//
https://www.preferred.jp/en/
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1802.05799
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb48
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb48
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb48
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb48
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb48
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb48
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb48
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb49
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb49
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb49
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb49
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb49
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb50
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb50
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb50
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb50
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb50
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb50
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb50
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb51
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb51
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb51
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb51
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb51
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb51
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb51
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb52
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb52
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb52
https://en.wikipedia.org/wiki/Data_parallelism
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb54
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb54
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb54
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb54
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb54
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb55
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb55
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb55
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb55
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb55
http://arxiv.org/abs/1611.01578
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb57
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb57
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb57
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb57
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb57
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb57
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb57
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb58
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb59
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb59
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb59
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb60
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb60
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb60
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb60
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb60
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb60
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb60
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb61
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb61
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb61
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb61
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb61
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb61
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb61
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb61
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb61
http://arxiv.org/abs/1609.04747
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb63
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb63
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb63
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb64
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb64
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb64
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb64
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb64
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb64
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb64
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb65
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb65
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb65
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb65
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb65
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb65
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb65
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb66
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb66
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb66
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb66
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb66
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb67
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb67
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb67
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb67
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb67
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb68
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1904.00962
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb72
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb72
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb72
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb73
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb73
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb73
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb73
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb73
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb74
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb74
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb74
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb74
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb74
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb74
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb74
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb75
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb75
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb75
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb75
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb75
https://www.mindspore.cn/
https://developer.nvidia.com/nsight-systems
https://slurm.schedmd.com/
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb79
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb79
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb79
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://en.wikipedia.org/wiki/Iftop
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb82
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb82
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb82
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb82
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb82
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb82
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb82

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100084

KeAi

BenchCouncil Transactions
on Benchmarks, Standards
and Evaluations

Contents lists available at ScienceDirect
BenchCouncil Transactions on Benchmarks,
Standards and Evaluations il ii‘

journal homepage: www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

KeAi

CHINESE ROOTS
GLOBAL IMPACT

Research article

CpsMark+: A scenario-oriented benchmark system for office desktop n
performance evaluation in centralized procurement via simulating user e
experience

Yue Zhang, Tong Wu *

National Institute of Metrology, China

ARTICLE INFO ABSTRACT
Keywords: Rapid business expansion of various companies has placed growing demand on office desktops recent decades.
Computer benchmarks However, improper evaluation of system performance and inexplicit awareness of practical use conditions

Hardware performance evaluation often hamper the efforts to make a consummate selection among multiple alternatives. From the perspective

of end users, to optimize the evaluation process of desktop performance in centralized procurement, we
present CpsMark+, a coherent benchmark system that evaluates office desktop performance based on simulated
user experience. Specifically, CpsMark+ includes scenario-oriented workloads portraying representative user
behaviors modeled from the cooperative workflow in modern office routines, and flexibly adapted metrics
properly reflecting end-user experience according to different task types. The contrast experiment between
state-of-the-art benchmarks demonstrates high sensitivity of CpsMark+ to various hardware components, e.g.,
CPU, and high repeatability with a Coefficient of Variation less than 3%. In a practical case study, we
also demonstrate the effectiveness of CpsMark+ in simulating user experience of tested computer systems
under modern office-oriented scenarios for improving the quality of office desktop performance evaluation in
centralized procurement.

User experience
Scenario-oriented workloads
Centralized procurement

1. Introduction

Computer performance used to be easily indicated by their hard-
ware configurations. As computer architecture grows more sophis-
ticated, nevertheless, using specifications as a metric will give an
incomplete picture of overall computer performance in many practical
scenarios [1]. Such an evaluation method is biased and thus cannot
catch up with the rapid improvement of computer performance brought
by thriving design philosophy. In addition, rapid expansion of computer
markets makes it more difficult to identify the system performance.

The above obstacle gives rise to the use of various computer bench-
marks. However, most existing benchmarks are unable to meet the
performance evaluation requirements in centralized procurement of
office computers. Micro and kernel benchmarks are constructed by
repeating monotonous operations or running pivotal algorithms from
synthetic workloads. These benchmarks merely reflect partial perfor-
mance of a certain component in a specific system and are primarily
utilized by researchers or manufacturers to pursue innovative computer
design. While some newer benchmarks, e.g., Business Applications
Performance Corporation’s SYSmark and Futuremark’s PCMark, mainly
consist of common business application workloads and are more rep-
resentative of commercial use, while they fail to offer an overall and

* Corresponding author.
E-mail addresses: zhyue@nim.ac.cn (Y. Zhang), wut@nim.ac.cn (T. Wu).

https://doi.org/10.1016/j.tbench.2023.100084

scenario-oriented evaluation for general end-user experience [2]. Fur-
thermore, they are not open-source benchmarks, thus the opacity of
scoring methodology and workload operations impairs their fairness
and transparency, which are essential for centralized procurement.

To address the limitations of SYSmark and PCMark, CpsMark 1.0
[3], an open-source benchmark for microcomputers was developed.
However, the design philosophy of CpsMark 1.0 is not user-oriented but
emphasizes workload capacity. As a result of such design philosophy,
in practice, users complain that workload characterization is biased,
and metric measurements are inflexible. In addition, its benchmark
methodology is not designed with adequate consideration for office
scenarios.

Moreover, it is difficult to precisely grasp the specific needs of
end users, let alone individual preferences, especially in centralized
procurement. Such inaccessibility makes it unwarranted to formulate
the performance evaluation process and limits rational utilization of
existing computer benchmarks.

This paper aims to solve the above problems, as well as system-
atically optimize the process of utilizing benchmarks to evaluate the
office desktop performance in centralized procurement. Specifically,
we have redeveloped CpsMark+, a novel and coherent benchmark

Received 8 June 2022; Received in revised form 28 December 2022; Accepted 1 January 2023

Available online 5 January 2023

2772-4859/© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.tbench.2023.100084
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2023.100084&domain=pdf
mailto:zhyue@nim.ac.cn
mailto:wut@nim.ac.cn
https://doi.org/10.1016/j.tbench.2023.100084
http://creativecommons.org/licenses/by-nc-nd/4.0/

Y. Zhang and T. Wu

system that builds a bridge between system performance and simu-
lated user experience in intended usage scenarios, i.e., daily working
scenario in modern office. Extensive experiments on multiple real-
world tested systems demonstrate high sensitivity and repeatability of
CpsMark+ results. Then we used CpsMark+ as a substitute for hardware
specifications in quantitatively evaluating the overall computer perfor-
mance of responsive bids in a real case of centralized procurement.
Experimental results show that user experience ratings of the desktops
selected by better benchmark score are significantly higher than those
selected by the original bid evaluation method, which indicates the
effectiveness of CpsMark+ in simulating user experience under modern
office-oriented scenario for office desktop performance evaluation in
centralized procurement.

The rest of this paper is organized as follows: Section 2 reviews re-
lated work and provides our motivation for developing CpsMark+. Sec-
tion 3 summarizes the challenges in evaluating office computer perfor-
mance in modern office scenario for centralized procurement. Section 4
describes our methodology and process in developing CpsMark+, as
well as extensive experiments for evaluating and comparing CpsMark+
with other related works. Section 5 presents a case study of central-
ized procurement where we demonstrate the effectiveness of using
CpsMark+ as a computer benchmark to simulate user experience in
daily office scenario for desktop performance evaluation. Section 6
concludes our work and elicits possible research directions in the
future.

2. Background
2.1. Existing benchmarks and metrics

We have reviewed some related works proposed for computer per-
formance evaluation, while most of them have limitations in bench-
marking office desktops under modern office scenario for centralized
procurement or have not even been designed for commercial use.

SYSmark 2018 [4] adopts real-world third-party software as work-
loads to evaluate overall computer performance and is widely applied
in commercial markets. Usage scenarios are modeled in the form of
subjectively grouped job nature like productivity and creativity, which
cannot describe cooperation across tasks in a common workflow. In
terms of the workloads, most of them are designed to be CPU-intensive
and place little pressure on GPU and storage system, making the
evaluation insensitive to graphics and I/0 performance that might be
cared by end users in daily use. Further, system responsiveness and
program start-up are isolated and measured by specific applications,
thus weakening the realistic reference value of benchmarking results.

PCMark 10 [5] reports an overall score calculated by the geometric
mean of tested metrics for the inclusive workloads within each test
group. The geometric mean returns a normalized score that treats
the performance of each workload equally. This scoring methodology
outputs a balanced result of performance evaluation, which neglects the
diversity of importance of different workloads and is unable to describe
real user experience in a specific scenario.

Phoronix Test System [6] is an open-source and extensible bench-
mark system that evaluates comprehensive performance of multiple
platforms. It includes hundreds of test programs covering a wide range
of applications to evaluate various metrics. Nevertheless, the contribu-
tors provide little information about benchmarks’ logic and internals,
especially on how each system is tagged and applied for specific compo-
nents [7]. Moreover, the benchmark system has numerous functionally
overlapping programs for identical system parts and requires compli-
cated dependencies, which makes them too generic and inefficient to
be used in centralized procurement.

There are other benchmarks targeting specific application domains.
3DMark [8] mainly describes real-time gaming performance of graphic
cards, its dependence of frame rate as the only metric limits fur-
ther uses in other fields [2]. SPEC CPU 2017 [9] contains a series

11

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100084

of floating-point and integer algorithms extracted from the kernel
of compute-intensive applications to evaluate the computing perfor-
mance of CPUs. The workloads are synthetic and biased, making them
more suitable for simulative experiments in academic research and
industrial development of processors. The Stanford SPLASH benchmark
system [10] evaluates parallel algorithms for shared-memory multipro-
cessors with real scientific workloads, which is of little use for office
routines. Micro benchmarks such as STREAM [11] and Imbench [12]
solely test single metric like memory bandwidth or latency of individual
hardware component through monotonous program operations, which
makes them disregard resource allocation and coordination of mixed
workload manipulations within the entire computer system [13].

2.2. Our motivation for upgrading CpsMark+

To address the mentioned limitations of SYSmark and PCMark, we
released the microcomputer benchmark CpsMark 1.0 in 2014, which
evaluates processor performance based on a series of CPU-intensive
workloads abstracted from typical computing scenarios [3].

However, the design of CpsMark 1.0 mainly focuses on workload
capacity, instead of reflecting end-user experience. The workload oper-
ations are designed to be CPU-intensive and isolated from each other,
thus it cannot reflect overall performance and user experience in real
scenarios, which by contrast, requires workloads to be coherent and
interactive. The scoring methodology treats each workload equally and
neglects diverse importance of them in practical tasks. In addition,
the third-party software used as workloads and the operating system
(Windows 7) supported by the benchmark is obsoleted in burgeoning
computer-related markets. Generally, these drawbacks merely make
CpsMark 1.0 a simple technical reference for an individual customer,
while it is powerless to help make purchase decisions according to
actual requirements in centralized procurement of office computers.

Over the last few years, the role of benchmarks has been in the
spotlight in purchasing computers. Some organization like Bitkom, a
Germany’s digital association, has proposed the use of benchmarks in
tendering of computers [14]. Intel has also recommended some existing
benchmarks as the criteria for screening the shortlist from bidders [1].
Inspired by such evolving roles of benchmarks, we redesigned CpsMark
1.0 to a coherent benchmark system by utilizing simulated end-user ex-
perience under office-oriented working scenario for better performance
evaluation in centralized procurement and finally developed CpsMark+
in 2019.

3. Challengs in evaluating the system performance of office desk-
tops

3.1. Evolution of computer architecture and usage

Researchers and consumers used to compare the performance of
diverse computer systems by merely inspecting their hardware spec-
ifications. Latency and throughput used to be typical metrics that
served us well in computer performance evaluation, since only the
size and the content of input data could affect the processing speed of
applications at that time [2]. For the sake of performance evaluation,
better hardware always led to higher throughput and lower latency
so that computer architecture was merely an inorganic combination of
individual components.

As computer architecture and usage grow more sophisticated, sim-
ple information of computer configurations hardly predicts the program
performance in disparate scenarios explicitly [15]. Such transform
gradually gives rise to the thriving of numerous benchmarks, which
are a system of objective test programs that return the normalized
test score compared with the baseline platform by running a series of
identical applications or other computer operations. These benchmarks
are generally designed to mimic a particular type of workloads on a
constant computer system, by which people can be able to compare

Y. Zhang and T. Wu

the performance of alternative computers under the specific working
circumstance.

Nevertheless, modern computer applications increasingly interact
with humans, the physical world, and each other—often simultane-
ously. Some new types of computing tasks like heterogeneous com-
puting [16], for example, can classify different subtasks based on the
embedded code segments and automatically assign them to the most
suitable computing resources for efficient execution so that the total
time consumption of the entire task is minimized. Many tasks operate
in parallel and compete for resources internally, which might be a
stochastic process and lead to dynamic results. Complicated interac-
tions among tasks, hardware, and humans make it difficult to describe
the entire performance of a given system according to a single task or
even multiple tasks executed in isolation [2]. Generally, the overall
performance of modern computer systems is not solely a function
of individual hardware and executed applications, but an intricate
integration of hardware architecture, the pattern of software execu-
tion and resource allocation, and how humans interact with computer
systems [17].

3.2. Obstacles to capturing usage requirements in centralized procurement

Effective evaluation process of computer performance must be built
upon an explicit awareness of the intended usage scenario of tested
systems, nevertheless, which is especially difficult to obtain for office
desktops.

Evaluation of office desktop performance is often massively required
in centralized procurement, which is a long and strenuous process
where only the opinion of authorities dominates the purchase decision-
making. Hence, the decision-making process is usually distant from
real stakeholders [18], e.g., the internal customers or the external
clients in the case of outsourcing work. The principal of procurement
and bidding documents are intensively formulated by management
and hardly reflect how procurement items are intended to be used in
practice.

Even in the case of individual purchase, compared to traditional
electronic products, information of potential usage for modern desktops
is still not easy to be directly referenced in the process of perfor-
mance evaluation, due to the all-round functions and flexible use of
modern computers. A game enthusiast who is keen on 3D games,
for instance, might also pay attention to computational performance
required by a software engineer. Hence, it is hard to capture explicit
usage requirements of modern office desktops, which impedes the ef-
fective evaluation of system performance, highlighting the importance
of how computer benchmarks can precisely reflect end-user experience
in specific scenarios.

