[] 00000000
BenchGouncil

Volume 3, Issue 4

Transactions 2023

on Benchmarks, Standards and Evaluations

Original Articles

© A pluggable single-image super-resolution algorithm

based on second-order gradient loss
Shuran Lin, Chunjie Zhang, Yanwu Yang

© CloudAlISim: A toolkit for modelling and simulation of
modern applications in Al-driven cloud computing

environments
Abhimanyu Bhowmik, Madhushree Sannigrahi,

Deepraj Chowdhury, Ajoy Dey, Sukhpal Singh Gill

© Characterizing and understanding deep neural network
batching systems on GPUs
Feng Yu, Hao Zhang, Ao Chen, Xueying Wang, ... Xiaobing Feng

© AIGCBench: Comprehensive evaluation of image-to-video

content generated by Al
Fanda Fan, Chunjie Luo, Wanling Gao, Jianfeng Zhan

© Benchmarking ChatGPT for prototyping theories: Experi-

mental studies using the technology acceptance model
Tiong-Thye Goh, Xin Dai, Yanwu Yang

\\\\ ‘\

ISSN: 2 DS —
Copynght@ 2024 Internatlo

u‘(BinchCounmI) spon-

sored by T Chinese A my of Sciences. Publis =N V*Eﬂsewer B.V.
on beh yotlons Coy : \

pen Benchmar

BenchCouncil Transactions on Benchmarks, Standards and
Evaluations (TBench) is an open-access multi-disciplinary
journal dedicated to benchmarks, standards, evaluations,
optimizations, and data sets. This journal is a peer-reviewed,
subsidized open access journal where The International Open
Benchmark Council pays the OA fee. Authors do not have to
pay any open access publication fee. However, at least one of
the authors must register BenchCouncil International
Symposium on Benchmarking, Measuring and Optimizing

(Bench) (https://www.benchcouncil.org/bench/) and present

their work. It seeks a fast-track publication with an average

turnaround time of one month.

CONTENTS

A pluggable single-image super-resolution algorithm based on second-order gradient

loss
Shuran Lin’ Chunjie Zhang, Yanwu Yang .. 1

CloudAlSim: A toolkit for modelling and simulation of modern applications in Al-

driven cloud computing environments
Abhimanyu Bhowmik, Madhushree Sannigrahi, Deepraj Chowdhury,
Ajoy Dey7 Sukhpa| Smgh I T, 10

Characterizing and understanding deep neural network batching

systems on GPUs
Feng YU, Hao Zhang1 Ao Chen’ Xueying Wang1 Xiaobing Feng .. 22

AIGCBench: Comprehensive evaluation of image-to-video content

generated by Al
Fanda Fan, Chunjie Luo, Wan"ng Gao, Jianfeng AN e e 34

Benchmarking ChatGPT for prototyping theories: Experimental studies using the

technology acceptance model
Tiong_Thye Goh, Xin Dai, Yanwu Y AN v e e e e 44

Cyril
 CONTENTS

Cyril
A pluggable single-image super-resolution algorithm based on second-order gradient

 loss

Shuran Lin, Chunjie Zhang, Yanwu Yang··1

CloudAISim: A toolkit for modelling and simulation of modern applications in AI-

driven cloud computing environments

Abhimanyu Bhowmik, Madhushree Sannigrahi, Deepraj Chowdhury,

Ajoy Dey, Sukhpal Singh Gill··10

Characterizing and understanding deep neural network batching

systems on GPUs

Feng Yu, Hao Zhang, Ao Chen, Xueying Wang, ... Xiaobing Feng··22

AIGCBench: Comprehensive evaluation of image-to-video content

generated by AI

Fanda Fan, Chunjie Luo, Wanling Gao, Jianfeng Zhan··34

Benchmarking ChatGPT for prototyping theories: Experimental studies using the

technology acceptance model

Tiong-Thye Goh, Xin Dai, Yanwu Yang··44

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100148

KeAi e

Contents liStS aVailable at ScienceDirect Ber\;hCur:lncilkTrasnlsar:‘itinss
KeAS BenchCouncil Transactions on Benchmarks,
KE/A Standards and Evaluations

GLOBAL IMPACT
journal homepage: www.keaipublishing.com/en/journals/benchcouncil-transactions-on-

benchmarks-standards-and-evaluations/

Research article ' A

Check for

A pluggable single-image super-resolution algorithm based on second-order [
gradient loss

Shuran Lin ®°, Chunjie Zhang *"", Yanwu Yang ¢

a Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing Jiaotong University, Beijing, 100044, China
b Institute of Information Science, Beijing Jiaotong University, Beijing, 100044, China
¢ School of Management, Huazhong University of Science and Technology, Wuhan, 430074, China

ARTICLE INFO ABSTRACT

Keywords: Convolutional neural networks for single-image super-resolution have been widely used with great success.
Single-image super-resolution However, most of these methods use L1 loss to guide network optimization, resulting in blurry restored images
Gradient

with sharp edges smoothed. This is because L1 loss limits the optimization goal of the network to the statistical
average of all solutions within the solution space of that task. To go beyond the L1 loss, this paper designs
an image super-resolution algorithm based on second-order gradient loss. We impose additional constraints by
considering the high-order gradient level of the image so that the network can focus on the recovery of fine
details such as texture during the learning process. This helps to alleviate the problem of restored image texture
over-smoothing to some extent. During network training, we extract the second-order gradient map of the
generated image and the target image of the network by minimizing the distance between them, this guides the
network to pay attention to the high-frequency detail information in the image and generate a high-resolution
image with clearer edge and texture. Besides, the proposed loss function has good embeddability and can be
easily integrated with existing image super-resolution networks. Experimental results show that the second-
order gradient loss can significantly improve both Learned Perceptual Image Patch Similarity (LPIPS) and
Frechet Inception Distance score (FID) performance over other image super-resolution deep learning models.

Texture
Loss function

1. Introduction However, several CNN-based SISR methods currently popular priori-
tize high Peak Signal-to -Noise Ratio (PSNR) and Structural Similarity

As a well-known image restoration task, single-image super-resolu- (SSIM) scores, which can lead to visually blurry restored images. This
tion (SISR) aims to convert a low-resolution (LR) image into its corre- is because these methods often neglect the structural prior knowledge
sponding high-resolution (HR) version. In recent years, SISR has gained within the image and focus only on minimizing the mean absolute
significant attention from researchers owing to its practical applications error between the recovered HR image and the ground truth image.
in various fields, including video surveillance [1-3], medical imag- Consequently, the optimization objective of the network becomes the

ing [4-6], and so on. Moreover, SISR can also be used in combination
with other high-level computer vision tasks, such as object detection [7,
8] and semantic segmentation [9,10], to improve their performance.
However, SISR is inherently a challenging and ill-posed task, as LR
images lack crucial texture details present in HR images, making it
difficult to generate HR images from LR images alone. Furthermore,
since a single LR image can be generated from multiple HR images that
have undergone different types of degradation, the solution to the SR
problem may not be unique.

Convolutional Neural Networks (CNNs) have recently shown im-
pressive performance in information recovery due to their ability to
handle complex data, and have thus been applied to the field of SISR.

statistical mean of all possible solutions in this one-to-many problem,
resulting in blurry reconstructed images.