3.3. Difficulties in reflecting real user experience

In various business domains, a questionnaire is one of the most
direct ways to obtain user experience and satisfaction, while like many
other similar surveys, it can merely be conducted after the durable
use of real end users in practice, which makes it less time-efficient in
helping vendors improve their products before releasement or serving
as reference when customers are selecting new products. In the field
of computers, the rise of various benchmarks solves part of the above
problems, however, huge challenges lie in how to precisely reflect user
experience without manual intervention.

For a specific computer product, the usage of different potential
customer groups could be divergent, which requires an accurate match
between benchmark workloads and actual user behaviors. Also, each
user may have a different standard in evaluating computer perfor-
mance, depending on the using habit or product dependency. This
phenomenon will influence the perceived user experience without any
doubt, and thus requires more considerate design of metrics and scoring

12

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100084

methodology. Finally, it is not possible to consummately reflect user ex-
perience of computer products with any individual benchmark, because
the possible over-specific design will cause the benchmark over-fitting
and makes it less applicable for wider use. Therefore, the trade-off
between pertinence and universality of benchmarks is also pivotal.

4. The CpsMark+ benchmark tool

In this section, we describe relevant criteria, methodology, and
process for developing CpsMark+ in detail. We also carry out analytical
and comparative experiments with respect to typical characteristics of
computer benchmarks.

4.1. Criteria and design features

Researchers have been theoretically exploring the art of building
a consummate benchmark [19,20]. Kistowski et al. [20] assert that
all standardized benchmarks are subject to a group of universal crite-
ria, e.g., relevance, repeatability, fairness, and verifiability, which are
proved to be necessary. However, in each domain, the criteria are ex-
pected to include additional features specific to individual benchmark,
depending on its goal, intended usage scenario or other considerations.

The essence of benchmarking office computer performance under
daily working scenarios for centralized procurement is to properly
evaluate computer systems from a perspective of user experience and
describe system performance according to specific purchase demand.
In this paper, we propose following benchmark criteria that guide the
design of CpsMark+’s features:

+ Applications and software manipulations should be scenario-
oriented to reflect real user behaviors. Particularly, in centralized
procurement, end users can hardly have significant influence on
the purchase decision made by authorities, hence the workloads
should be closely correlated to behaviors or intended usage
that are of interest to end customers in many aspects, e.g., the
workload characterization and the input data set.

Cooperation and diverse importance across tasks should be de-
scribed. End users usually do not have equal performance require-
ments for all tasks or even applications involved in an individual
task. In practice, if several applications operate towards a com-
mon task or purpose, sequence and coherence of them will impact
the general working efficiency, since the acceleration of some
applications might be more beneficial than that of others.
Design of metrics should be flexible and account for nonlinearity,
which means that composite metrics should not weigh all applica-
tions equally. Considering complicated usage of modern desktops,
desired metrics of different workloads may vary. In terms of
human interaction, for example, a human cannot perceive faster
response time beneath some threshold. While for some other
tasks, the diversity of execution time on various systems can be
ignored.

The benchmark should be open-source and vendor-neutral. Devel-
opment of closed-source benchmarks is likely to be manipulated
by certain vendors through biased workload design, leading to
suspicion [21] and loss of credibility. An open-source bench-
mark enables public supervision and guarantees the fairness of
benchmark results, which is significantly crucial in centralized
procurement.

4.2. Entire development process and benchmark framework

Unlike most computer benchmarks, CpsMark+ is designed to be
used in centralized procurement, where one single benchmarking result
could affect the purchase and use of a specific product for crowds of
employees. Hence, during the development process, it is more bene-
ficial to follow an iterative and incremental strategy, instead of top-
down principles that formulate schemes at an early stage to make

Y. Zhang and T. Wu

Third-party
Applications

End Users

\/

User Profile Abstraction

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100084

J

Office Computers

Input Files

Document Files

Image Files

-

-
.2/}
Task Workers

{

i

Knowledge Workers

{

Video Files

Webpage Files

Compressed

Comprehensive Application

Usage Scenario Modeling Files
I Q:
Document Internet i Graphic Multimedia i —
Manupilation Service i Design Processing i
i
i I
' Master Control Program '

Comprehensive Calculation

<Scoring ~ Work
i

1
) &

oad m }«4—{ Workload 1 ‘ ! ‘ Workload 1 }—>+{ Work
x | x

x

Workload Operations

Fig. 1. The main software components and the overall benchmark framework of CpsMark+.

subsequent design right on track. We divide the entire development
process into phases, which are associated with relevant checkpoints to
guarantee the accomplishment. Within each phase, requirements are
elicited from various end users through market research or consulta-
tion, then representatives are selected to give feedback on the outcomes
of decision-making and implementation. We improve our work based
on the feedback and repeat such procedures for each phase. Based on
the criteria proposed in Section 4.1, the main software components of
CpsMark+ and its overall benchmark framework are depicted in Fig. 1.
CpsMark+ benchmark tool contains three components:

» The automatic setup program, which installs third-party appli-
cations and the Master Control Program (MCP) in batches. MCP
is responsible for benchmark execution, including test initializa-
tion, resource extraction, data integrity check, workload execu-
tion, log recording, metric measuring and calculation, and report
generation.

» The resource package, including the input files of workload oper-

ations.

The third-party application package, which contains the setups of

all third-party applications.

The source code of MCP is maintained online at https://github.com/
wanghong3116/CpsMarkPLUS, which is still under further improve-
ment and subject to change. The resource and third-party application
packages have been uploaded on the website of National Metrology
Data Center of China, which can be accessed online through https://jc.
nmdc.ac.cn/view-40-609748.html. Note that CpsMark+ only supports
Microsoft Windows 10.

We have not integrated input files, workload applications and the
MCP into a unitary package as most commercial benchmarks, which
makes our work transparent and easy to be maintained. For the first
use of CpsMark+, the trial version of each third-party application is au-
tomatically installed on the tested computer system and configured by
the execution of an automatic setup program. Likewise, each workload
runs independently in the form of complete software, the corresponding
application is not merged into the MCP and only receives instructions
synchronously from the background of tested computer systems. Such
design reduces the influence of the MCP on system performance and
enables a clear view of workload conditions provided by logs.

The MCP is devised as a serial layout and contains two separate
test modules. Users can initialize the number of iterations to run for

13

eliminating fluctuation of benchmark results. Composed of a sequence
of orderly executed workloads, each module independently generates
a synthetic score that reflects the performance of inclusive workloads.
There is an automatic reboot of the tested computer system between
the two modules for eliminating the impacts of varying system status
(e.g., cache) on module independence.

4.3. Workloads

CpsMark+ has two independent modules for simulating user ex-
perience perceived in modern office scenarios, i.e., Comprehensive
Application (CA) and Comprehensive Calculation (CC), which can be
optionally selected and run independently during the test. Each of them
has a series of workloads executed in a specific order. In this section,
we will introduce design and characterization of the workloads within
each module in detail.

4.3.1. User profile abstraction of office computers

Chen et al. [22] point out that benchmarks are expected to be
associated with real application domains and mirror practical demands
in subsistence. Although a large employer may have numerous user seg-
ments, appropriate classification could minimize complexity and throw
more light on exploring the performance requirement of specific user
segment. For the daily usage of desktop computers in modern office
scenarios, we abstract the profiles of end users from the perspective of
occupation and profession described in Table 1.

Since CpsMark+ has been designed for commercial evaluation of
desktop computers used in modern office scenarios, the user profiles
summarized in Table 1 exclude those working in laboratories, R&D
centers, factories, or telecommuting. In this paper, we mainly focus on
most knowledge workers and some part of power users.

4.3.2. Usage scenario modeling and application selection

Employers in a specific department of a company are likely to
engage in fixed routine work, thus the performance requirement of
a specific task in a homogeneous work section should be more em-
phasized in centralized procurement of office computers. To highly
correlate the design of workloads with the oriented usage scenario of
tested computers, we focus on exploring the usage models of intended
end users working in daily office scenarios.

According to the abstracted user profiles of office computers, we
cluster the usage models into four groups of common office scenarios

https://github.com/wanghong3116/CpsMarkPLUS
https://github.com/wanghong3116/CpsMarkPLUS
https://github.com/wanghong3116/CpsMarkPLUS
https://jc.nmdc.ac.cn/view-40-609748.html
https://jc.nmdc.ac.cn/view-40-609748.html
https://jc.nmdc.ac.cn/view-40-609748.html

Y. Zhang and T. Wu

Table 1
The profiles of computer end users.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100084

User category Representative occupations

Performance requirement

Customer service

« Front desk consultation
+ Bank clerks

« Data entry specialist

* Human resource

Task workers .

+ Basic document operations

+ A single OS-level application
+ Simple connectivity needs

+ Static 2D graphics

+ Few computing occasions

Knowledge workers « Most students
» Teachers and professors
« Company administrators
« Financial advisors providing multiple advice

« Product managers presenting prototypes from multi-angle .

» Content creation

» Frequent web browsing

+ Moderately complex application

+ Moderate scientific computing

Variable multimedia processing like graphics and video
+ Adequate memory

Power users .

Multimedia designers making high-definition video .
« Professional architects engaged in complex modeling .
« Physicians examining delicate 3D medical images

Complex content creation

Intensive video and 3D graphics processing
» Heavy CPU computing

+ Fast system response

+ Smooth running of applications

Table 2
The application selection of workloads.

Module Usage scenario

Application Version

Document manipulation
Comprehensive application

2016 (16.0.4266.1003)
2016 (16.0.4266.1003)
2016 (16.0.4266.1003)
DC (19.010.20091)
5.91 (64-bit)

Microsoft® PowerPoint
Microsoft® Word
Microsoft® Excel
Adobe® Acrobat
WinRAR

Internet service

73.0.3683.75
2016 (16.0.4266.1003)

Google® Chrome
Microsoft® Outlook

Graphic design

Autodesk® AutoCAD
Adobe® Photoshop

2018 (22.0.49.0)
CC 2019 (20.0.1)

Comprehensive calculation

Multimedia processing

Autodesk® 3ds Max
Adobe® Premiere
Adobe® After Effects
HandBrake

2018 (20.0.0.966)
Pro CC 2019 (13.0)
CC 2019 (16.0)
CLI 1.3.0

based on their overall functions within a specific workflow, i.e., doc-
ument manipulation, Internet service, graphic design, and multimedia
processing, which are described as follows:

The document manipulation scenario contains multiple manip-
ulations towards the documents in common formats, which are
involved in most cases of modern business.

The Internet service scenario mainly includes web browsing and
email creation, which are usually auxiliary means in resource
acquisition and information communication.

The graphic design scenario refers to visual expression of ideas
and information through the combination of symbols, pictures,
and text, which is crucial for product presentation tasks like
poster production.

The multimedia processing scenario relates to utilizing computers
for digitizing and integrating graphics, sound, video and other
media information in a specific interactive interface, which is
widely applied in consulting, marketing and management.

As for workload applications, we select desktop-level office applica-
tions based on the metric of popularity. According to the investigation
report of office software markets in China by Chinaiern [23], our
software market experts select popular and typical applications for each
usage scenario in modern office, which are summarized in Table 2.

Since sufficient time is required for workloads to be developed
and validated, versions of some applications are not the latest when
CpsMark+ was released. In addition, the intended applications of
CpsMark+ are the most widely used version instead of the latest one.
While some application like WinRAR is up to date because it is feasible
to be instantly updated by end users.

14

4.3.3. Test module construction

While specific selection of usage scenarios ensures high representa-
tiveness of the benchmark, grouping applications with similar perfor-
mance dependencies from various usage scenarios can easily provide
an all-sided picture portraying integral performance required by end
customers and enhance the usability of the benchmark. Hence, we
merge the usage scenarios into two separately running and scored
modules as follows:

» Comprehensive Application (CA) module includes the scenarios of
document manipulation and Internet service, which reflect light
and middleweight use by task or knowledge workers in most
business workplaces, where end users might pay more attention
to overall performance, response, and smoothness throughout
regular use.

Comprehensive Calculation (CC) module includes the scenarios of
graphic design and multimedia processing, which reflect heavy-
weight use by power users skilled in professional fields, where end
users possibly focus on the execution efficiency of CPU-intensive
or GPU-intensive computing tasks.

Within each module, in addition to similar performance depen-
dencies, the usage scenarios are highly correlated and tend to appear
in a common workflow under daily office scenarios. Further, each
usage scenario is given a different weight based on the sum of met-
rics measured from inclusive workloads. Such approach can ensure a
direct and close connection between benchmark results and computer
performance required by end users.

4.3.4. Workload components and design details

To reflect the user experience of office computers in modern office,
workloads should be not only scenario-oriented but also capable of sim-
ulating user behaviors. Therefore, the workload of CpsMark+ is more

Y. Zhang and T. Wu

than a concept of application automation, but a logical integration of
three elements: the input data set extracted from the resource package,
the workload operations performed on the input data set through the
applications executed by the MCP, and the generated output.

For each workload, the input data set is chosen to functionally
reproduce the resources or materials that might be used by end users
in modern office scenarios. Specifically, we select raw digital contents
or semi-finished project files that are mainly non-structured data such
as texts, images, videos, webpages, and other application-specific files,
e.g., 3dsMax scene files.

Then we explore basic operating units that frequently appear in
the routine use of applications and integrate them into a series of
workload operations that can accomplish a common task. We guarantee
the completeness of workloads via designing diversified operations that
independently generate finished files as output for each application.
Moreover, there is no random process in the MCP so that the generated
output is uniquely determined by the input data set and the workload
operations.

The workload operations of the CA module are briefly described in
execution order as follows:

Google Chrome. Simulate users to browse webpages and switch
between tabs. Webpages are accessed through locally config-
ured network services. The webpages contain text, pictures, JS
(JavaScript) scripts, and flash.

Microsoft PowerPoint. Set the new template style and create
slides. Input texts and adjust character formats, alignment, and
font size. Add pictures, captions, and typeset. Insert tables and
charts with filled data. Browse slides.

Microsoft Word. Input characters, modify titles and character
formats, split paragraphs, set the directory, insert pictures, create
tables and charts, input data.

Microsoft Excel. Generate and organize data with fixed formula.
Classify and enter data under a specific rule. Calculate and sort
common statistics. Draw line charts by categories, set titles and
styles, adjust size and position. Macro definition and execution.
Adobe Acrobat. Convert PowerPoint, Word, and Excel docu-
ments made in previous workloads to PDF files, browse these PDF
files page by page.

WinRAR. Compress and decompress mixed files in multiple for-
mats, including images, videos, documents, databases, and log
files.

Microsoft Outlook. Simulate users to receive, browse email con-
tents and attachments offline, including Word, Excel, and Power-
Point files. Upload new attachments, edit the body of the email,
and reply.

The workload operations of the CC module are briefly described
in execution order as follows:

Adobe Photoshop. Use the PSD (Photoshop Document) file to
make a vertical poster. Separate target area from the source
material and design the layout of layers. In new layers, set titles
and captions, add a logo, and adjust its size, coordinates, and
transparency. Combine all layers, virtualize the background and
merge them into a large picture.

Autodesk AutoCAD. Use the DWG file to draw distributed struc-
ture diagrams of buildings. In the main framework, draw structure
and vector identification of each area, add coordinates, and mark
the size. Change colors of layers and use different line styles.
Design wiring, draw pipeline distribution, and flow direction.
Autodesk 3ds Max. Design a 3D model of a whale. Develop
the 3D framework, color the texture, add lighting effects, make
reflections and shadow effects by calculating light source position,
incidence angle, and reflection angle. Produce motion trajectories
and movements of the whale model, render segmental frames of
action sequences.

15

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100084

+ Adobe Premiere. Clip and splice source video materials, add
lens transition and subtitles, synthesize sound effects, render, and
preview the output video.

» Adobe After Effects. Add particle explosion effects, render the
firework explosion animation sequence of 1800 frames and 30
FPS.

» HandBrake. Convert the H.264 encoded source video with 4K
resolution to the H.256 encoded target video with 2K resolu-
tion, the container format is MP4. Hardware acceleration will be
leveraged if enabled.

Within each module, the workloads are executed in the order spec-
ified above. The format or even the content of the generated output
for some specific applications is identical to that of the input data
set for subsequent applications. Such design enables test modules to
describe cooperation across tasks throughout a common workflow.
For example, the workloads of the CA module simulate the following
coherent user behaviors: resource preparation via the Internet, content
creation, document processing, and email delivery.

4.4. Metric design and test implementation

Although work efficiency is a pervasive metric in most benchmarks
that evaluate computer performance [24] and is widely referenced in
helping customers making decisions, unitary metric design may not tell
the true story of user experience for the following reasons.

First, people do not have equal performance requirements for all
tasks or even for the same portion of an individual task, so that user
experience is usually diversified and varying. For instance, professional
designers in an advertising agency might pay more attention to the time
consumption of multimedia processing, while the user experience of
office secretaries is closely related to the response speed and the fluency
of frequent document operations.

Second, the perception of user experience is nonlinear and difficult
to quantify. In terms of human interaction, humans cannot perceive
faster response time beneath a certain threshold, hence further acceler-
ation of the task will not bring better user experience. For example, a
frame rate that exceeds the support of a monitor will no longer improve
the user experience of a graphics task, while in this case the program
execution could be accelerated by a better GPU.

As a result, in the context of CpsMark+, we define work efficiency as
the time consumption for systems under test to complete all operations
related to user experience within a specific workload, i.e., application
launching, input files loading, and basic operating units, which are
outlined in Section 4.3.4. Then we take the defined work efficiency
as the metric of CpsMark+ and focus on how it can be measured to
properly describe the user experience of tested desktops in modern
office scenarios.

4.4.1. Method of sampling

To guarantee the pertinence of the metric, CpsMark+ adopts multi-
ple methods to sample the work efficiency of tested computer systems,
depending on various workloads. Such a flexible approach can dif-
ferentiate the user experience by matching the usages of applications
with their performance requirements. To be more specific, we predefine
runtime as the time spent by each basic operating unit that actively uses
system resources, while response time is the time interval between task
activation and task completion. The sampling methods are illustrated
in Fig. 2.

In terms of the workloads in the usage scenarios of document
manipulation (WinRAR excluded) and Internet service, basic operating
units are numerous and densely distributed with lightweight resource
consumption. Some intervals of them consist of events irrelevant to
the evaluation of user experience e.g., temporary retention of screen
display, timer interference, which will have an adverse influence on
the effectiveness of workloads if they are included in the metric.

Y. Zhang and T. Wu

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100084

Method 1 | | | |

I [T T

| t=(t, —t)—(t; —t;) - (t, —t,)—(t, - t)

to ot ts te

tr

B L
Method 2 []

[]

| t=(t, —t)+(t, —t,)+(t, —t,)+(t, —t,)

t ts ts ts

[Basic operating unit [_] Event unrelated to UE] Event related to UE

[Artificial wait interval

tz

[Application launching or (and) input files loading

Fig. 2. The two methods of sampling the designed metrics.

However, too many samplings of basic operating units will accumulate
the sampling error and cause frequent switches between transient-state
and steady-state of program process, which might interfere with the
system performance. Hence, we sample the start timestamps and the
end timestamps of the entire task and calculate its response time,
i.e., t; -ty in Method 1, then we sample the time intervals of irrelevant
events and subtract them from the response time as the metric of these
workloads.

For the other workloads of CpsMark+, their basic operating units are
relatively sparse and have a high concentration of resource consump-
tion. These basic operating units are time-consuming and contribute
most of the entire task. In this case, the user experience of end users
is more susceptible to the execution speed of a single operation. To
accurately measure the runtime, we artificially add extra short waits,
e.g., t, — t; in Method 2, between the heavyweight operating units to
reset the resource consumption. Finally, we sum the sampled runtime
of each basic operating unit as the metric of these workloads.

4.4.2. Ul-level vs. API-level automation

Benchmark implementation has a great impact on the test results
of the designed metric. There are two primary approaches to automate
the execution of workloads, i.e., Ul-level and API-level [25,26]. Some
benchmarks leverage automated scripts like Autolt to initiate and navi-
gate applications by simulating mouse clicks or keystrokes [25]. The
duration of each task is measured when the completion of the task
is detected by application-specific methods. Such an approach mimics
practical human interaction at Ul level, nevertheless, it instead impedes
the accurate reflection of user experience for performance evaluation.
Although the estimation of user experience is somewhat subjective, it
should be highly relevant to how well computer systems react to or
execute the instructions of real end users, however, which might be
distorted by a contradictory combination of simulated user behaviors
and computer-based metrics.

We choose independent APIs or invoke them from application com-
munication standards, e.g., Component Object Model, to automatically
control the execution of each workload. In this case, launching of
applications, loading of input files, and basic operating units are imple-
mented through a set of functions, methods, and procedures contained
in selected APIs or standards. Compared to the Ul-level implementa-
tion, our decision to choose API-level implementation provides some
tangible benefits as follows:

» Reduction of irrelevant time measured as metrics. On the one
hand, it takes Ul-level implementation a large amount of time to
detect the completion of tasks according to the returned signals.
For instance, automated scripts may wait for the application
to show a pop-up window or may wait for a dialog box to
disappear, which requires accurate technical identification. Such
a judgment process based on automated scripts is quite time-
consuming and significantly falls behind the completion of tasks
as perceived by end users. On the other hand, some workload
operations themselves take much time for automated scripts to
perform. For example, text input might be simulated by con-
tinuous keystrokes at a fixed speed, which has identical time
consumption on all tested computers. This prolonged simulation
accounts for a large proportion of the designed metric and makes
the results of measurement diluted by what end users do not
value.

16

+ Less resource consumption and higher test efficiency. Al-
though some Ul-level automated frameworks of benchmarks claim
to be lightweight and have little influence on performance, they
still consume more computing and memory resources than API-
level automation [27]. In addition, API-level automation requires
fewer codes to perform and does not need to deal with interface
elements. This attribute makes performance evaluation a faster
and compact test process and further reduces the overall resource
consumption.

Greater stability in testing and maintenance. Ul-level automa-
tion sometimes gets stuck or goes into endless loops due to
Ul complexities. For instance, a mouse cursor might miss cer-
tain buttons due to the change of resolution, or an unexpected
window display may lead to wrong recognition. Some applica-
tions are event-driven and can easily enter idle states if there
are no users interacting with them [2]. By contrast, API-level
automation can guarantee the exact execution of each work-
load operation and help ease maintenance difficulties brought
by external factors [28], e.g., frequent updates of application
versions.

4.4.3. Pipeline of metric testing

In CpsMark+, test of the designed metric for a specific workload is
performed through the MCP and follows a similar pipeline across all
workloads as shown in Fig. 3.

More concretely, for the Nth workload, the MCP first decompresses
the resource package and extracts the exclusive input files to a specified
location, then an MDS5 [29] check is performed towards them to ensure
the data integrity. If the MD5 check fails, the test will abort and return
to the initialization phase, otherwise, the MCP will move forward to the
application execution phase depicted as the dashed rectangle in Fig. 3,
where the designed metric Ty is tested. When all the workload oper-
ations are finished, an MD5 check is performed towards the generated
output. Finally, after a five-second countdown, if there is no user input
to interrupt the test, i.e., mouse clicks on the pause button, the MCP will
proceed for the next workload until the entire benchmark is completed.

It is worth noting that for the workloads in the usage scenario
of document manipulation and Google Chrome, the applications are
launched through direct open of the input files, while for the workloads
in the usage scenarios of graphic design, multimedia processing, and
Microsoft Outlook, the input files are loaded after separate launch of
the applications. As a crucial factor affecting the user experience, the
speed of application launching is a good indicator of memory and
storage performance.

4.5. Scoring methodology

The scoring methodology of benchmarks integrates test results of
the designed metric and generates quantified scores that evaluate the
overall performance of computer systems. For a commercial bench-
mark used in centralized procurement, the scoring methodology should
provide accurate estimation of the user experience for tested comput-
ers to help authorities choose better products from alternatives. For
CpsMark+, the design of its scoring methodology meets the following
criteria:

+ The resulting score does not have significant fluctuation and can
remain steady given a constant computer system.

Y. Zhang and T. Wu

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100084

Application
L hi

Resource
Decompression

@orkload N *D——|
T

o
MD5 cheek}
F

Direct Open of
Input Files

| User Input

|

|

|

|

|

| Input Files
: Loading
|

|

|

|

|

‘ Workload Operations

|

|

|

|

|

! | Countdown ’—»@orkloadN+D
|

| F
|

|

|

Initialization Interface

User Input

Fig. 3. Intra-workload and inter-workload pipelines of metric testing in CpsMark+.

+ The resulting score can sufficiently differentiate the user experi-
ence of tested computers with diverse performance.

» The pair-wise relationship between the resulting scores from dif-
ferent computer systems is neutral to the calibration method and
the specification of the baseline platform.

Concretely, for each module, we sum the tested metric of each in-
cluded workload executed on the tested computer system and compare
it with the sum of workload metrics tested on the baseline platform. We
calculate the ratio value of these two sums and round it to the nearest
integer. In this case, a higher score indicates better performance. To
be more specific, given the ith module and the number of included
workloads N;, T; and t; are the tested metric of the jth workload
executed on the tested computer system and the baseline platform,
respectively. The resulting score for module i is calculated as follows:

N
Xt
N

24T

Note that we do not take the geometric mean of each score as
the overall rating, which places equal weight for each module [30].
Instead, we reserve and separate the score so that end users can flexibly
customize the weight of each module when they refer to the benchmark
results according to diversified requirements. Within each module, the

sum of each tested metric reflects cooperation across workloads and
different performance dependencies of them.

S =

i

1000 -

4.6. Baseline platform and calibration

As the datum point of the evaluation framework, baseline platforms
are prerequisite for most benchmarks. Judicious choice of the baseline
platform is of great significance for the resulting score. For instance,
an exorbitant configuration of the baseline platform will lead to low
sensitivity and weak differentiation of benchmarks, while an inferior
one may cause poor repeatability. Hence, at the time of development of
CpsMark+, we study the mainstream configurations of office computers
purchased in centralized procurement and determine the following con-
figuration for the baseline platform based on performance requirements
of the workloads in CpsMark-+:

CPU Model: Intel® Core™ i3-9100 (4 cores, 3.60 GHz, 6 MB L3
cache)

Graphics: Intel® UHD Graphics 630

RAM: Kingston® ValueRAM™ 8 GB DDR4 2400 MHz

Storage: Western Digital® WD Blue™ 1 TB SATA IIl HDD (6 GB/s,
7200 RPM)

Chipset: Intel® Z390

Display Resolution: 1920 x 1080

0S: Microsoft® Windows® 10

Specifically, to calibrate t;, we build the baseline platform with
brand new parts according to the above hardware configurations and
perform a clean installation of the selected operating system. Then
we run both modules of CpsMark+ on the baseline platform for 5
independent iterations, the workload-wise calibration ¢, is calculated as

17

the median value over the tested metrics of the jth workload from the
five runs. Note that since the baseline platform is not a finished product
of a computer manufacturer, it is illogical to integrate the tested metrics
of all workloads within each module as the module-wise calibration of
the baseline platform.

4.7. Benchmark characterization

In this section, we analyze some basic characteristics of CpsMark+
from the perspectives of sensitivity and repeatability, which are two
widely used criteria of typical computer benchmarks. Specifically, we
have performed extensive test experiments with CpsMark+ on mul-
tiple assembled computer systems. Then we analyze the sensitivity
of tested module performance to varying hardware characteristics.
We also explore the repeatability of workload performance under a
constant computer system and stable test environment.

4.7.1. Experimental setup

We alter five different hardware characteristics of a predefined da-
tum point to build the tested computer systems, including the number
of CPU cores, CPU frequency, graphics card, storage device, and system
memory, which are crucial factors in determining user experience. For
each hardware characteristic, we select four configurations with signifi-
cant pairwise performance differences. They are denoted as Config 1 to
Config 4 in ascending order of performance. The detailed configurations
of each hardware characteristic are listed in Table 3.