Images can be broken down into various frequency components,
such as high-frequency and low-frequency components. The low-fre-
quency component corresponds to its smooth regions, such as the sky,
which are relatively simpler to restore. The high-frequency component
pertains to its detailed regions, such as the textures of buildings,
which are comparatively more challenging to restore. The human visual
system is particularly sensitive to the details in images, especially the
edges and textures, which play a crucial role in the perception of image
quality [11]. Therefore, the accuracy of restoring the high-frequency

* Correspondence to: Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing Jiaotong University, No.3 Shangyuancun,
Haidian District, Beijing, China.
E-mail address: cjzhang@bjtu.edu.cn (C. Zhang).

https://doi.org/10.1016/j.tbench.2023.100148

Received 16 August 2023; Received in revised form 8 October 2023; Accepted 8 December 2023

Available online 14 December 2023

2772-4859/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nec-nd/4.0/).

https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
mailto:cjzhang@bjtu.edu.cn
https://doi.org/10.1016/j.tbench.2023.100148
https://doi.org/10.1016/j.tbench.2023.100148
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2023.100148&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Lin et al.

components is essential for achieving visually pleasing results, and
blurry images often occur when edge and texture details are lost due
to excessive smoothing.

Numerous studies have demonstrated that incorporating prior kno-
wledge of images, such as total variation prior [12,13], sparse prior
[14-16], and gradient prior [17,18], can partially alleviate the ill-
posedness of the SISR task. These prior knowledge can be viewed as
supplementary constraints on the optimization objective of the net-
work, which narrow down the solution space of the task. Among all
these prior knowledge, the gradient prior is one of the most effective,
as it can suppress noise and preserve edges during image reconstruc-
tion. In fact, an image can be regarded as a two-dimensional discrete
function, and the gradient of the image is actually the derivative of
this two-dimensional discrete function, which measures the change rate
of the pixel grayscale value of the image. As the grayscale values of
image pixels tend to vary greatly in edge and texture areas, the gradient
map of images can accurately capture the edges and texture details
of images. In the field of mathematics, the first-order derivative of a
function provides information that can be utilized to describe the shape
of the functional image, such as monotonicity. While the second-order
derivative of the function contains more information than the first-
order derivative, which has extremely important guiding significance
for accurately modeling the functional image. Similarly, in the field
of image processing, the second-order gradient map of images may
contain more informative prior knowledge than the first-order gradient
map. To validate this idea, we apply the principles of function deriva-
tion to generate the second-order gradient map of images and visualize
it for a more intuitive comparison with the first-order gradient map. As
shown in Fig. 1, the second-order gradient map shows more detailed
information than the first-order gradient map. If fully utilized during
network optimization, it can further compress the solution space of this
task and reduce the difficulty of image restoration.

Based on the aforementioned discussion, this paper proposes an
image super-resolution algorithm based on the second-order gradient
(SG) loss. This algorithm replaces the loss function of the network with
a combination of the SG loss and the L1 loss. The SG loss takes the
second-order gradient map of the image as the starting point. To be
specific, it first extracts the second-order gradient maps of the restored
image and the HR image and then minimizes the distance between
them to fully exploit the high-frequency information contained in the
second-order gradient map of the image. This encourages the network
to concentrate on the restoration of high-frequency components such
as textures and image boundaries, improving the blurring of restored
images caused by some existing methods that only use L1 loss as a
constraint. The main contributions of this paper can be summarized
as follows:

+ We propose an image super-resolution algorithm based on the
second-order gradient (SG) loss. By combining the SG loss with
the L1 loss, our algorithm effectively guides the network opti-
mization process and mitigates the problem of excessive blurring
in the images restored by some existing image restoration meth-
ods to some extent. The SG loss can be easily integrated into most
existing SR methods without adding extra training parameters.
The experimental results on five widely used benchmark datasets
demonstrate that the proposed SG loss can enhance high-freq-
uency information in images and help the network recover clearer
and more natural textures and edges.

2. Related works

This section provides a review of relevant image super-resolution
methods from two perspectives: single-image super-resolution methods
and gradient-guided super-resolution methods.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100148

{5 3
Original Image

¥

Frist-Order Gradient Map

Second-Order Gradient Map

Fig. 1. Visualization of the first-order and second-order gradient maps of images.

2.1. Single image super-resolution methods

To date, numerous SISR methods have been proposed by researchers,
which can be broadly classified into three categories: interpolation-
based methods [19], signal processing-based methods [20-22], and
deep learning-based methods [23-50].

In the initial stages of research on SISR, interpolation-based meth-
ods were commonly used. The main idea of these methods is to infer
the pixel value at a specific position in the HR image by performing a
weighted average of the known pixel values in the LR image surround-
ing that position. Different weighting schemes have been designed for
image interpolation based on the fact that common pixel variations in a
local region of an image can be approximated by a continuous function.
For instance, bilinear interpolation, which leverages local linearity,
and bicubic interpolation [19], which utilizes high-order continuity,
are two examples of interpolation methods that have been proposed.
Despite their simplicity and computational efficiency, these methods
often result in generated images that exhibit unnatural artifacts and
structural distortions. This is primarily due to the fact that the pixel
variations within an image are often highly complex and cannot be ac-
curately described by such simple predefined functions, particularly in
the case of images with intricate textures. Signal processing-based SISR
methods have been designed to address this issue. They apply signal

S. Lin et al.

processing techniques such as sparse representation [22], local adaptive
filtering [21], and wavelet transform [20] to LR images to obtain
their corresponding HR images. While signal processing-based methods
have shown improvements in image restoration quality compared to
interpolation-based methods, they often come with high computational
complexity and are susceptible to noise.

For the last few years, deep learning-based methods have revealed
extraordinary capabilities in feature learning and extraction, allowing
neural networks to theoretically simulate any function. Through end-
to-end model training, these deep learning networks can learn the
mapping relationship between LR and HR images from massive data
directly. These data-driven deep learning approaches lead to momen-
tous performance gains compared to earlier traditional approaches. As
trailblazers, Dong et al. are the first to establish a connection between
CNN and image SR reconstruction. They devise a super-resolution
convolutional neural network composed of three convolutional layers,
which lay the groundwork for deep learning-based SISR methods.
Nonetheless, the limited receptive field of the three convolutional
layers restricts their capacity to perfectly leverage the surrounding
pixel information, leading to constrained performance enhancement.
For the purpose of enlarging the receptive field, Kim et al. [27] stack
more convolutional layers and integrate residual learning to tackle the
problem of gradient vanishing triggered by network thickening. Given
the distinct sizes of LR and HR images in SISR, the aforementioned
methods typically necessitate preprocessing of LR images utilizing bicu-
bic interpolation to upscale them to match the size of HR images
before feeding them into the network for training. Nevertheless, this
preprocessing is time-consuming and exacerbates the noise and blur in
LR images. To deal with this issue, a deconvolution layer is appended
by Dong et al. [30] at the end of the network to accomplish end-to-
end mapping from LR images to HR images. Shi et al. [32] present
a novel sub-pixel convolutional layer that can achieve magnification
by dynamically adjusting the number of feature channels. Both of
them place the upscaling operation of the LR image at the final stage
of the network and make it learnable. This can not only decrease
the computational burden but also enhance the precision of image
restoration.

Subsequently, SR models based on neural networks have emerged
continuously. For instance, Zhang et al. [34] employ a dense connection
structure to augment feature propagation through feature reuse. Li
et al. [35] devise a multi-scale network to selectively extract image
features of varying scales to facilitate image reconstruction, which leads
to further performance improvement compared to the model using only
a single scale. According to Zhang et al. [36], most existing methods
treat LR input features indiscriminately and disregard the correlation
between low-frequency information. Consequently, they integrate the
attention mechanism into the SR network to enable it to concentrate
on the more critical parts of the image for restoration. Several recent
studies have attempted to combine transformers from the field of nat-
ural language processing with SR networks, obtaining state-of-the-art
performance.

2.2. Gradient guided super-resolution methods

By exploiting gradient prior knowledge in many traditional meth-
ods [12,51-54], the solution space can be narrowed to generate a
sharper image. For example, Fattal [52] designs a method that lever-
ages image gradient edge statistics to learn the prior correlations across
different resolutions. Zhu et al. [51] introduce an innovative method
that gathers a dictionary of gradient patterns and characterizes de-
formable gradient combinations. Yan et al. [53] propose a stochastic
resonance method based on gradient contour sharpness. Motivated by
the effectiveness of gradient prior in traditional methods, some recent
works have also endeavored to integrate image prior knowledge with
neural networks [17,18,55]. Yang et al. [17] employ a pre-trained edge
detector to extract image gradients, which are subsequently utilized to

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100148

guide the deep network in reconstructing SR images. Ma et al. [18]
construct a dual-branch joint optimization network consisting of a main
SR branch and a gradient-assisted branch, where the gradient-assisted
branch takes the gradient map extracted from the LR image as input,
and the optimization target becomes the gradient map of its corre-
sponding HR image. While previous methods leverage gradient prior
knowledge to enhance the visual quality of restored images, they often
incorporate learnable parameters associated with gradient information
into the model significantly increasing its complexity and diminishing
its computational efficiency. Unlike them, the proposed method in this
paper utilizes a second-order gradient prior solely during network op-
timization to provide supplementary supervision information, without
adding any learnable parameters. Hence, the computational cost can be
disregarded.

3. Second-order gradient loss guided single-image super-resolution
3.1. Problem definition

For the task of SISR, the goal is to predict a reasonable HR image
ISR from a LR input image I'R, given its corresponding ground truth
HR image IR, and ensure that the predicted HR image ISR is as
similar as possible to the ground truth HR image I'*/R. Consequently,
during the actual model training, it is imperative to use pre-existing
paired LR and HR image pairs (ILR, IH#R). In reality, the LR image
is typically obtained from the HR image through various types of
degradation, but due to the complex and diverse forms of degradation
and difficult modeling, for convenience of research, most works simply
model the degradation process of the image as a bicubic interpolation
downsampling operation. Therefore, the corresponding LR image can
be generated from the HR image by the following formula:

TER = (1HRy |)

where |, denotes a bicubic interpolation downsampling operation with
a scaling factor of s. Typically, both LR and HR images are 3-channel
RGB images, with sizes of 3xAxw and 3xs-hXs-w, respectively, where
h and w are the height and width of the LR image. If we represent the
SR network as F with parameters 6, then the process of image SR can
be expressed as:

ISR — F(ILR; 9) (2)

Assuming that the loss function L can be applied to guide the network
learning. In this case, we can formulate the optimization process of the
network as follows:

0= argmsinE,s;zL(F(ILR;e)JHR) 3
3.2. Second-order gradient loss

Most existing deep learning-based SR methods primarily rely on
the L1 loss to constrain network training. The L1 loss is computed
by measuring the mean absolute error between the predicted image
ISR generated by the network and the ground truth HR image I''R
at each pixel. This loss function tends to yield high Peak Signal-to-
Noise Ratio (PSNR) values for the restored image. In fact, one of the
limitations of using the L1 loss function in SR is that the visual results
often exhibit blurriness and lack of preservation of sharp edges present
in the original image. Despite the limitation aforementioned, the L1
loss function remains the most popular choice due to its effectiveness
in accelerating convergence and improving the overall performance.

Ly =E;se|| TR - 18Ry, Q)

Considering that the L1 loss treats high-frequency and low-frequency
information equally, without taking into account the fact that the inher-
ent difficulty in recovering high-frequency details, this paper proposes
to utilize the second-order gradient map of the image as additional

S. Lin et al.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100148

ISR 5Ra

Y eieieeieeieieteeleeir i fletletletieteeteieteieetleteeieeteiteete et tetletieteetietleiietee ! M(())
: i) i

5 g8 Replaceable Module g 5
| > |
Ly L Lsg
i Shallow Feature : HQImage ! e
| [ERhneie Deep Feature Extraction N et |
: Generic Image SR Network Architecture i
i ; M(()
T nCTEEEREREREEEE : JHR [HRg

Fig. 2. Overall framework of our proposed pluggable SISR algorithm based on second-order gradient loss. The left half of this figure represents a generic deep learning-based
image SR network architecture which can be easily replaced. I"/R¢, [SR¢ respectively represent the second-order gradient map extracted by using the gradient extraction function

M(:) twice from high-resolution image I'”® and super-resolution image I°R.

Table 1

Quantitative comparisons of cnn-based SISR models with and without second-order gradient loss on five benchmark datasets for x4 SR. Best

results are highlighted.

DataSet Metric EDSR EDSR+SG RDN RDN+SG RCAN RCAN+SG SwinlR SwinIR+SG
Set5 LPIPS | 0.1728 0.1446 0.1716 0.1560 0.1720 0.1401 0.1700 0.1412
FID | 58.86 56.52 57.88 52.65 59.74 54.27 58.80 55.75
Setl4 LPIPS | 0.2776 0.2353 0.2808 0.2564 0.2783 0.2268 0.2705 0.2262
FID | 86.45 80.94 88.75 86.55 91.95 86.51 89.17 82.09
Urban100 LPIPS | 0.2037 0.1837 0.2107 0.1984 0.2047 0.1756 0.1923 0.1698
FID | 25.56 23.10 26.12 23.85 25.71 22.39 24.54 21.63
B100 LPIPS | 0.3589 0.3018 0.3634 0.3274 0.3602 0.2906 0.3549 0.2894
FID | 96.08 88.47 96.36 90.86 98.15 83.83 95.59 84.28
Maneal09 LPIPS | 0.0997 0.0856 0.1018 0.0931 0.0991 0.0810 0.0938 0.0787
8 FID | 12.58 10.77 13.25 11.39 12.48 10.80 11.82 9.97

supervision information in the optimization process to encourage the
network to pay more attention to high-frequency information during
the recovery process and alleviate the problem of smoothing sharp
edges. The reason why not utilizing higher-order gradient maps of the
image is that studies have indicated that as the order of the gradient
increases, the detail information in the gradient map becomes more
intricate and complex, which may lead to instability during training
and introduce additional errors. The loss function proposed in this
paper involves the extraction of the second-order gradient map of the
image. More precisely, to obtain the first-order gradient map of the
image, we calculate the pixel-wise differences between adjacent pixels
in both the horizontal and vertical directions. Subsequently, the second-
order gradient map of the image is derived by calculating the pixel-wise
differences between adjacent pixels of the first-order gradient map.
During the actual training process, an additional constraint is imposed
on the predicted high-resolution image IR. This constraint is to min-
imize the discrepancy between the second-order gradient maps of ISR
and IR The gradient map of the image I can be generated using the
following formula:

dx(i,j)=1G+1,j)—1(—-1,))
dy(i,j))=16,j+ 1) -1 j-1)
VI(x,y) = (dx(i, j),dy(i, j))
M) =||VI|