For the configurations of the CPU characteristic, instead of using
different processor models, we stick to the CPU model of the datum
point and enable different CPU frequencies or numbers of CPU cores by
changing BIOS settings. For the configurations of the graphics card, we
use the same brand of discrete graphics cards to ensure consistency of
graphics drivers and available physical memory. For the configurations
of system memory, we all adopt the single-channel mode and only
change the memory size of the datum point. The configuration of the
datum point is listed as follows:

« CPU Model: Intel® Core™ i7-9700K (8 cores, 3.60 GHz, 12 MB L3
cache)

Graphics: Nvidia® GeForce® GTX 750

RAM: Kingston® ValueRAM™ 4 GB DDR4 2666 MHz

Storage: Seagate® Barracuda® 1TB SATA III HDD (6 GB/s, 5400
RPM)

Chipset: Intel® Z390

Display Resolution: 1920 x 1080

0S: Microsoft® Windows® 10

Notably, for all the experiments in this section, we disable com-
mon auxiliary optimization technologies, e.g., Turbo Boost, Hyper-
Threading, and Hardware Acceleration, to better highlight the influ-
ence of different configurations under various hardware characteristics
on benchmark performance from a static perspective. These auxil-
iary optimization technologies can be enabled in the practical use of
CpsMark+.

Y. Zhang and T. Wu

Table 3
The hardware characteristics and related configurations.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100084

Hardware characteristic Configuration 1

Configuration 2

Configuration 3

Configuration 4

CPU cores
CPU frequency

2-Core
2.0 GHz

4-Core
2.5 GHz

6-Core
3.0 GHz

8-Core
3.5 GHz

Nvidia GeForce
GTX 750

Graphics card

Nvidia GeForce
GTX 980

Nvidia GeForce
GTX 1080

Nvidia GeForce
RTX 2080Ti

Storage device Seagate Barracuda

111 5400RPM HDD

1TB SATA

Western Digital Blue 1TB
SATA 1II 7200 RPM HDD

Samsung 860 EVO 250GB
SATA III SSD

Samsung 970 PRO 512GB
NVMe M.2 SSD

4 GB

8 GB

16 GB

32 GB

System memory

»
o

a. CPU Cores

= Comprehensive Application
= Comprehensive Calculation

n

=

=
78
|

relative to the baseline configuration

Percentage difference of performance

4
o

2-Core

b. CPU Frequency

=3 Comprehensive Application
= Comprehensive Calculation

sl

0.5
2.0GHz 2.5GHz

relative to the baseline configuration

Percentage difference of performance

3.0GHz 3.5GHz

d. Storage Device

2.0

= Comprehensive Application
= Comprehensive Calculation

0.5

Percentage difference of performance
relative to the baseline configuration

Seagate Barracuda
ITB SATA I
5400RPM HDD

Western Digital
Blue ITB SATA I
7200 RPM HDD

Samsung 860 EVO
250GB SATA I
SSD

Samsung 970 PRO
512GB NVMe M.2
SSD

Fig. 4. The sensitivity of the module performance

4.7.2. Sensitivity analysis

Through evaluating the module performance and the workload
performance on tested systems with different levels of configurations,
we can explore the sensitivity of CpsMark+ scores to various hardware
characteristics. To get strict test results, except for the hardware char-
acteristic under test, the other components of a certain configuration
remain identical to the components of the datum point. Specifically,
we run CpsMark+ on each configuration for 20 independent iterations
with a system reboot and a 15-min interval between each run. In each
iteration, we sum the tested metrics of the included workloads for
each module, then the average of the sums is adopted as the module
performance on a certain configuration. Finally, for each hardware
characteristic, we calculate the inverse ratio of the module performance
tested on the other three configurations to the module performance
tested on the first configuration, i.e., base configuration, respectively.
The sensitivity of the module performance and the workload perfor-
mance of CpsMark+ to various hardware characteristics are shown in
Fig. 4 and Table 4, respectively.

Based on the module performance evaluation depicted in Fig. 4,
we notice that both modules have a high sensitivity to CPU cores
and CPU frequency, the module performance steadily increases as the
configurations improve, indicating that both modules can make full

4-Core

18

6-Core 8-Core

c. Graphics Card

= Comprehensive Application
= Comprehensive Calculation

I

Nvidia Geforce
GTX 750

0.5+

Percentage difference of performance
relative to the baseline configuration

Nvidia Geforce
GTX 980

Nvidia Geforce
RTX 2080Ti

Nvidia Geforce
GTX 1080

e. System Memory

= Comprehensive Application
= Comprehensive Calculation

5= Il

4GB 8GB 16GB 32GB

relative to the baseline configuration

Percentage difference of perfor

to various hardware characteristics.

use of CPU resources and be significantly affected by more CPU cores
and higher CPU frequency. The CC module has a significantly higher
sensitivity to the graphics card, the best configuration performs 1.77
times better than the base configuration, while there is no significant
difference in the performance of the CA module, which indicates that
better graphic cards cannot lead to significant performance improve-
ment of the CA module. Rotation speed and storage media of hard disks
also have a great influence on the performance of both modules, since
the workloads involve application launching and many I/0 operations,
while drive interface and protocol contribute less to the module per-
formance. Both modules are relatively less sensitive to system memory
than the other hardware characteristics, which indicates that larger
size of system memory will bring least significant improvement of both
module performance compared to better configurations under other
hardware characteristics.

We also notice that the sensitivity of the CC module to most hard-
ware characteristics is higher than the sensitivity of the CA module,
since the workloads in the CC module are heavier and have more
resource consumption. In addition, as the configurations improve, the
growth rate of the module performance slows down, especially for the
best configurations, because when configurations exceed some require-
ment bottleneck of the entire workloads, extra improvement of a single
hardware characteristic cannot yield much performance growth.

Y. Zhang and T. Wu

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100084

Table 4
The sensitivity of the workload performance to various hardware characteristics.
CPU cores Chrome PowerPoint Word Excel Acrobat WinRAR Outlook Photoshop AutoCAD 3ds Max Premiere After effects HandBrake
Config 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Config 2 1.18 1.21 1.19 1.27 1.23 1.25 1.19 1.48 1.51 1.55 1.49 1.52 1.56
Config 3 1.35 1.37 1.35 1.41 1.36 1.39 1.34 1.73 1.72 1.74 1.69 1.75 1.71
Config 4 1.41 1.43 1.42 1.47 1.44 1.45 1.42 1.89 1.87 1.92 1.91 1.93 1.93
CPU frequency Chrome PowerPoint Word Excel Acrobat WinRAR Outlook Photoshop AutoCAD 3ds Max Premiere After effects HandBrake
Config 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Config 2 1.20 1.22 1.21 1.25 1.23 1.26 1.19 1.18 1.19 1.22 1.24 1.23 1.22
Config 3 1.37 1.38 1.39 1.44 1.40 1.43 1.38 1.33 1.35 1.37 1.36 1.34 1.34
Config 4 1.63 1.65 1.64 1.68 1.64 1.67 1.62 1.59 1.57 1.63 1.61 1.58 1.61
Graphics card Chrome PowerPoint Word Excel Acrobat WinRAR Outlook Photoshop AutoCAD 3ds Max Premiere After effects HandBrake
Config 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Config 2 1.01 0.99 1.00 1.02 1.01 1.01 0.98 1.36 1.34 1.37 1.35 1.34 1.36
Config 3 1.03 1.00 1.01 1.01 0.99 1.02 1.02 1.66 1.65 1.68 1.66 1.63 1.65
Config 4 1.05 1.04 1.04 1.03 1.02 1.03 1.01 1.77 1.79 1.77 1.75 1.78 1.76
Storage device Chrome PowerPoint Word Excel Acrobat WinRAR Outlook Photoshop AutoCAD 3ds Max Premiere After effects = HandBrake
Config 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Config 2 1.26 1.25 1.27 1.23 1.24 1.27 1.25 1.25 1.22 1.24 1.25 1.23 1.21
Config 3 1.48 1.47 1.49 1.51 1.50 1.51 1.47 1.46 1.45 1.48 1.49 1.47 1.48
Config 4 1.54 1.55 1.53 1.53 1.55 1.54 1.56 1.51 1.52 1.49 1.50 1.48 1.47
System memory Chrome PowerPoint Word Excel Acrobat WinRAR Outlook Photoshop AutoCAD 3ds Max Premiere After effects HandBrake
Config 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Config 2 1.17 1.16 1.17 1.15 1.18 1.14 1.15 1.22 1.19 1.21 1.18 1.22 1.20
Config 3 1.23 1.22 1.25 1.24 1.23 1.22 1.22 1.28 1.27 1.29 1.26 1.25 1.30
Config 4 1.24 1.21 1.26 1.23 1.26 1.23 1.24 1.31 1.29 1.33 1.32 1.28 1.33

As for the sensitivity of the workload performance of CpsMark+
to each hardware characteristic, based on the workload performance
evaluation depicted in Table 4, we have observed the same trend as
the sensitivity of the module performance. Generally, the performance
of all the workloads is highly sensitive to the number of CPU cores,
CPU frequency, and the storage devices. The performance of the work-
loads that require massive GPU-intensive computing, e.g., AutoCAD
and Premiere, is more sensitive to graphics cards, compared to the
relatively lightweight workloads, e.g., Microsoft Office. However, the
performance of some workloads in the CA module, e.g., Excel and
WIinRAR, is more sensitive to CPU frequency and storage devices, which
might be resulted from frequent float point calculations in the RAM and
massive document I/O operations in disks triggered by these workloads.
We also find out that the performance improvement of most workloads
is not significant once the size of system memory reaches 8 GB, which
is likely to be the requirement threshold for the workload software to
run smoothly.

4.7.3. Repeatability analysis

The repeatability of CpsMark+ is evaluated according to the fluctu-
ation of the module performance and the workload performance tested
on the identical computer systems. We leverage Coefficient of Variation
(CV), the ratio of the standard deviation to the mean, to indicate the
degree of performance fluctuation [31]. To be more specific, for all the
experiments under each hardware characteristic, we calculate the CV
of the module performance and the workload performance evaluated
on the same configuration over 20 independent iterations, respectively.
Finally, we aggregate the CV of the module performance under each
hardware characteristic and calculate the average CV of the workload
performance evaluated on each level of configurations. The results are
shown in Fig. 5.

As we can see from the results depicted in Fig. 5, the CV of the
module performance under all the hardware characteristics is less than
3%, while the CV of the workload performance under each level of the
four configurations is less than 2.5%, which indicates that the overall
benchmark results of CpsMark+ are stable and have high consistency
under the identical tested computer systems and environment.

Furthermore, for each hardware characteristic, we mark the CV of
the module performance under Config 1 and Config 4, respectively.

19

It turns out that except for the results of the CC module under the
hardware characteristic of CPU frequency, the best configuration will
cause the highest CV of the module performance, while the worst
configuration will lead to the lowest CV. Combining the CV of the work-
load performance with each other, we can conclude that the stability
of benchmark results will be improved if the performance of tested
configurations exceeds the performance requirements of workloads.
As a result, the CV of the module performance under the hardware
characteristics of the CPU cores and CPU frequency is relatively high,
since CPU frequency of only 2.0 GHz or 2 CPU cores might significantly
encumber the performance of tested computer systems.

We also notice that the CV of the heavyweight workload perfor-
mance is generally higher than the CV of the lightweight workload
performance, which is consistent with the previous conclusion, the pos-
sible reason is that heavyweight workloads will greatly occupy system
resources and lead to unexpected disturbance caused by resource com-
petition between complex program instructions. While Google Chrome
is an exception, since the value of its tested metric is relatively small
so that it is susceptible to the fluctuation of repetitive experiments.
Another finding is that the module performance and the workload per-
formance tested on better configurations will become less volatile, as
the performance of high-level configurations might greatly exceed the
requirements of workload software. Overall, our benchmark methodol-
ogy ensures that CpsMark+ is of high sensitivity to provide stable and
reliable evaluation results.

4.8. Comparative evaluation against competing benchmarks

In this section, we mainly focus on quantitative and qualitative
comparison between CpsMark+ and two commonly used computer
benchmarks in commercial field, i.e., SYSmark 2018 and PCMark 10.
We explain the experimental and the analytical results in detail, which
further highlight the strength and the design philosophy of CpsMark+.

4.8.1. Quantitative comparison

For quantitative comparison, we compare CpsMark+ with SYSmark
2018 and PCMark 10 with respect to the sensitivity and the repeatabil-
ity of the module performance under various hardware characteristics.
We do not select other metrics, e.g., test duration and power con-
sumption, since SYSmark 2018 and PCMark 10 are not open-source

Y. Zhang and T. Wu

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100084

a. CV of Module Performance

Coefficient of Variation

3.0%
- o O
2.5% O Config 1
5% g
O Config 4
2.0%-
1.5% $
1.0% — i
JIL‘
7 TR ISR [N e 00 W SRR RERRSSI s LR TWWRRRRR W
I R = =T
0.0%
CA ‘ cc CA | cc CA [cc CA | cc CA | cC
CPU Cores CPU Frequency Graphics Card Storage Device System Memory

Coefficient of Variation

b. CV of Workload Performance

2.5%

| @ Config1 M Config2 [Config3 [Config4
2.0% []
1.5%-] M l
1.0%- T
0.0%- H
Chrome PowerPoint Word Excel Acrobat WinRAR Outlook Photoshop ~ AutoCAD 3ds Max Premiere After Effects HandBrake

Fig. 5. The repeatability of the module/workload performance under various hardware characteristics.

benchmarks and do not have built-in functions to precisely measure
these metrics, which as well makes it impossible to compare the sensi-
tivity and the repeatability of them at a finer granularity, e.g., the level
of workload performance. In addition, sensitivity and repeatability are
the universal metrics for comparing different benchmarks, even if they
possess diverse construction methodologies and usages.

Specifically, we follow the same experimental setup as described
in Section 4.7. The modules of SYSmark 2018 include Productivity,
Creativity, and Responsiveness, while the modules of PCMark 10 in-
clude Essentials, Creativity, and Digital Content Creation. The detailed
information about SYSmark 2018 and PCMark 10 is available on their
official websites, respectively. Note that in this section, among the three
benchmarks, we only compare the sensitivity and the repeatability
of the modules that evaluate system performance in similar usage
scenarios. Average sensitivity and repeatability (CV in percentage)
of the module performance for the three compared benchmarks are
summarized in Table 5.