)

where (i, j) represents the coordinates of any point in the image, and
1(i,j) represents the pixel value of the image at (i, j). The operation
M () refers to the process of extracting image gradients. It can be im-
plemented by designing a convolution layer with fixed-weight kernels.
In this paper, the weights of the convolution kernel are designed by
simulating the Sobel filter. The Sobel filter is capable of detecting edge

information in both the horizontal and vertical directions, making it an
effective way to extract the gradient map from the image. Compared
with other edge detection filters, it is not only simple to implement
and fast in computation but also accurate in edge localization and good
noise suppression in images. By applying the operation M(-) twice, we
can obtain the second-order gradient map of the image. In summary,
the proposed second-order gradient loss in this paper can be formulated
as follows:

Lsg = EpselM(MIHR) — MM ISRy, (6)

Nevertheless, the second-order gradient loss primarily captures high-
frequency information while lacking low-frequency information. To
provide comprehensive guidance for network optimization, it is weigh-
ted and combined with the L1 loss to form the final loss function:

Ligtar = Ly + ALgg 7

where 4 is a hyperparameter that controls the weight of the SG loss
Lgg in the total loss L, -

To facilitate a more intuitive comprehension of the proposed seco-
nd-order gradient loss, we have visualized it for illustrative purposes.
As shown in Fig. 2, the left half of the figure represents a generic
image SR network architecture, which consists of three parts: shallow
feature extraction module, deep feature extraction module, and high-
quality image reconstruction module. Typically, the shallow feature
extraction module is composed of two convolutional layers that are
intended to extract low-level features from the image and capture local
information. The deep feature extraction module is more intricate and
lacks a standardized structure, as it aims to extract high-level features
from the image to capture global information. The high-quality image
reconstruction module usually comprises an upsampling module and a

S. Lin et al.

convolutional layer. The upsampling module is responsible for increas-
ing the size of the features, while the convolutional layer is responsible
for transforming the features into an HR image. It is important to note
that the specific architecture of the deep feature extraction module
varies across different super-resolution networks, contributing to the
variations in their restoration performance. The right half of the figure
represents our proposed SG loss, it can be easily observed that it is
a plug-and-play loss function, as the left half of the figure can be
substituted with any image SR network. In summary, our proposed SG
loss is generalizable. For ease of understanding, we list the meanings
of the symbols used in this paper in Table 4.

4. Experiments

This section commences with an overview of the datasets, evalua-
tion metrics, and implementation details employed in the experiment.
Subsequently, a comparative analysis is presented, comparing the per-
formance and visualization of several state-of-the-art SISR networks
before and after the integration of the proposed SG loss. Furthermore,
we investigate the influence of the 4 value on the model performance.

4.1. DataSets and metrics

All the models are trained on the 800 images from the DIV2K [57]
dataset. It is a widely recognized high-quality visual dataset in the field
of SISR. For testing purposes, we utilize five standard public datasets:
Set5 [58], Set14 [59], Urban100 [60], B100 [61], and Mangal09 [62],
which contain various scenes and can comprehensively analyze the
effectiveness of the proposed loss. Since paired HR and LR images are
required for training, the corresponding LR images are obtained by
downsampling the HR images with a scaling factor of 4 using bicubic
interpolation before conducting experiments. Considering that evalua-
tion metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity (SSIM) often contradict human perceptual quality, this paper
adopts perceptual metrics Learned Perceptual Image Patch Similarity
(LPIPS) [63] and Frechet Inception Distance score (FID) [64], which
are more consistent with human perception, as evaluation metrics to
quantitatively compare the restoration results of the datasets. Lower
LPIPS and FID values indicate better visual quality.

4.2. Implementation details

For the purpose of conducting a fair comparison, several represen-
tative deep learning-based SR networks were retrained to establish a
consistent benchmark. Specifically, during the training process, data
augmentation techniques are performed on the training dataset. This
includes random cropping, rotation by 90°, 180°, and 270°, as well
as flipping the original images, resulting in approximately 32,000 HR
images of size 480 x 480. In each training iteration, we take in 16 LR
image patches with the size of 48 x 48 as input. The ADAM optimizer
is employed for training, with default values of g, = 0.9, f, = 0.999 and
€ = 1x1078. The learning rate is initialized as 1 x 10~* and undergoes a
halving operation every 2x 10° iterations of back-propagation. Through
empirical analysis, the hyperparameter 4 is determined to be 1. Further
details regarding the selection and impact of different A values will
be discussed in Section 4.5. The entire process is carried out on the
PyTorch 2.0 platform, leveraging a Nvidia GeForce RTX 3090 24 GB
GPU for accelerated computations.

4.3. Quantitative comparison

We select several widely recognized SR network models, including
EDSR [56], RDN [34], RCAN [36], and SwinIR [37], to assess the
effectiveness of our proposed SG loss function. No modifications have
been made to their network architectures. Rather than using the L1
loss function alone, we augment it by adding an SG loss term to

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100148

Table 2
Comparison of model restoration results trained with some training strategy and
hyperparameters..

DataSet Metric 1 2 3 4 5
Set5 LPIPS | 0.1446 0.1443 0.1447 0.1443 0.1441
FID | 56.52 57.07 56.67 56.65 56.96
Setl4 LPIPS | 0.2353 0.2361 0.2351 0.2355 0.2360
FID | 80.94 81.54 80.89 80.05 81.36
Urban100 LPIPS | 0.1837 0.1837 0.1838 0.1836 0.1838
FID | 23.10 22.92 23.08 22.95 22.87
B100 LPIPS | 0.3018 0.3018 0.3020 0.3023 0.3018
FID | 88.47 88.64 88.03 87.63 87.32
Mangal09 LPIPS | 0.0856 0.0856 0.0855 0.0856 0.0857
8 FID | 10.77 10.67 10.65 10.70 10.80

provide extra supervision information. The computational overhead
incurred by this operation is negligible. The x4 SR results on five
benchmark datasets are presented in Table 1. The results marked
with “4+SG” indicate the outcomes obtained by adding the SG loss
for auxiliary optimization to the original SR methods. The data in
Table 1 demonstrates that the incorporation of the SG loss function as
an auxiliary network optimization leads to lower LPIPS and FID values
on all datasets for all models, compared to the original models. This
observation strongly supports the belief that the second-order gradient
map of the image, which contains high-frequency information, plays
a crucial role in aiding the network to restore images with better
perceptual quality. In particular, on the more severely degraded B100
dataset, our method achieves a substantial reduction in LPIPS scores
for the SwinIR and RCAN models, with descents of 0.0655 and 0.0696,
respectively. Additionally, the FID scores of these two models also
exhibit notable improvements compared to the original method.

4.4. Qualitative comparison

In order to provide further evidence of the effectiveness of our
proposed SG loss, this section showcases visual results of the restored
images obtained from the Set14, B100, and Urban100 datasets, with the
majority of images selected from the Urban100 dataset. The Urban100
dataset was chosen for its collection of 100 images depicting buildings
in urban areas. These images are rich in intricate texture details,
making it an ideal dataset to demonstrate the effectiveness of the SG
loss in restoring fine details. As illustrated in Fig. 3, the methods trained
only using the L1 loss are capable of restoring the main contours of
objects. However, they struggle to accurately restore complex image
boundaries, often resulting in distorted and deformed textures. In con-
trast, after integrating the SG loss as supplementary supervision, the
network preserves the fine details within images to a greater extent,
and the reconstructed textures appear more natural and realistic.