In terms of the sensitivity results depicted in Table 5, among the
three modules that evaluate system performance related to document
editing and Internet surfing, i.e., the CA module of CpsMark+, the
Productivity module of SYSmark 2018, and the Productivity module of
PCMark 10, the Productivity module of SYSmark 2018 has the highest
sensitivity to all the configurations under each hardware characteristic,
since it includes some workloads that have relatively high consumption
of system resources, e.g., AutoIT and Shotcut, while the CA module
of CpsMark+ has the second highest sensitivity, which is close to the
sensitivity of the Productivity module of SYSmark 2018. Among the
three modules that evaluate system performance related to multimedia
processing and graphics design, i.e., the CC module of CpsMark+, the
Creativity module of SYSmark 2018, and the Digital Content Creation
module of PCMark 10, the CC module of CpsMark+ is most sensitive
to all the hardware characteristics, especially graphics cards, which
indicates CpsMark+ can sensitively reflect performance improvement
of better GPUs in digital and multimedia processing tasks.

In terms of the repeatability results depicted in Table 5, among the
three modules that evaluate system performance related to document
editing and Internet surfing, i.e., the CA module of CpsMark+, the
Productivity module of SYSmark 2018, and the Productivity module of
PCMark 10, the CA module has the highest repeatability, i.e., the lowest
CV, across all configurations under each hardware characteristic, while

20

the Productivity module of SYSmark 2018 has the lowest repeatability,
i.e., the highest CV. This result is attributed to the Ul-level automation
of SYSmark 2018, which introduces massive unstable and delayed
interactions, e.g., clicking dialog windows. Among the three modules
that evaluate system performance related to multimedia processing
and graphics design, i.e., the CC module of CpsMark+, the Creativity
module of SYSmark 2018, and the Digital Content Creation module
of PCMark 10, likewise, the CC module has the highest repeatability,
i.e., the lowest CV, across all configurations under each hardware char-
acteristic, which is attributed to the relatively lightweight workloads
and the smooth API-level automation of CpsMark-+.

Generally, in terms of the modules that evaluate system perfor-
mance in similar usage scenarios, CpsMark+ exhibits the highest re-
peatability against state-of-the-art commercial benchmarks, i.e., SYS-
mark 2018 and PCMark 10, while it also possesses the second highest
sensitivity to the hardware characteristics tested in this experiment,
which is close to the sensitivity of SYSmark 2018.

4.8.2. Qualitative comparison

In this section, we empirically conduct some qualitative comparison
of the three benchmarks from the perspectives of workload characteri-
zation and scoring methodology.

Firstly, the Responsiveness module of SYSmark 2018 and the Es-
sentials module of PCMark 10 contain a large amount of irrelevant
workload operations that cannot precisely simulate user experience per-
ceived in practical usage scenarios of tested computer systems, which
is not consistent with the primary attribute of CpsMark+ and accounts
for the reason why we exclude them from the above quantitative
comparison.

To be more specific, the Responsiveness module of SYSmark 2018
solely measures the response time of program initialization, its work-
loads consist of a series of sequential application starts and shutdowns,
which however, cannot reflect the practical use case in daily office
routines and will over amplify the influence of storage devices on
the overall performance evaluation based on user experience. On the
contrary, each workload of CpsMark+ reflects a common workflow
frequently adopted in modern office scenarios and collectively forms
typical tasks that are fluent in nature, which exactly justifies our bench-
mark principal of simulating user experience. Moreover, the Essentials
module of PCMark 10 contains the playback of a video with fixed

Y. Zhang and T. Wu

Table 5

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100084

Average sensitivity and repeatability of the module performance for the compared benchmarks.

CpsMark+ (sensitivity/repeatability)

SYSmark 2018 (sensitivity/repeatability)

PCMark 10 (sensitivity/repeatability)

CPU cores CA CC Productivity Creativity Responsiveness Essentials Productivity Digital content creation
Config 1 1.00/2.43 1.00/2.81 1.00/3.76 1.00/4.97 1.00/4.28 1.00/3.15 1.00/2.78 1.00/4.15
Config 2 1.24/2.15 1.51/2.66 1.28/3.52 1.43/4.35 1.35/3.83 1.19/2.86 1.20/2.62 1.44/3.72
Config 3 1.35/1.46 1.72/1.72 1.41/3.04 1.68/4.06 1.38/3.51 1.30/2.34 1.34/2.17 1.68/3.08
Config 4 1.41/0.84 1.89/1.35 1.47/2.17 1.81/3.87 1.40/3.04 1.33/1.77 1.37/1.56 1.81/2.54
CPU frequency CA CcC Productivity Creativity Responsiveness Essentials Productivity Digital content creation
Config 1 1.00/2.54 1.00/2.87 1.00/3.88 1.00/5.12 1.00/4.35 1.00/3.25 1.00/2.91 1.00/3.97
Config 2 1.23/2.76 1.21/2.95 1.26/4.02 1.16/5.11 1.13/4.21 1.15/3.11 1.15/2.63 1.13/4.16
Config 3 1.41/1.95 1.38/2.38 1.48/3.34 1.32/4.53 1.19/3.96 1.32/2.48 1.33/2.24 1.32/3.52
Config 4 1.63/1.12 1.59/1.74 1.71/2.73 1.57/4.17 1.22/3.48 1.47/1.93 1.49/1.75 1.49/3.23
Graphics card CA CcC Productivity Creativity Responsiveness Essentials Productivity Digital content creation
Config 1 1.00/0.96 1.00/1.62 1.00/2.35 1.00/4.16 1.00/3.26 1.00/1.79 1.00/1.48 1.00/3.35
Config 2 1.01/0.64 1.35/1.07 1.04/2.14 1.35/3.25 1.12/2.74 1.02/1.28 1.01/0.81 1.32/2.41
Config 3 1.03/0.43 1.64/0.45 1.05/1.85 1.60/2.64 1.14/2.21 1.03/0.82 1.02/0.59 1.58/1.77
Config 4 1.04/0.14 1.77/0.29 1.05/1.56 1.75/1.83 1.15/1.77 1.03/0.56 1.04/0.37 1.71/1.46
Storage device CA CcC Productivity Creativity Responsiveness Essentials Productivity Digital content creation
Config 1 1.00/1.05 1.00/1.27 1.00/2.47 1.00/3.47 1.00/2.95 1.00/1.87 1.00/1.52 1.00/2.58
Config 2 1.24/0.88 1.23/0.84 1.29/2.15 1.18/3.12 1.47/2.72 1.24/1.39 1.21/1.07 1.18/2.21
Config 3 1.50/0.84 1.48/1.06 1.53/2.02 1.39/2.85 1.83/2.49 1.39/1.28 1.36/0.89 1.37/1.84
Config 4 1.55/0.71 1.51/0.53 1.65/1.97 1.47/2.34 2.25/2.11 1.47/1.35 1.42/0.81 1.43/1.57
System memory CA CC Productivity Creativity Responsiveness Essentials Productivity Digital content creation
Config 1 1.00/0.84 1.00/1.37 1.00/2.20 1.00/3.84 1.00/3.09 1.00/1.85 1.00/1.67 1.00/2.94
Config 2 1.12/0.51 1.19/0.65 1.17/1.75 1.19/2.98 1.23/2.45 1.08/1.26 1.11/1.25 1.14/2.06
Config 3 1.20/0.44 1.28/0.76 1.26/1.58 1.29/3.25 1.25/2.06 1.15/0.99 1.17/0.95 1.25/1.71
Config 4 1.23/0.25 1.32/0.42 1.33/1.33 1.34/2.77 1.26/2.23 1.19/0.63 1.22/0.71 1.30/1.45

duration, thus massive time consumption is included in the calculation
of test metrics, which nevertheless, will dilute the contribution of
better hardware characteristics to the performance improvement of this
module and further reduce the benchmark sensitivity.

Secondly, for each module of PCMark 10, the scoring methodology
takes the geometric mean over the test metrics of inclusive workloads,
which returns a normalized score that treats the performance of each
workload equally and neglects different importance of various work-
load operations in daily office scenarios. By contrast, as described in
Section 4.5, for each module of CpsMark+, the scoring methodology
takes the weighted sum over the test metrics of inclusive workloads,
which emphasizes the influence of heavy or durable workload perfor-
mance on simulated user experience and ignores the importance of
trivial workload operations that are less involved in the routines of end
users.

5. Case study performance evaluation of office desktops using
CpsMark+ in a vendor-neutral tendering

In this section, we aim to demonstrate the effectiveness of CpsMark+
in simulating user experience under office-oriented working scenarios
for better office desktop performance evaluation in practical centralized
procurement. Specifically, in a vendor-neutral tendering of desktop
computers for a Chinese company, the tendering was divided into two
separate batches with different bid evaluation methods. For the second
batch, we combined the original bid evaluation method prepared for
the first batch with benchmark scores from CpsMark+ to formulate a
new bid evaluation method. The original and the new bid evaluation
methods were then independently adopted in the above two tendering
batches, respectively. After one-year use of the wining desktops selected
by the two bid evaluation methods, we independently investigated the
user experience of end users from each tendering batch and collected
their ratings. The results show that the desktops purchased in the
second batch have significantly higher ratings for user experience,
which indicate that the workloads of CpsMark+ can precisely simulate
user experience perceived by end users working in modern office-
oriented scenarios and enable more targeted performance evaluation
for desktops with the above usages.

21

5.1. Brief introduction of tendering

At the beginning of 2020, a large digital marketing agency in China
initialized a centralized procurement to purchase desktop computers
for the employees from a functional department and a business de-
partment, which are denoted as A and B, respectively. For innovating
the traditional tendering policy and validating the effectiveness of
CpsMark+, within each department, the procurement was arranged
as two separate batches of vendor-neutral tendering with different
bid evaluation methods, which are denoted as 1 and 2. The basic
information of the four tendering batches are listed in Table 6. Then
during the next year, the employees of each department were divided
into two groups to use the desktop computers purchased in the two
tendering batches, respectively.

Note that in addition to the bid evaluation methods for final
decision-making among shortlisted alternatives, we also clarified the
minimum technical requirements to preliminarily screen candidates
from all bidders, which were based on the standard and high-
performance configurations in Bitkom’s guideline for IT procurement
[14], i.e., Vendor-neutral Tendering of Desktop Computers.

5.2. Improvement of bid evaluation methods

Main difference between the two tendering batches lay in the bid
evaluation methods, which were adopted by bid evaluation committee
to determine the best bidding product. In this case study, to help au-
thorities purchase desktop computers with better end-user experience
at a certain cost and further validate the effectiveness of CpsMark+, we
decided to partly replace the straightforward hardware-based scoring
rules in the original bid evaluation method with benchmark scores from
CpsMark+ to develop the new bid evaluation method.

5.2.1. The original bid evaluation method

The old bid evaluation method consists of 3 sections with a total of
100 points, i.e., the commercial section, the technical section, and the
price section. The final score for a certain bid is the sum over the score
for each section. Specifically, the score for the commercial section is
the direct sum over the score for each included item (0-1 point per

Y. Zhang and T. Wu

Table 6
Basic information of the four tendering batches.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100084

Tendering batches Purchase quantity End users Primary responsibilities
1A 39 . . .
24 39 Department A (Functional) Supportive market research & analysis
1B 46 . . .
2B 46 Department B (Business) Marketing related service of FMCG
Table 7 score weights for the tendering batches of 2A and 2B are 63 and 70,
The weight of each item within the technical section. respectively
CPU Motherboard Monitor Memory Storage Graphics To calculate the absolute benchmark score from CpsMark+, unlike
1A 15 9 4 11 15 13 the item weights within each section in the original bid evaluation
1B 20 8 7 11 13 18

item). The score for the technical section is the weighted sum over
the score for each included item, which is the weighted average over
ratings for various metrics ranked by the importance (0-1 point per
metric). Detailed information of the items within each section are listed
as follows:

1. Commercial section (3/3 points for 1A/1B)

* Quality of bid response documents.
- Efficiency of logistics and query systems.
* Quality of after-sales service.

2. Technical section (67/77 points for 1A/1B)

CPU. Metrics: craftsmanship, number of cores, base fre-
quency, size of L3 cache, Thermal Design Power.
Motherboard. Metrics: chipset, expansion slots, structure,
BIOS, power supply.

Monitor. Metrics: screen size, resolution, brightness, panel
type, ports.

Memory. Metrics: DDR generations, capacity, operating
frequency, CAS latency.

Storage. Metrics: HDD/SSD, capacity, rotation speed (for
HDD), interface, disk buffer.

Graphics. Metrics: integrated/discrete, craftsmanship, ar-
chitecture, GPU frequency (for discrete graphics).

The score for the jth item is calculated as follows:
00 (151)
J
Z:’il(l - i;_l)
J

where n; is the number of metrics for the jth item, r;(i) is the
rating (0-1 point) for the ith metric of the jth item, w ;s the
weight of the jth item predefined by domain experts, which is
listed in Table 7.
3. Price section (30/20 points for 1A/1B)

The lowest quotation among all the bids that meet the minimum
technical requirements is defined as the Negotiated Base Price
(NBP), then the price section score for a certain bid is the
product of the price coefficient and the ratio of the NBP to its
quotation. The price coefficients for the tendering batches of 1A
and 1B are 30 and 20, respectively.

Score; = w; -

5.2.2. The new bid evaluation method

In terms of the new bid evaluation method for the tendering batches
of 2A and 2B, we introduce benchmark scores from CpsMark+ to re-
place any items related to system performance in the original technical
section, i.e., all the items except for the Monitor item. The weight of the
Monitor item and the weights of the commercial and the price sections
remain constant. To maintain a total score of 100 points, the benchmark

22

method, the weight of the CA/CC module is not predefined by domain
experts from the bid evaluation committee, instead it is assigned as the
average value of the survey results from the real end users of both de-
partments. The weights of the CA/CC module for the tendering batches
of 2A and 2B turn out to be 0.71/0.29 and 0.12/0.88, respectively.
Then the absolute benchmark score from CpsMark+ for each tendering
batch is defined as follows:

where w; is the weight of the ith module, s; is the median score of the
ith module over 5 independent tests on a certain bidding product.

To scale the absolute benchmark score from CpsMark+ for better
reflection of relative performance among various bidding products, we
adopted a similar strategy as in the price section. Specifically, the best
absolute benchmark score among all the bids that meet the minimum
technical requirements is defined as the Negotiated Maximum Perfor-
mance (NMP), then the final benchmark score for a certain bid is the
product of the benchmark score weight and the ratio of its absolute
benchmark score to the NMP. Finally, the score for the new technical
section is the direct sum over the final benchmark score and the score
for the Monitor item.

5.3. Effects of introducing benchmark scores from CpsMark+

To evaluate the effects of introducing benchmark scores from
CpsMark+ as part of the new bid evaluation method, for the winning
bids purchased in the tendering batches of 1A/1B and 2A/2B, we
performed a comparative analysis towards the one-year user experience
rated by the respective end users.

5.3.1. Evaluation protocols of user experience

We first formulated the explicit evaluation protocols for rating
user experience of office desktops in modern office scenarios. The ISO
9241 standard [32] of human—computer interaction defines usability
as “the extent to which a product can be used by specific users to
achieve specified goals with effectiveness, efficiency, and satisfaction in
a specified context of use”. We defined user experience of the winning
bids in a similar way as the usability defined in the ISO 9241 standard.
Since for all the bids that meet the minimum technical requirements,
the effectiveness of the products in fulfilling the tasks specified by the
tenders is guaranteed, we mainly focused on the following two metrics:

(1) Efficiency, i.e., the user-perceived time consumption for soft-
ware and applications to achieve specified goals. The rating is scaled as
“very efficient” (5 points), ‘“somewhat efficient” (4 points), “neutral”
(3 points), “somewhat inefficient” (2 points), or “very inefficient” (1
point).

(2) Smoothness, i.e., the user-perceived overall smoothness in daily
use of software or applications, including jank, launching speed, delay,
and response to instructions. The rating is scaled as “very smooth” (5
points), “somewhat smooth” (4 points), “neutral” (3 points), “some-
what unsmooth” (2 points), or “very unsmooth” (1 point).

In terms of the rating items, we surveyed each department to find
out the software or applications frequently used by most end users

Y. Zhang and T. Wu

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100084

Table 8
The rating items and corresponding weights.
MySQL Excel Power BI Photoshop Premiere After effects Internet explorer =~ Word PowerPoint Lark [33]
1A/2A 0.18 0.19 0.13 0 0 0 0.09 0.16 0.12 0.13
1B/2B 0 0 0 0.22 0.18 0.25 0.14 0.10 0.05 0.06
a. Tendering batch of 1A b. Tendering batch of 2A
5.0 T T T 5.0 T T T
Y S S ARSI R N—
e :
2 ‘ 5 3 2
£ a0y g
E : PO : : 3
3 §enegennantuncan L
e I I Z
C. ! e
; .- ; el
2.5 . T T . 25 ; ; ; ;
2.5 3.0 35 4.0 4.5 5.0 2.5 3.0 3.5 4.0 4.5 5.0
Efficiency Efficiency
c. Tendering batch of 1B d. Tendering batch of 2B
5.0 T T T T
o« i E :
| ' 1 ' ° U
4.57wmwmees frrnananes onanees frorernnes Prrnardenenana oo
s b . s B o
G 40 s S Rl LSRRI emmemenes 6 s SRRt o
£ S £ . | '
g o @ ' : g e
R R e R AR e R
2l 1 i) : 2 H 1
e : s s
L s e e I X1} e frarananasd S
oo,
25 ; i ; : 25 : S 5
2.5 3.0 35 4.0 4.5 5.0 2.5 3.0 35 4.0 4.5 5.0
Efficiency Efficiency

Fig. 6. The distributions of user experience ratings for the winning bids.

within one year after the procurement. Then we gave them differ-
ent weights according to the average hours of use over the entire
department, which are listed in Table 8.

For each tendering batch, i.e., 1A, 2A, 1B, and 2B, we randomly
invited 20 end users from the corresponding group of their department
to independently rate the user experience of the desktop computers
purchased in this tendering batch. The questionnaires adopted for
rating the user experience are similar as CSAT [34]. For each desktop
computer, the total score for each metric of the user experience is the
weighted sum over the metric ratings for all the items.

5.3.2. Evaluation results

The distributions of user experience ratings for the winning bids
from the four tendering batches are shown in Fig. 6. As we can see from
the results, for both metrics of the user experience, the ratings from
all surveyed end users are between 2.5 and 5 points. Specifically, the
ratings for both user experience metrics of the winning bids from the
tendering batches of 1A/1B are mostly between 2.5 and 4 points, while
the ratings from the tendering batches of 2A/2B are mostly between 3
and 4.5 points, which indicates that the user experience of the desktop
computers selected by the new bid evaluation method is improved to
some extent.

Table 9 shows some descriptive statistics of the above user experi-
ence ratings and the average quotation for the desktops purchased from
each tendering batches. For the tendering batches of 1A/2A, the effi-
ciency and the smoothness ratings for the winning bids are 3.51/3.90

23

points and 3.23/3.69 points, with an increase of 11.11% and 14.24%,
respectively. For the tendering batches of 1B/2B, the efficiency and
the smoothness ratings for the winning bids are 3.40/3.93 points and
3.53/3.96 points, with an increase of 15.59% and 12.18%, respectively.

Although the rating results of user experience demonstrate the
effectiveness of CpsMark+ in identifying office desktops with better
user experience under modern office-oriented scenarios, the analy-
sis so far has only told part of the story for evaluating the effects
of introducing benchmark scores from CpsMark+ in centralized pro-
curement, since pricier bids generally tend to deliver better system
performance, which will cause a much higher budget. To this end, we
also consider the average quotation for the winning bids from each
tendering batch, which is 5316/5562 CNY and 6465/6948 CNY for
the tendering batches of 1A/2A and 1B/2B, with an increase of 4.63%
and 7.47%, respectively. Note that in this paper, charges for other
services, e.g., logistics and insurance, are excluded from the average
quotation. Apparently, the higher average quotation of the winning
bids leads to more significant increase of user experience ratings.
This result demonstrates that the new bid evaluation method based
on benchmark scores from CpsMark+ can help authorities select the
bid with better user experience and higher cost-effectiveness in the
centralized procurement of office desktops.

5.3.3. Statistical analysis
In this case study, we randomly selected 20 end users from each
tendering batch for higher survey efficiency and minimizing the rating

Y. Zhang and T. Wu

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100084

Table 9
Descriptive statistics of the user experience ratings and the average quotation for the winning bids.
1A 2A 1B 2B
Efficienc Mean (%) 3.51 (70%) 3.90 (78%) 3.40 (68%) 3.93 (79%)
y 95% confidence interval [3.32-3.71] [3.69-4.10] [3.18-3.61] [3.70-4.15]
Smoothness Mean (%) 3.23 (65%) 3.69 (74%) 3.53 (71%) 3.96 (79%)
95% confidence interval [3.02-3.45] [3.47-3.91] [3.28-3.78] [3.71-4.22]
Average quotation per computer, CNY 5316 5562 6465 6948
Table 10 rating items for user experience evaluation partly overlap with the
Results of the p-value in significance tests (at a 5% significance level). workloads of CpsMark+. Without loss of generality we conduct a
. 5
14 2A 1B 2B comparative analysis to further validate the effectiveness of CpsMark+
Normality 0.8978 0.5410 0.1805 0.5569 in simulating user experience of tested computer systems with respect
Efficiency Homogeneity of variance 08486 0.8741 to software or applications that are not included in its workloads.
Student’s t-test 0.0070 0.0001 . L. .
Specifically, for each rating item that is not adopted as the workload
Normality 0.1643 0.8280 0.6373 0.0643 licati f CpsMark+ llect d it .
Smoothness ~ Homogeneity of variance 0.9769 0.8455 app llca ton o pS- alj ’ Y\le collect an avera.ge. 1ts user experlen(.:e
Student’s t-test 0.0035 0.0165 metrics over the winning bids selected by the original and the new bid

deviation due to the subjective evaluation of user experience. Hence,
we perform further statistical analysis to explore potential significant
changes of user experience ratings within the whole populations from
the tendering batches of 2A/2B. The results of significance tests are
shown in Table 10.

According to the Shapiro-Wilk test, the normality for all the dis-
tributions of user experience ratings is accepted, which indicates that
user experience of the winning bids from each tendering batch is
concentrated within a certain range. Then we conduct a two-tailed
F test to infer the homogeneity of variance between user experience
ratings from 1A and 2A, as well as 1B and 2B. Specifically, all the results
accept the null hypothesis, which is possibly attributed to the similar
responsibilities of employees from the same department.

The results of the student’s t-test also infer a significant change
of user experience ratings within the whole populations from the
tendering batch of 2B. Specifically, the p-value of the student’s t-
test for efficiency ratings from the tendering batches of 1B/2B is just
0.0001, which suggests that a significant change of user experience
perceived by all the employees from the tendering batch of 2B exists
with a large probability. The possible reason is that system performance
of the winning bids from the tendering batch of 2B breaks through
requirement bottleneck of the routine tasks in department B.

5.3.4. User experience of items excluded from CpsMark+
Although we have seen significant improvements in user experience

of the winning bids selected by the new bid evaluation method, the

a. Efficiency

JL B [1|0 [
H L1
Il I

Old | New | Old | New | Od | New | Old | New
MySQL Power BI Internet Explorer Lark

Ratings

evaluation methods, respectively. The results are shown in Fig. 7 and
Table 11.

According to the above results, under the workloads that are not
included in CpsMark+, user experience of the office desktops selected
by the new bid evaluation method also improves by varying degrees.
For example, in terms of heavy workloads, the average ratings for
efficiency and smoothness of MySQL increase by 22.95% and 26.56%,
respectively. The similar trend of user experience improvement is also
observed with respect to more lightweight workloads, e.g., Power BI,
Internet Explorer, and Lark. These results suggest that the workloads of
CpsMark+ are sufficiently representative for simulating user experience
of tested computer systems perceived under a wide range of workloads.

6. Conclusions

This paper presents CpsMark+, a scenario-oriented benchmark sys-
tem that quantitively evaluates the overall performance of office desk-
tops in centralized procurement. Considering the proposed challenges
in benchmarking desktops under practical usage scenarios for cen-
tralized procurement, the workloads of CpsMark+ are designed to be
scenario-oriented and can simulate user experience of tested computer
systems perceived by end users working in modern-office scenarios.
The metrics testing and the scoring methodology are flexibly adjusted
based on each individual workload. Extensive experiments on multi-
ple real-world tested computer systems demonstrate high sensitivity
and repeatability of benchmark scores from CpsMark+, compared to
SYSmark 2018 and PCMark 10. From the perspective of end users,

b. Smoothness

[] [1L
u! L1
I

Od | New | Old | New | Old | New | old New
MySQL Power BI Internet Explorer Lark

—

Ratings

)

Fig. 7. User experience ratings for software or applications absent in CpsMark+.

Table 11
Average user experience ratings for software or applications absent in CpsMark+.
MySQL Power BI Internet Explorer Lark
Efficienc Old bid evaluation method 3.05 3.50 3.43 4.20
v New bid evaluation method 3.75 3.80 3.60 4.28
Smoothness Old bid evaluation method 3.20 3.55 3.20 3.98
New bid evaluation method 4.05 3.95 3.55 4.30

24

Y. Zhang and T. Wu

in a practical centralized procurement of office desktops, by replac-
ing the original bid evaluation method with benchmark scores from
CpsMark+ and comparing user experience ratings for the winning bids
selected by the two bid evaluation methods, we also demonstrate
the effectiveness of using CpsMark+ to simulate user experience of
tested systems in modern-office scenarios for better evaluation of office
desktop performance in centralized procurement.

Our work provides a general idea to design computer benchmarks
used in other usage scenarios and helps further explore the benefits of
introducing benchmark scores in traditional bid evaluation methods for
centralized procurement of office desktops. In the future, we will focus
on designing parallel workloads that contain more complex interactions
and involving other metrics, e.g., battery life or energy efficiency.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by the National Key R&D Program of
China under grant number 2018YFF0212106. We are thankful to the
purchasing manager in the centralized procurement and all the employ-
ees that participated in the user experience survey.

References

[1] U. Norf, The role of benchmarks in the public procurement of computers, 2019,
https://www.intel.co.uk/content/dam/www/public/us/en/documents/white-
papers/role-of-benchmarks-white-paper.pdf.

S.M. Pieper, J.M. Paul, M.J. Schulte, A new era of performance evaluation,
Computer 40 (9) (2007) 23-30.
Release of CpsMark 1.0,
.YWL709pBxPa.

SYSmark 2018, 2018, https://bapco.com/products/sysmark-2018/.

PCMark 10, 2017, https://benchmarks.ul.com/pcmark10.

Phoronix test system, 2022, https://www.phoronix-test-system.com/.

A. Martin, V. Marangozova-Martin, Automatic benchmark profiling through ad-
vanced trace analysis, in: European Conference on Parallel Processing, Springer,
Cham, 2016, pp. 63-74.

3Dmark, 2022, https://benchmarks.ul.com/3dmark.

J. Bucek, K.D. Lange, J.v. Kistowski, SPEC CPU2017: Next-generation compute
benchmark, in: Companion of the 2018 ACM/SPEC International Conference on
Performance Engineering, 2018, pp. 41-42.

S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, A. Gupta, The SPLASH-2 programs:
Characterization and methodological considerations, ACM SIGARCH Comput.
Archit. News 23 (2) (1995) 24-36.

J.D. McCalpin, Stream benchmark, 1995, Link: www.cs.virginia.edu/stream/ref.
html#what, 22(7).

L.W. McVoy, C. Staelin, Lmbench: Portable tools for performance analysis, in:
USENIX Annual Technical Conference, 1996, pp. 279-294.

G. Lu, X. Lin, R. Zhou, Mbench: Benchmarking a multicore operating system
using mixed workloads, in: BPOE, Springer, Cham, 2015, pp. 50-63.

F. Felicia, Vendor-neutral tendering of desktop computers, 2019, https:
//www.itk-beschaffung.de/sites/beschaffung/files/2021-03/200128_1f vendor-
neutral-tendering-of-desktop-computers_en.pdf.

[2]

[3] 2014, https://read01.com/4aAj54.html#

[4]
[5]

[6]
[7]

[8]
[9]

[10]

[11]
[12]
[13]

[14]

25

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100084

[15] A. Tarvo, S.P. Reiss, Using computer simulation to predict the performance of
multithreaded programs, in: Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering, 2012, pp. 217-228.

S. Mittal, J.S. Vetter, A survey of CPU-GPU heterogeneous computing techniques,
ACM Comput. Surv. 47 (4) (2015) 1-35.

Y. Wang, V. Lee, G.Y. Wei, D. Brooks, Predicting new workload or CPU
performance by analyzing public datasets, ACM Trans. Archit. Code Optim.
(TACO) 15 (4) (2019) 1-21.