4.5. Robustness experiment

To substantiate the robustness of the proposed SG loss function, we
retrain the EDSR model multiple times using the same training strategy
and hyperparameters, and the results of each training are exhibited
in Table 2. We can find that although there are discrepancies in the
recovery results of the models trained each time, these discrepancies
are extremely minimal. This provides substantial evidence that the
enhancement in model recovery performance attributed to the SG loss
function is not incidental.

4.6. Ablation study of A
To investigate the influence of different A values on the performance

of image restoration models, we train four distinct models with 4 values
of 0.01, 0.1, 1, and 10, respectively, employing the same training

S. Lin et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100148

EDSR EDSR+SG EDSR+SG

RCAN+SG RCAN RCAN+SG

\\\\\\\N

\\"\\\\7;\\\\\\

\\\\\\/\\@»\\\\\k ???

SwinI SwinlR+SG SwinIR SwinlR+SG SwinlR SwinlR+SG

Fig. 3. Visual comparison of restoration results of different models before and after adding second gradient(SG) loss, where the first column of each image represents the GT
high-resolution (HR) image, the second column represents the results recovered by EDSR [56], RDN [34], RCAN [36] and SwinIR [37], the third column represents the recovery
results after integrating the SG loss by above methods.

strategy. Subsequently, we conduct a comprehensive evaluation of the

Table 3 4x SR performance of these four models on the Urban100 dataset.
Comparison of model restoration results trained with different 4 values. The results are presented in Table 3, with the highlighted numbers
Metrics 4=0 4=001 4=01 =1 =10 indicating the lowest LPIPS and FID scores in each row. To guarantee
LPIPS | 0.2037 0.2013 0.1948 0.1837 0.1946 a fair comparison, all four models adopt the EDSR network structure.
FID | 25.56 25.07 24.31 23.10 36.31 Fig. 4 is provided to offer a more intuitive observation of the differences

in visual. The reference model, which does not incorporate the SG
loss (i.e. 4 = 0), exhibits the highest LPIPS and FID scores compared
to the other models. As we increase the value of A from O to 1, the

S. Lin et al.

\\\\\\? -
\\\\\\ﬁ

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100148

A=1 A=10

 \NZ %Y

A=0.01

7% \\\\ 7

/1 01 A=10

Fig. 4. Visual comparison of restoration results of models which trained with different A values.

importance of the SG loss supervision gradually grows, resulting in a
positive impact on the quality of the SR results. The best performance
is attained when A = 1. In this case, the model reaches a better
balance between emphasizing image boundaries and preserving smooth
regions. Nonetheless, if the 4 value is excessively large, the model may
overemphasize the textures and edges within images, and may even
introduce unnatural artifacts in the smooth areas, resulting in a decline
in model performance. Summarizing the above analysis, we recommend
setting 4 to 1 when using the SG loss.

4.7. Ablation study of different loss functions

We compare several loss functions commonly used in this field with
our proposed SG loss function to further demonstrate its effectiveness,
EDSR is still selected as the baseline for a fair comparison. Here,
12 loss [65] is a commonly used loss in the early days, charbonnier
loss [66] is a variant of the 11 loss, which can better handle outliers
and enhance model robustness, and ssim loss [67] can better simulate
the perception of images by the human eyes. As shown in Table 5, when

S. Lin et al.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100148

Table 4
The meanings of symbols used in this paper..
Symbols Meanings
IER Low-Resolution Image.
THR High-Resolution Image.
ISR Super-Resolution Image generated by our method.
1y Bicubic interpolation downsampling operation with a scaling factor of s.
I'1Re The second-order gradient map of the high-resolution image.
L5Re The second-order gradient map of the super-resolution image generated by our method.
dx(i, j) Horizontal gradient at the point (i, j).
dy(i, j) Vertical gradient at the point (i, j).
VI(x,y) Horizontal and vertical gradient of image 1.
M) The first-order gradient map of image I.
MM()) The second-order gradient map of image I.
L, L1 loss.
Lgg Second-Order Gradient Loss.
Ligar The total loss used in this paper.
The hyperparameter to balance the L1 loss and SG loss.
Table 5 Acknowledgments
Comparison of model restoration results trained with different loss
functions. S This work is supported by National Natural Science Foundation
Loss LPIPS| Fby of China: 62072026, 72171093; Beijing Natural Science Foundation:
L1 loss 0.2037 25.56 JQ20022.
L2 Loss 0.2064 25.04
SSIM loss 0.2057 24.98
Charbonnier Loss 0.2026 25.37 References
L1 loss + SG loss 0.1837 23.10

combined with the 11 loss function, our proposed SG loss can help the
model achieve the best performance in all the quality metrics.

5. Conclusion

In this paper, an innovative high-frequency texture detail enhance-
ment loss, referred to as the second-order gradient loss, is proposed
to alleviate the problem of blurry high-resolution images generated by
most existing SISR methods trained only with L1 loss. More specifically,
the proposed second-order gradient loss function offers supplemen-
tary supervision for network optimization so that the solution space
is compressed. This is accomplished by minimizing the discrepancy
between the second-order gradient maps of the restored image and
the high-resolution image. Furthermore, it can be seamlessly integrated
with existing deep learning-based SISR methods without the need for
introducing extra training parameters. This makes it a practical and
convenient solution for enhancing the performance of SISR models
without significant modifications to their existing architectures. The
evaluation conducted on five public benchmark datasets indicate that
the integration of this loss function significantly enhances the quality
and fidelity of the restored images.

CRediT authorship contribution statement

Shuran Lin: Methodology, Software, Validation, Writing — original
draft. Chunjie Zhang: Conceptualization, Formal analysis, Funding
acquisition, Investigation, Methodology, Resources, Supervision, Vali-
dation, Writing — original draft, Writing — review & editing. Yanwu
Yang: Data curation, Methodology, Resources, Writing — review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

[1] L. Zhang, H. Zhang, H. Shen, P. Li, A super-resolution reconstruction algorithm
for surveillance images, Signal Process. 90 (3) (2010) 848-859.

[2] Y. Pang, J. Cao, J. Wang, J. Han, JCS-net: Joint classification and super-
resolution network for small-scale pedestrian detection in surveillance images,
IEEE Trans. Inf. Forensics Secur. 14 (12) (2019) 3322-3331, http://dx.doi.org/
10.1109/TIFS.2019.2916592.

[3] P. Shamsolmoali, M. Zareapoor, D.K. Jain, V.K. Jain, J. Yang, Deep convolution
network for surveillance records super-resolution, Multimedia Tools Appl. 78
(2019) 23815-23829.

[4] Y. Huang, L. Shao, A.F. Frangi, Simultaneous super-resolution and cross-modality
synthesis of 3D medical images using weakly-supervised joint convolutional
sparse coding, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 6070-6079.

[5] Y. Li, B. Sixou, F. Peyrin, A review of the deep learning methods for medical
images super resolution problems, Irbm 42 (2) (2021) 120-133.