S. Vagstad, Centralized vs. decentralized procurement: Does dispersed informa-
tion call for decentralized decision-making? Int. J. Ind. Organ. 18 (6) (2000)
949-963.

K. Huppler, The art of building a good benchmark, in: Technology Conference on
Performance Evaluation and Benchmarking, Springer, Berlin, Heidelberg, 2009,
pp. 18-30.

J. v. Kistowski, J.A. Arnold, K. Huppler, K.D. Lange, J.L. Henning, P. Cao,
How to build a benchmark, in: Proceedings of the 6th ACM/SPEC International
Conference on Performance Engineering, 2015, pp. 333-336.

U. Gordon, PCWorld, in: AMD Accuses BAPCo and Intel of Cheating with
Sysmark Benchmarks, 2016, https://www.pcworld.com/article/419213/amd-
accuses-bapco-and-intel-of-cheating-with-sysmark-benchmarks.html.

Y. Chen, F. Raab, R. Katz, From tpc-c to big data benchmarks: A functional work-
load model, in: Specifying Big Data Benchmarks, Springer, Berlin, Heidelberg,
2012, pp. 28-43.

In-depth research of China office software market, 2021, http://www.chinaiern.
com/baogao/scbg/2953763.shtml?bd_vid=6645286086633733527.

A. Crolotte, Issues in benchmark metric selection, in: Technology Conference on
Performance Evaluation and Benchmarking, Springer, Berlin, Heidelberg, 2009,
pp. 146-152.

T. Nguyen, P. Calyam, R.B. Antequera, Benchmarking in virtual desktops for end-
to-end performance traceability, in: 2015 IFIP/IEEE International Symposium on
Integrated Network Management, IM, IEEE, 2015, pp. 1268-1273.

S. Taheri, L.A. Beni, A.V. Veidenbaum, A. Nicolau, R. Cammarota, J. Qiu...,
M.R. Haghighat, WebRTCbench: a benchmark for performance assessment of
webRTC implementations, in: 2015 13th IEEE Symposium on Embedded Systems
for Real-Time Multimedia (ESTIMedia), IEEE, 2015, pp. 1-7.

B. Daniel, Q. Luo, M. Mirzaaghaei, D. Dig, D. Marinov, M. Pezze, Automated
GUI refactoring and test script repair, in: Proceedings of the First International
Workshop on End-To-End Test Script Engineering, 2011, pp. 38-41.

T.E. Vos, P.M. Kruse, N. Condori-Fernidndez, S. Bauersfeld, J. Wegener, Testar:
Tool support for test automation at the user interface level, Int. J. Inf. Syst.
Model. Des. (IJISMD) 6 (3) (2015) 46-83.

R. Rivest, The MD5 message-digest algorithm (No. rfc1321), 1992.

P.J. Fleming, J.J. Wallace, How not to lie with statistics: the correct way to
summarize benchmark results, Commun. ACM 29 (3) (1986) 218-221.

A.G. Bedeian, K.W. Mossholder, On the use of the coefficient of variation as a
measure of diversity, Organ. Res. Methods 3 (3) (2000) 285-297.

T. Jokela, N. Iivari, J. Matero, M. Karukka, The standard of user-centered design
and the standard definition of usability: analyzing ISO 13407 against ISO 9241-
11, in: Proceedings of the Latin American Conference on Human-Computer
Interaction, 2003, pp. 53-60.

Lark, 2022, https://www.larksuite.com.

V. Mittal, C. Frennea, Customer Satisfaction: A Strategic Review and Guide-
lines for Managers, in: MSI Fast Forward Series, Marketing Science Institute,
Cambridge, MA, 2010.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

Yue Zhang born in 1995, research assistant. His main research includes IT benchmarks,
Alops. Now he is a Ph.D. candidate in Renmin University of China.

Tong Wu born in 1975, associate research fellow. His main research includes IT
benchmarks, computer architecture and EMC. Now he works in National Institute of
Metrology, China.

https://www.intel.co.uk/content/dam/www/public/us/en/documents/white-papers/role-of-benchmarks-white-paper.pdf
https://www.intel.co.uk/content/dam/www/public/us/en/documents/white-papers/role-of-benchmarks-white-paper.pdf
https://www.intel.co.uk/content/dam/www/public/us/en/documents/white-papers/role-of-benchmarks-white-paper.pdf
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb2
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb2
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb2
https://read01.com/4aAj54.html#.YWL7O9pBxPa
https://read01.com/4aAj54.html#.YWL7O9pBxPa
https://read01.com/4aAj54.html#.YWL7O9pBxPa
https://bapco.com/products/sysmark-2018/
https://benchmarks.ul.com/pcmark10
https://www.phoronix-test-system.com/
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb7
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb7
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb7
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb7
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb7
https://benchmarks.ul.com/3dmark
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb9
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb9
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb9
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb9
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb9
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb10
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb10
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb10
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb10
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb10
http://www.cs.virginia.edu/stream/ref.html#what
http://www.cs.virginia.edu/stream/ref.html#what
http://www.cs.virginia.edu/stream/ref.html#what
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb12
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb12
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb12
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb13
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb13
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb13
https://www.itk-beschaffung.de/sites/beschaffung/files/2021-03/200128_lf_vendor-neutral-tendering-of-desktop-computers_en.pdf
https://www.itk-beschaffung.de/sites/beschaffung/files/2021-03/200128_lf_vendor-neutral-tendering-of-desktop-computers_en.pdf
https://www.itk-beschaffung.de/sites/beschaffung/files/2021-03/200128_lf_vendor-neutral-tendering-of-desktop-computers_en.pdf
https://www.itk-beschaffung.de/sites/beschaffung/files/2021-03/200128_lf_vendor-neutral-tendering-of-desktop-computers_en.pdf
https://www.itk-beschaffung.de/sites/beschaffung/files/2021-03/200128_lf_vendor-neutral-tendering-of-desktop-computers_en.pdf
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb15
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb15
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb15
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb15
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb15
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb16
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb16
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb16
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb17
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb17
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb17
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb17
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb17
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb18
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb18
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb18
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb18
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb18
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb19
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb19
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb19
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb19
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb19
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb20
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb20
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb20
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb20
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb20
https://www.pcworld.com/article/419213/amd-accuses-bapco-and-intel-of-cheating-with-sysmark-benchmarks.html
https://www.pcworld.com/article/419213/amd-accuses-bapco-and-intel-of-cheating-with-sysmark-benchmarks.html
https://www.pcworld.com/article/419213/amd-accuses-bapco-and-intel-of-cheating-with-sysmark-benchmarks.html
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb22
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb22
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb22
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb22
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb22
http://www.chinaiern.com/baogao/scbg/2953763.shtml?bd_vid=6645286086633733527
http://www.chinaiern.com/baogao/scbg/2953763.shtml?bd_vid=6645286086633733527
http://www.chinaiern.com/baogao/scbg/2953763.shtml?bd_vid=6645286086633733527
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb24
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb24
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb24
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb24
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb24
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb25
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb25
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb25
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb25
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb25
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb26
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb26
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb26
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb26
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb26
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb26
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb26
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb27
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb27
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb27
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb27
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb27
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb28
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb28
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb28
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb28
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb28
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb29
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb30
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb30
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb30
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb31
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb31
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb31
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb32
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb32
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb32
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb32
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb32
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb32
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb32
https://www.larksuite.com
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb34
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb34
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb34
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb34
http://refhub.elsevier.com/S2772-4859(23)00001-7/sb34

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100087

Contents lists available at ScienceDirect
BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

KeAi

CHINESE ROOTS
GLOBAL IMPACT

KeAi

BenchCouncil Transactions
on Benchmarks, Standards

and Evaluations

Research Article

Optimizing the sparse approximate inverse preconditioning algorithm on n

GPU™
Xinyue Chu, Yizhou Wang, Qi Chen, Jiaquan Gao "

Check for
updates

Jiangsu Key Laboratory for NSLSCS, School of Computer and Electronic Information, Nanjing Normal University, Nanjing 210023, China

ARTICLE INFO ABSTRACT

Keywords:

Sparse approximate inverse
Preconditioning

CUDA

GPU

In this study, we present an optimization sparse approximate inverse (SPAI) preconditioning algorithm on GPU,
called GSPAI-Opt. In GSPAI-Opt, it fuses the advantages of two popular SPAI preconditioning algorithms, and
has the following novelties: (1) an optimization strategy is proposed to choose whether to use the constant
or non-constant thread group for any sparse pattern of the preprocessor, and (2) a parallel framework of

optimizing the SPAI preconditioner is proposed on GPU, and (3) for each component of the preconditioner,
a decision tree is established to choose the optimal kernel of computing it. Experimental results validate the

effectiveness of GSPAI-Opt.

1. Introduction

Given their many-core structures, graphic processing units (GPUs)
have become an important resource for scientific computing in re-
cent years. Following the introduction of the programming interfaces
such as the compute unified device architecture (CUDA) by NVIDIA
in 2007 [1], GPUs have been increasingly used as tools for high-
performance computation in many fields [2-8].

Sparse approximate inverse (SPAI) preconditioners based on the
Frobenius norm minimization have proven to be effective in improv-
ing the convergence of iterative methods based on Krylov subspaces,
e.g., the generalized minimal residual method (GMRES) [9] and the
biconjugate gradient stabilized method (BiCGSTAB) [10]. However,
due to the high cost of constructing the SPAI preconditioners, many
researchers have attempted to accelerate the SPAI preconditioner con-
struction on GPU. Gao et al. follow Chow’s work [11], and use a
sparse approximate inverse of A as the preconditioner in [12]. Rupp
et al. [13] show several static and dynamic SPAI implementations on
GPU. In [14], Dehnavi et al. propose a static SPAI preconditioner on
GPU called GSAL Recently, He and Gao et al. [15] propose a GPU-based
static SPAI preconditioning algorithm called SPAI-Adaptive, and verify
the effectiveness of SPAI-Adaptive for large-scale matrices. However,
when the number of nonzero entries in each column of the precondi-
tioner has significant difference, the performance of SPAI-Adaptive is
greatly decreased. Furthermore, He and Gao et al. [16] present a sorted
static SPAI preconditioning algorithm, called GSPAI-Adaptive, in order
to avoid the drawback of SPAI-Adaptive.

SPAI-Adaptive and GSPAI-Adaptive both can be applied to large-
scale matrices, and have their own advantages. When the difference

in the nonzero number of each column of the preconditioner is small,
the performance of SPAI-Adaptive is generally better than that of
GSPAI-Adaptive; when the nonzero number of each column of the
preconditioner has significant difference, SPAI-Adaptive has worse per-
formance than GSPAI-Adaptive. For example, assuming that n2, is the
nonzero number of the kth column of the preconditioner, n2max =
max, {n2,}, and n2avg = Y;_, n2;/n, where n is the row number of
the preconditioner, we take two integers « and f, which satisfy 2%~! <
m2max < 2% and 277! < m2max < 2P, respectively. If « = S, we
say that the difference in the nonzero number of each column of the
preconditioner is small; if « — # > 3, we say that the nonzero number of
each column of the preconditioner has significant difference. However,
when the difference is large but not significant, which one of SPAI-
Adaptive and GSPAI-Adaptive has better performance? For example,
1 < a — f < 3. There are no conclusions in [15,16].

Inspired by these observations, we further investigate how to highly
optimize the static SPAI on GPU in this paper. Utilizing the advantages
of SPAI-Adaptive and GSPAI-Adaptive, we propose an optimized SPAI
preconditioning algorithm on GPU, called GSPAI-Opt. Compared to
SPAI-Adaptive and GSPAI-Adaptive, the proposed algorithm has the
following distinct characteristics:

« First, an optimization strategy is presented. Using this strategy,
for a given sparsity pattern of the preconditioner, we can obtain
the optimization scheme of choosing whether to use the constant
or nonconstant thread-group size to calculate the preconditioner.

+ Second, when the constant thread-group size is applied, for each
one of main components of the preconditioner such as finding in-
dices I and J, constructing the local submatrix, decomposing the

™ The research has been supported by the Natural Science Foundation of China under grant number 61872422.

* Corresponding author.

E-mail addresses: 2316607219@qq.com (X. Chu), 1966224230@qq.com (Y. Wang), 1337223917 @qq.com (Q. Chen), springf12@163.com (J. Gao).

https://doi.org/10.1016/j.tbench.2023.100087

Received 11 October 2022; Received in revised form 26 February 2023; Accepted 26 February 2023

Available online 3 March 2023

2772-4859/© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.tbench.2023.100087
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2023.100087&domain=pdf
mailto:2316607219@qq.com
mailto:1966224230@qq.com
mailto:1337223917@qq.com
mailto:springf12@163.com
https://doi.org/10.1016/j.tbench.2023.100087
http://creativecommons.org/licenses/by-nc-nd/4.0/

X. Chu, Y. Wang, Q. Chen et al.

(Load 4, Sparsity Mode of M)

‘ GPU: Compute di i ‘

First strategy ‘ Second strategy

‘ GPU: Sort n2,in descending order ‘

aBels [y dSn-a4d

‘ CPU: Thread-adaptive allocation strategy ‘ CPU: Thread-adaptive allocation strategy (sort) ‘

‘ CPU: Allocate GPU global memory ‘

‘ CPU: Allocate GPU global memory
L

‘ GPU: Find indices J and / by nonconst-threads ‘

‘ GPU: Find indices J and / by const-threads
L

‘ GPU: Construct 4 by const-threads ‘ GPU: Construct 4 by nonconst-threads ‘

‘ GPU: Decompose 4 to OR by const-threads ‘ GPU: Decompose 4 to OR by nonconst-threads ‘

‘ GPU: Obtain m, by mi = ® '0"¢ nonconst-threads ‘

T
[GPU: Assemble MP1r |

[GPU: Obtain m, by m = R 0" e: const-threads

[GPU: Assemble MData, Mindex |

a3e1s JFdSD-1504 98eIS [YJ§D-amduio))

C Output M)

Fig. 1. Parallel framework of GSPAI-Opt.

local submatrix into QR, and solving the upper triangular linear
system, a decision tree is established to choose the optimization
kernel of calculating it.

Third, when using the nonconstant thread-group size, for each
one of some components of the preconditioner such as decom-
posing the local submatrix into QR and solving the upper trian-
gular linear system, a decision tree is constructed to choose the
optimization kernel to calculate it.

Finally, GSPAI-Opt can apply to any sparsity pattern of the pre-
conditioner, not just the same sparsity pattern as A.

The experimental results show that GSPAI-Opt is effective, and effi-
ciently fuses the advantages of SPAI-Adaptive and GSPAI-Adaptive, and
outperforms the static SPAI preconditioning algorithm in the ViennaCL
library [13], the recent SPAI-Adaptive [15] and GSPAI-Adaptive [16].

2. Optimizing SPAI on GPU

We present an optimization sparse approximate inverse precondi-
tioning algorithm on GPU, called GSPAI-Opt. Fig. 1 lists the parallel
framework of GSPAI-Opt, which is composed of the following stages.

+ Pre-GSPAI stage: Compute the dimensions, choose whether to
allocate the constant thread-group size or nonconstant thread-
group size for each column of the preconditioner according to the
proposed optimization strategy, and allocate the global memory
of GPU;

+ Compute-GSPAI stage: Find indices J; and I, construct local
submatrix A,, decompose A, into Q,R,, and solve R, = ore,;

+ Post-GSPAI stage: Assemble the preconditioner M in the com-
pressed sparse column (CSC) storage format.

Based on the sparsity pattern of the preconditioner, when the thread
allocation strategy with the constant thread-group size is more suit-
able for computing the preconditioner, the thread-adaptive allocation
strategy (First strategy) proposed in [15] is adopted; otherwise, the
thread-adaptive allocation strategy with the nonconstant thread-group
size (Second strategy) proposed in [16] is utilized. Given a matrix,
should we use the first strategy or the second strategy? Here we present
a selection method, whose main procedure is shown in Fig. 2.

Let us illustrate the selection method in Fig. 2 by apache2. For
apache2, we have n2max = 8 and n2avg = 6.74. Obviously, n2max,
n2avg € (22,2%], and @« = § = 3. Based on the selection method in
Fig. 2, the first strategy is chosen.

27

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100087
Input n2,, n >

‘ Compute n2max = max{n2,}, n2avg = > n2,/n ‘

‘ Compute o= min(/,8), / satisfying 2"'< n2max <=2' ‘

‘ Compute 3= min(/,8), / satisfying 2"'< n2avg <=2/ ‘

‘ Compute col1, number of columns satisfying n2, >2"" ‘

N

‘ Compute col2, number of columns satisfying n2, >2"" ‘

‘ First strategy ‘ ‘ Second strategy ‘
[J

Output the chosen strategy

Fig. 2. Main procedure of selecting the First/Second strategy.

2.1. Pre-GSPAI stage

First, we compute the dimensions of all local submatrices. When
computing m; (one column of M), k = 1,2,...,n, the dimensions of
the local submatrices (nl;, n2;) constructed for each column of the
preconditioner are usually different. To simplify the accesses of data in
the memory and enhance the coalescence, the dimensions of all local
submatrices are uniformly defined as (nlmax, n2max). Here nlmax
max, {nl,} and n2max = max, {n2;}.

Next, we choose whether to use the constant or nonconstant thread-
group size for each column of the preconditioner. GSPAI-Opt fuses
the advantages of SPAI-Adaptive [15] and GSPAI-Adaptive [16]. For
SPAI-Adaptive, a thread-adaptive allocation strategy with the con-
stant thread-group size is presented, and for GSPAI-Adaptive, a thread-
adaptive allocation strategy with the nonconstant thread-group size is
presented. For the convenience of readers, in the following contents,
we introduce them respectively.

Thread-adaptive allocation strategy with the constant thread-
group size: The optimized number of threads ¢ is obtained by the
following formula:

€8]

q = min(2°, nt),
s.t.

2571 < n2max < 25.

@

Here nt is the number of threads per block, and ¢ threads are grouped
into a thread group.

Thread-adaptive allocation strategy with the nonconstant thread-
group size: First, for each n2;, k = 1,2, ..., n, the number of threads ¢
assigned to the kth column of the preconditioner is computed by the
following formula:

3

gy = min(2’, nf),
s.t.

27l <2, <28

C)

Second, all ¢, values are sorted in descending order. Finally, the
thread-group size of each block is assigned by the procedure shown
in Fig. 3.

X. Chu, Y. Wang, Q. Chen et al.

Input: g, nt, n

Output: WSize, BCol, blocks

01. i< 0; blocks — 0; BCol[0] < 0;
02. while i<n

03. WSize[blocks] «— q[i];
04. i += nt/WSize[blocks];
05. blocks++;

06. BCol[blocks] < i;

07. end while

Fig. 3. Main procedure of assigning the thread-group size.

Table 1

Arrays used in GSPAI-Opt.

Array Size Type Array Size Type
AData nonzeros double m ns x n2max double
Alndex nonzeros integer A ns X nlmax X n2max double
APtr n integer R ns X n2max X n2max double
RCol n integer 1 ns X nlmax integer
atomic n integer iPTR ns integer
WSize blocks integer J ns X n2max integer
BCol blocks integer JPTR ns integer

Finally, we allocate global memory for arrays in Table 1, and RCol,
BCol, and WSize values are transferred to the GPU global memory if the
second strategy is applied.

2.2. Compute-GSPAI stage

Finding indices: This part is to find indices J and I by the con-
stant/nonconstant thread-group size.

(1) Finding J and I by the constant thread-group size: In this case,
the thread-group size that is used to find J and I is same in all blocks.
For the kernel that finds J, the threads inside each thread group read
one column of the sparsity pattern M in parallel and store them to one
subset of J. And then on this basis of J, we implement the construction
of I. We establish a decision tree to find I based on the GPU feature
parameters. Utilizing the decision tree, an optimized kernel for finding
I is obtained for any given n2max and nlmax. Assume that the threads
per block are 256 and NIVIDA GTX1070 GPU is used, Fig. 4 shows
a segment of the decision tree for finding I. Here sharedSize
number of columns of the preconditioner computed in a thread block
X upper boundary closest to nlmax. For example, when nlmax < 8,
sharedSize = 32 x 8 and cuFindIBySharedMemory kernel with shared
memory of 256 size is used. In the cuFindIBySharedMemory kernel,
each thread group finds one subset of I, e.g., I, which mainly includes
the following steps. First, the threads in the thread group load the row
indices of the first column referenced in one subset of J, e.g., J;, to
shared memory sI. Second, the index vectors of successive columns
referenced by J, are compared in parallel with values in s/ and new
indices are appended to s/ by utilizing the atomic operations. Third,
inside the thread group, the indices of sI are sorted in ascending order
in parallel. Finally, the indices of sI are copied to I;. cuFindI kernel is
similar to cuFindIBySharedMemory kernel except that the operations
are executed on global memory instead of shared memory.

(2) Finding J and I by the nonconstant thread-group size: The
thread-group size of finding J and I is same in a block while it is
usually different for different blocks. For the kernel that finds J, the
threads inside each thread group read one column of the sparsity
pattern M in parallel and store them to one subset of J. The main
procedure of the kernel that finds I is as same as that in [16]. Each
thread group is assigned to find one subset of I, e.g., I;, which includes
the following three stages. In the first stage, the thread group obtains
the thread-group size warpSize. In the second stage, the row indices

28

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100087

n2max <= 47

N

cuFindIBySharedMemory
warpSize = 8, sharedSize = 256

cuFindIBySharedMemory
warpSize = 8, sharedSize = 512

cuFindIBySharedMemory
warpSize = 8, sharedSize = 8192

cuFindI
warpSize =8

Ty

n2max <= 8?7

Fig. 4. A segment of the decision tree of using constant threads to find 1.

of the first column referenced in J, are first loaded into I,, and the
row index vectors of successive columns that are referenced by J,
are calculated in parallel with values in I,, and the new indices are
appended to I, by utilizing the atomic operations. In the third stage,
the indices in I, are sorted in ascending order in parallel.

Constructing the local submatrix: Using J and I obtained above,
the local submatrix set, A, is computed by the constant/nonconstant
thread-group size.

(1) Constructing the local submatrix by the constant thread-group
size: Each thread group is assigned to compute one subset of 4, e.g., A o
and all thread groups are the same size. Based on the GPU feature
parameters, we establish a decision tree for constructing A. For any
given n2max and nlmax, an optimized kernel for constructing A is
achieved by using the decision tree. For example, on NIVIDA GTX1070
GPU, assume that the threads per block are 256, Fig. 5 shows a
segment of the decision tree for constructing A. When 4 < n2max < 8,
corresponding to different nlmax, cuComputeTildeABySharedMemory
kernel with shared memory of sharedSize size and cuComputeTildeA
kernel with non shared memory are selected. The main procedure
of cuComputeTildeABySharedMemory kernel is listed as follows. For
the thread group that calculates Xk, all threads in the thread group
first read values in I, into shared memory sI in parallel, and A, is
established on the global memory by loading columns that are indexed
by J, and matching them to sI in parallel. cuComputeTildeA kernel
is similar to cuComputeTildeABySharedMemory kernel except that I is
executed on global memory instead of shared memory.

(2) Constructing the local submatrix by the nonconstant thread-
group size: In this case, each thread group is assigned to calculate one
subset of A, e.g., A\k, and the thread-group size is same in a block but it
can be different for different block. The main procedure of the kernel
that constructs A is as same as that in [16].

Decomposing the local submatrix into QR: This part is used to
decompose the local submatrix into QR by the constant/nonconstant
thread-group size.

(1) Decomposing the local submatrix into QR by the constant
thread-group size: The thread-group size of decomposing the local
submatrix into QR is same in all blocks. Based on the GPU feature
parameters, we establish a decision tree for decomposing the local
submatrix into QR. For example, on NIVIDA GTX1070 GPU, assume
that the threads per block are 256, Fig. 6 shows a segment of the
decision tree for decomposing the local submatrix into QR. When
4 < m2max < 8, two shared memories shared R and sharedQ are

X. Chu, Y. Wang, Q. Chen et al.

n2max <= 47

N

cuComputeTildeABySharedMemory
warpSize = 8, sharedSize = 256

cuComputeTildeABySharedMemory
warpSize = 8, sharedSize = 512

cuComputeTildeABySharedMemory
warpSize = 8, sharedSize = 8192

cuComputeTildeA
warpSize =8

Ty

n2max <= 8?7

Fig. 5. A segment of the decision tree of using constant threads to construct A.

n2max <=4?

N

cuQRByQRSharedMemory
‘ warpSize = 8, sharedR = 256, sharedQ =256 ‘

N ! ‘ cuQRByQRSharedMemory
‘ warpSize = 8, sharedR = 256, sharedQ = 512 ‘

\ cuQRByQRSharedMemory |
| warpSize = 8, sharedR = 256, sharedQ = 4096 |

cuQRByRSharedMemory
‘ warpSize = 8, sharedR = 256 ‘

Ty

n2max <= 8?

Fig. 6. A segment of the decision tree of using constant threads to decompose the
local submatrix into QR.

used in the optimized kernel. Here the size of sharedQ is related to
nlmax. In the cuQRByQRSharedMemory kernel, each thread group is
responsible for one QR decomposition. In a thread group, the local
submatrix, e.g., Xk, is decomposed into QR by the following four steps
at each iteration i. In the first step, the threads read the ith column
of O, into shared memory sQ in parallel. In the second step, the ith
row of the upper triangle matrix R, are computed in parallel and are
put into shared memory sR. In the third step, the column i of Q,
and sQ are concurrently normalized, and the projection factors R
and sR are calculated. In the fourth step, the values of all columns
of Q, are updated by using shared memory sQ and sR in parallel.
cuQRByRSharedMemory kernel is similar to cuQRByQRSharedMemory
kernel except the shared memory sQ is not utilized.

(2) Decomposing the local submatrix into QR by the nonconstant
thread-group size: The thread-group size of decomposing the local
submatrix into QR is same in a block while it is usually different
for different blocks. We establish a decision tree for decomposing the
local submatrix into QR. For example, on NIVIDA GTX1070 GPU, the
decision tree for decomposing the local submatrix into QR is shown

29

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100087

cuSortedQRByRSharedMemory
sharedR = 256

! cuSortedQRByRSharedMemory
: sharedR = 512

cuSortedQRByRSharedMemory
sharedR = 2048

cuSortedQR \

Fig. 7. Decision tree of using nonconstant threads to decompose the local submatrix
into QR.

cuSolverBySharedMemory
warpSize = 2, sharedSize = 256

! cuSolverBySharedMemory
: warpSize = 4, sharedSize = 256

cuSolverBySharedMemory
warpSize = 128, sharedSize =256

cuSolverBySharedMemory
warpSize = 256, sharedSize =256

Fig. 8. Decision tree of using constant threads to solve the upper triangular linear
system.

in Fig. 7 when the threads per block are 256. Obviously, utilizing
the decision tree, an optimized kernel cuSortedQRByRSharedMemory
corresponding to shared memory of shared R size or cuSortedQR kernel
is chosen for a given n2max value. The main procedure of cuSort-
edQRByRSharedMemory kernel is as same as that in [16]. cuSortedQR
kernel is similar to cuSortedQRByRSharedMemory kernel except that
the shared memory sR is not utilized.

Solving the upper triangular linear system: The values of 7, =
R;' QZeAk are computed by the constant/nonconstant thread-group size.

(1) Solving the upper triangular linear system by the constant
thread-group size: Each thread group computes one subset of 7 by
solving an upper triangular linear system, and the thread-group size
is same in all blocks. In this case, assume that the threads per block are
256, the decision tree for solving the upper triangular linear system
is shown in Fig. 8. For any given n2max value, an optimized kernel,
cuSolverBySharedMemory with shared memory of 256 size and thread-
group size of warpSize, is chosen. In the cuSolverBySharedMemory
kernel, each thread group calculates a subset of 7, e.g., my, and its
procedure includes two steps. First, Calculate QZé‘k in parallel and save
the result to the shared memory xE. Second, the values of i, are
obtained by solving the upper triangular linear system R, = xE, in
parallel.

(2) Solving the upper triangular linear system by the nonconstant
thread-group size: Each thread group is responsible for obtaining a
subset of 1 by solving an upper triangular linear system, and the thread-
group size is same inside a block but it can be different for different
blocks. A decision tree is established to solve the upper triangular
linear system. For example, Fig. 9 lists the decision tree for solving
the upper triangular linear system on NIVIDA G