[6] D. Mahapatra, B. Bozorgtabar, R. Garnavi, Image super-resolution using progres-
sive generative adversarial networks for medical image analysis, Comput. Med.
Imaging Graph. 71 (2019) 30-39.

[7] Y. Bai, Y. Zhang, M. Ding, B. Ghanem, Sod-mtgan: Small object detection
via multi-task generative adversarial network, in: Proceedings of the European
Conference on Computer Vision, ECCV, 2018, pp. 206-221.

[8] J. Shermeyer, A. Van Etten, The effects of super-resolution on object detection
performance in satellite imagery, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, 2019.

[9] L. Wang, D. Li, Y. Zhu, L. Tian, Y. Shan, Dual super-resolution learning for
semantic segmentation, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 3774-3783.

[10] A. Aakerberg, A.S. Johansen, K. Nasrollahi, T.B. Moeslund, Semantic segmenta-
tion guided real-world super-resolution, in: Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, 2022, pp. 449-458.

[11] S. Mandal, A.K. Sao, Edge preserving single image super resolution in sparse
environment, in: 2013 IEEE International Conference on Image Processing, IEEE,
2013, pp. 967-971.

[12] M.K. Ng, H. Shen, S. Chaudhuri, A.C. Yau, Zoom-based super-resolution re-
construction approach using prior total variation, Opt. Eng. 46 (12) (2007)
127003.

[13] M.K. Ng, H. Shen, E.Y. Lam, L. Zhang, A total variation regularization based
super-resolution reconstruction algorithm for digital video, EURASIP J. Adv.
Signal Process. 2007 (2007) 1-16.

[14] J. Yang, J. Wright, T.S. Huang, Y. Ma, Image super-resolution via sparse
representation, IEEE Trans. Image Process. 19 (11) (2010) 2861-2873.

[15] J. Yang, J. Wright, T. Huang, Y. Ma, Image super-resolution as sparse represen-
tation of raw image patches, in: 2008 IEEE Conference on Computer Vision and
Pattern Recognition, IEEE, 2008, pp. 1-8.

[16] N. Akhtar, F. Shafait, A. Mian, Bayesian sparse representation for hyperspectral
image super resolution, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 3631-3640.

[17] W. Yang, J. Feng, J. Yang, F. Zhao, J. Liu, Z. Guo, S. Yan, Deep edge guided
recurrent residual learning for image super-resolution, IEEE Trans. Image Process.
26 (12) (2017) 5895-5907.

http://refhub.elsevier.com/S2772-4859(23)00065-0/sb1
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb1
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb1
http://dx.doi.org/10.1109/TIFS.2019.2916592
http://dx.doi.org/10.1109/TIFS.2019.2916592
http://dx.doi.org/10.1109/TIFS.2019.2916592
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb3
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb3
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb3
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb3
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb3
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb4
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb4
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb4
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb4
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb4
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb4
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb4
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb5
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb5
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb5
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb6
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb6
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb6
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb6
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb6
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb7
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb7
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb7
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb7
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb7
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb8
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb8
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb8
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb8
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb8
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb9
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb9
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb9
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb9
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb9
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb10
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb10
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb10
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb10
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb10
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb11
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb11
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb11
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb11
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb11
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb12
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb12
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb12
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb12
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb12
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb13
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb13
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb13
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb13
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb13
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb14
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb14
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb14
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb15
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb15
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb15
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb15
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb15
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb16
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb16
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb16
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb16
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb16
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb17
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb17
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb17
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb17
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb17

S. Lin et al.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

C. Ma, Y. Rao, Y. Cheng, C. Chen, J. Lu, J. Zhou, Structure-preserving super
resolution with gradient guidance, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 7769-7778.

R. Keys, Cubic convolution interpolation for digital image processing, IEEE Trans.
Acoust. Speech Signal Process. 29 (6) (1981) 1153-1160.

D.K. Shin, Y.S. Moon, Super-resolution image reconstruction using wavelet based
patch and discrete wavelet transform, J. Signal Process. Syst. 81 (2015) 71-81.
A. Danielyan, A. Foi, V. Katkovnik, K. Egiazarian, P. Milanfar, Spatially
adaptive filtering as regularization in inverse imaging: Compressive sensing
super-resolution and upsampling, Super-Resolut. Imag. (2010) 123-154.

K.I. Kim, Y. Kwon, Single-image super-resolution using sparse regression and
natural image prior, IEEE Trans. Pattern Anal. Mach. Intell. 32 (6) (2010)
1127-1133.

C. Dong, C.C. Loy, K. He, X. Tang, Image super-resolution using deep con-
volutional networks, IEEE Trans. Pattern Anal. Mach. Intell. 38 (2) (2015)
295-307.

J. Li, F. Fang, J. Li, K. Mei, G. Zhang, MDCN: Multi-scale dense cross network for
image super-resolution, IEEE Trans. Circuits Syst. Video Technol. 31 (7) (2021)
2547-2561, http://dx.doi.org/10.1109/TCSVT.2020.3027732.

N. Ahn, B. Kang, K.-A. Sohn, Fast, accurate, and lightweight super-resolution
with cascading residual network, in: Proceedings of the European Conference on
Computer Vision, ECCV, 2018, pp. 252-268.

M.S. Sajjadi, B. Scholkopf, M. Hirsch, Enhancenet: Single image super-resolution
through automated texture synthesis, in: Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 4491-4500.

J. Kim, J.K. Lee, K.M. Lee, Accurate image super-resolution using very deep
convolutional networks, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 1646-1654.

Z. Zhang, Z. Wang, Z. Lin, H. Qi, Image super-resolution by neural texture
transfer, in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 7982-7991.

J. Liu, W. Zhang, Y. Tang, J. Tang, G. Wu, Residual feature aggregation network
for image super-resolution, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 2359-2368.

C. Dong, C.C. Loy, X. Tang, Accelerating the super-resolution convolutional
neural network, in: Computer Vision-ECCV 2016: 14th European Conference,
Amsterdam, the Netherlands, October 11-14, 2016, Proceedings, Part II 14,
Springer, 2016, pp. 391-407.

B. Niu, W. Wen, W. Ren, X. Zhang, L. Yang, S. Wang, K. Zhang, X. Cao, H. Shen,
Single image super-resolution via a holistic attention network, in: Computer
Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part XII 16, Springer, 2020, pp. 191-207.

W. Shi, J. Caballero, F. Huszdr, J. Totz, A.P. Aitken, R. Bishop, D. Rueckert,
Z. Wang, Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 1874-1883.

Y. Yan, W. Ren, X. Hu, K. Li, H. Shen, X. Cao, SRGAT: Single image super-
resolution with graph attention network, IEEE Trans. Image Process. 30 (2021)
4905-4918, http://dx.doi.org/10.1109/TIP.2021.3077135.

Y. Zhang, Y. Tian, Y. Kong, B. Zhong, Y. Fu, Residual dense network for image
super-resolution, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 2472-2481.

J. Li, F. Fang, K. Mei, G. Zhang, Multi-scale residual network for image super-
resolution, in: Proceedings of the European Conference on Computer Vision,
ECCV, 2018, pp. 517-532.

Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, Y. Fu, Image super-resolution using
very deep residual channel attention networks, in: Proceedings of the European
Conference on Computer Vision, ECCV, 2018, pp. 286-301.

J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, R. Timofte, Swinir: Image
restoration using swin transformer, in: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 1833-1844.

W.-S. Lai, J.-B. Huang, N. Ahuja, M.-H. Yang, Deep laplacian pyramid networks
for fast and accurate super-resolution, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 624-632.

K.-W. Hung, K. Wang, J. Jiang, Image interpolation using convolutional neural
networks with deep recursive residual learning, Multimedia Tools Appl. 78
(2019) 22813-22831.

T. Tong, G. Li, X. Liu, Q. Gao, Image super-resolution using dense skip
connections, in: Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 4799-4807.

T. Dai, J. Cai, Y. Zhang, S.-T. Xia, L. Zhang, Second-order attention network for
single image super-resolution, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 11065-11074.

Y. Mei, Y. Fan, Y. Zhou, L. Huang, T.S. Huang, H. Shi, Image super-resolution
with cross-scale non-local attention and exhaustive self-exemplars mining, in:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 5690-5699.

Y. Zhang, D. Wei, C. Qin, H. Wang, H. Pfister, Y. Fu, Context reasoning
attention network for image super-resolution, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 4278-4287.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100148

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, C. Xu,
W. Gao, Pre-trained image processing transformer, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp.
12299-12310.

Y. Mei, Y. Fan, Y. Zhou, Image super-resolution with non-local sparse attention,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 3517-3526.

C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,
A. Tejani, J. Totz, Z. Wang, et al., Photo-realistic single image super-resolution
using a generative adversarial network, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 4681-4690.

K. Zhang, W. Zuo, S. Gu, L. Zhang, Learning deep CNN denoiser prior for image
restoration, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 3929-3938.

J. Yu, Y. Fan, J. Yang, N. Xu, Z. Wang, X. Wang, T. Huang, Wide activation
for efficient and accurate image super-resolution, 2018, arXiv preprint arXiv:
1808.08718.

M. Haris, G. Shakhnarovich, N. Ukita, Deep back-projection networks for super-
resolution, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 1664-1673.

Z. Hui, X. Wang, X. Gao, Fast and accurate single image super-resolution via
information distillation network, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 723-731.

Y. Zhu, Y. Zhang, B. Bonev, A.L. Yuille, Modeling deformable gradient compo-
sitions for single-image super-resolution, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 5417-5425.

R. Fattal, Image upsampling via imposed edge statistics, in: ACM SIGGRAPH
2007 Papers, 2007, pp. 95-es.

Q. Yan, Y. Xu, X. Yang, T.Q. Nguyen, Single image superresolution based
on gradient profile sharpness, IEEE Trans. Image Process. 24 (10) (2015)
3187-3202.

W. Dong, L. Zhang, G. Shi, X. Wu, Image deblurring and super-resolution by
adaptive sparse domain selection and adaptive regularization, IEEE Trans. Image
Process. 20 (7) (2011) 1838-1857.

F. Fang, J. Li, T. Zeng, Soft-edge assisted network for single
super-resolution, IEEE Trans. Image Process. 29 (2020) 4656-4668.

B. Lim, S. Son, H. Kim, S. Nah, K. Mu Lee, Enhanced deep residual networks
for single image super-resolution, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2017, pp. 136-144.

E. Agustsson, R. Timofte, Ntire 2017 challenge on single image super-resolution:
Dataset and study, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 2017, pp. 126-135.

M. Bevilacqua, A. Roumy, C. Guillemot, M.L. Alberi-Morel, Low-Complexity
Single-Image Super-Resolution Based on Nonnegative Neighbor Embedding,
BMVA Press, 2012.

R. Zeyde, M. Elad, M. Protter, On single image scale-up using sparse-
representations, in: Curves and Surfaces: 7th International Conference, Avignon,
France, June 24-30, 2010, Revised Selected Papers 7, Springer, 2012, pp.
711-730.

D.R. Martin, C.C. Fowlkes, D. Tal, J. Malik, A database of human segmented
natural images and its application to evaluating segmentation algorithms and
measuring ecological statistics, in: Proceedings of the Eighth International
Conference on Computer Vision, Vol. 2, ICCV-01, Vancouver, British Columbia,
Canada, July 7-14, 2001, IEEE Computer Society, 2001, pp. 416-425, http:
//dx.doi.org/10.1109/1CCV.2001.937655.

J.-B. Huang, A. Singh, N. Ahuja, Single image super-resolution from transformed
self-exemplars, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 5197-5206.

Y. Matsui, K. Ito, Y. Aramaki, A. Fujimoto, T. Ogawa, T. Yamasaki, K. Aizawa,
Sketch-based manga retrieval using mangalO9 dataset, Multimedia Tools Appl.
76 (2017) 21811-21838.

R. Zhang, P. Isola, A.A. Efros, E. Shechtman, O. Wang, The unreasonable
effectiveness of deep features as a perceptual metric, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 586-595.
M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, S. Hochreiter, Gans trained
by a two time-scale update rule converge to a local nash equilibrium, in:
Advances in Neural Information Processing Systems, vol. 30, 2017.

Z. Zhang, Parameter estimation techniques: A tutorial with application to conic
fitting, Image Vision Comput. 15 (1) (1997) 59-76.

P. Charbonnier, L. Blanc-Feraud, G. Aubert, M. Barlaud, Two deterministic half-
quadratic regularization algorithms for computed imaging, in: Proceedings of 1st
International Conference on Image Processing, Vol. 2, IEEE, 1994, pp. 168-172.
Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, Image quality assessment: From
error visibility to structural similarity, IEEE Trans. Image Process. 13 (4) (2004)
600-612, http://dx.doi.org/10.1109/TIP.2003.819861.

image

http://refhub.elsevier.com/S2772-4859(23)00065-0/sb18
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb18
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb18
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb18
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb18
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb19
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb19
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb19
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb20
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb20
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb20
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb21
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb21
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb21
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb21
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb21
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb22
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb22
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb22
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb22
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb22
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb23
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb23
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb23
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb23
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb23
http://dx.doi.org/10.1109/TCSVT.2020.3027732
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb25
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb25
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb25
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb25
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb25
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb26
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb26
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb26
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb26
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb26
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb27
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb27
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb27
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb27
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb27
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb28
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb28
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb28
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb28
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb28
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb29
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb29
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb29
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb29
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb29
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb30
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb30
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb30
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb30
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb30
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb30
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb30
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb31
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb31
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb31
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb31
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb31
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb31
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb31
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb32
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb32
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb32
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb32
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb32
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb32
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb32
http://dx.doi.org/10.1109/TIP.2021.3077135
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb34
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb34
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb34
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb34
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb34
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb35
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb35
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb35
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb35
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb35
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb36
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb36
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb36
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb36
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb36
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb37
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb37
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb37
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb37
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb37
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb38
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb38
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb38
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb38
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb38
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb39
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb39
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb39
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb39
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb39
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb40
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb40
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb40
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb40
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb40
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb41
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb41
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb41
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb41
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb41
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb42
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb42
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb42
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb42
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb42
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb42
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb42
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb43
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb43
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb43
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb43
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb43
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb44
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb44
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb44
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb44
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb44
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb44
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb44
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb45
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb45
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb45
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb45
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb45
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb46
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb46
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb46
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb46
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb46
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb46
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb46
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb47
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb47
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb47
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb47
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb47
http://arxiv.org/abs/1808.08718
http://arxiv.org/abs/1808.08718
http://arxiv.org/abs/1808.08718
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb49
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb49
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb49
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb49
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb49
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb50
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb50
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb50
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb50
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb50
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb51
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb51
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb51
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb51
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb51
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb52
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb52
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb52
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb53
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb53
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb53
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb53
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb53
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb54
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb54
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb54
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb54
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb54
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb55
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb55
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb55
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb56
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb56
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb56
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb56
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb56
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb57
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb57
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb57
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb57
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb57
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb58
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb58
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb58
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb58
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb58
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb59
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb59
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb59
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb59
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb59
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb59
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb59
http://dx.doi.org/10.1109/ICCV.2001.937655
http://dx.doi.org/10.1109/ICCV.2001.937655
http://dx.doi.org/10.1109/ICCV.2001.937655
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb61
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb61
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb61
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb61
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb61
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb62
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb62
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb62
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb62
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb62
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb63
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb63
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb63
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb63
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb63
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb64
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb64
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb64
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb64
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb64
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb65
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb65
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb65
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb66
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb66
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb66
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb66
http://refhub.elsevier.com/S2772-4859(23)00065-0/sb66
http://dx.doi.org/10.1109/TIP.2003.819861

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100150

KeAi e

Contents lists available at ScienceDirect
BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

BenchCouncil Transactions
on Benchmarks, Standards

and Evaluations

KeAi

CHINESE ROOTS
GLOBAL IMPACT

Full length article ')

Check for

CloudAISim: A toolkit for modelling and simulation of modern applications i
in Al-driven cloud computing environments

Abhimanyu Bhowmik ?, Madhushree Sannigrahi ?, Deepraj Chowdhury ™¢, Ajoy Dey ¢,
Sukhpal Singh Gill *

aSeaTech School of Engineering, University of Toulon, Toulon, France

b Center for Application Research in India (CARIn), Carl Zeiss (Bangalore) India Pvt Ltd., Bangalore, India
¢ Dept of Electronics and Communication Engineering, IIIT Naya Raipur, Naya Raipur, India

4 TCS Research and Innovation, Kolkata, India

¢ School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK

ARTICLE INFO ABSTRACT

Keywords: There is a very significant knowledge gap between Artificial Intelligence (AI) and a multitude of industries
Artificial intelligence that exist in today’s modern world. This is primarily attributable to the limited availability of resources
Explainable Al

and technical expertise. However, a major obstacle is that Al needs to be flexible enough to work in many
different applications, utilising a wide variety of datasets through cloud computing. As a result, we developed
a benchmark toolkit called CloudAISim to make use of the power of Al and cloud computing in order to satisfy

Cloud computing
Machine learning

Healthcare
CloudAISim the requirements of modern applications. The goal of this study is to come up with a strategy for building a
Simulation bridge so that Al can be utilised in order to assist those who are not very knowledgeable about technological

advancements. In addition, we modelled a healthcare application as a case study in order to verify the scientific
reliability of the CloudAISim toolkit and simulated it in a cloud computing environment using Google Cloud
Functions to increase its real-time efficiency. A non-expert-friendly interface built with an interactive web app
has also been developed. Any user without any technical knowledge can operate the entire model, which has
a 98% accuracy rate. The proposed use case is designed to put Al to work in the healthcare industry, but
CloudAISim would be useful and adaptable for other applications in the future.

1. Introduction emerging products [5]. Complex Al models lose a part of their practical

effectiveness in a wide range of application domains [6]. The main

A set of practices aiming to base decisions on the analysis of data
instead of intuitive insights can be used to define data-driven decision-
making. When compared to conventional ones, businesses that imple-
ment data-driven decision-making processes are more financially bene-
ficial and productive [1]. The outcomes of recent Artificial Intelligence
(AI) research projects serve as the foundation for many decision-making

cause is that Al models are frequently created with a performance-
focused approach, neglecting other significant — and occasionally cru-
cial - aspects like accountability, transparency, and justice [7]. The
Al models are typically “black boxes” since there is no explanation
provided for the elements that are projected to perform well; as a result,

tools [2]. The development of Machine Learning (ML) techniques is
largely responsible for the success of Al-based tools [3]. The availability
of sizable datasets on various real-world features as well as the rise in
computational gains, which are typically attributable to the powerful
Graphics Processing Unit (GPU) cards [4], are particularly encouraging
in this regard.

The need to create sophisticated Al models with previously unheard-
of performance levels has progressively given way to a rising interest
in alternative design elements that would improve the usability of

* Corresponding author.

they simply allow for the prominent display of input and output param-
eters while hiding the visibility of the intrinsic relationships between
those parameters [8]. It is advantageous to have some explanations of
individual predictions that are recognised using an Al system, more
specifically in an automated environment, because these applications
may include crucial decision-making [9].

This research aims to develop a transparent and self-explanatory
system using Al, especially Automated Machine Learning (AutoML)

E-mail addresses: abhimanyu-bhowmik@etud.univ-tln.fr (A. Bhowmik), madhushree-sannigrahi@etud.univ-tln.fr (M. Sannigrahi),
deepraj.chowdhury@zeiss.com (D. Chowdhury), deyajoy80@gmail.com (A. Dey), s.s.gill@gmul.ac.uk (S.S. Gill).

https://doi.org/10.1016/j.tbench.2024.100150

Received 10 August 2023; Received in revised form 3 January 2024; Accepted 6 January 2024

Available online 9 January 2024

2772-4859/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
mailto:abhimanyu-bhowmik@etud.univ-tln.fr
mailto:madhushree-sannigrahi@etud.univ-tln.fr
mailto:deepraj.chowdhury@zeiss.com
mailto:deyajoy80@gmail.com
mailto:s.s.gill@qmul.ac.uk
https://doi.org/10.1016/j.tbench.2024.100150
https://doi.org/10.1016/j.tbench.2024.100150
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2024.100150&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Bhowmik et al.

systems [10], that uses cloud computing, particularly serverless com-
puting to propose the best machine-learning configuration for a par-
ticular issue and trace the reasoning behind a recommendation. It
could also make it possible to interpretably and credibly examine the
predicted outcomes.

1.1. Motivation

Even if AI/ML tools are open sources and widely available, creating
a data processing pipeline and generating fine-tuned models for spe-
cific domains requires knowledge and skills in data science and Al
which are not always present in public sector industries like hospi-
tals and nursing homes [11]. Therefore, we designed a toolkit called
CloudAISim by utilising AI and cloud computing for the modelling
and simulation of modern applications to bridge the gaps between
non-professionals and Al expertise, starting with the healthcare appli-
cation as a case study that would be useful and adaptable for other
applications in the future.

The healthcare industry produces enormous amounts of data, using
various sensors and health-monitoring devices to collect data [12]. The
availability of data about the health of millions of patients may make it
possible to create Al-based processes and models that give healthcare
professionals useful insights [13]. This research also looks beyond the
healthcare domain to design a benchmark model that can be useful
for other applications from different domains. The framework and
insights presented in this article can serve as a blueprint for extending
AutoML and explainability to various other domains, from finance and
retail to agriculture and manufacturing. The scalability and flexibility
offered by cloud-based solutions make it feasible to democratise these
Al technologies and accelerate innovation across industries [14]. This
research mainly aims to provide the power of Al to non-experts without
writing a single line of code. The proposed CloudAISim toolkit will do
all the technical steps like Explanatory Data Analysis (EDA), feature
engineering, choosing the best algorithm, and explaining the results
predicted by the framework for better understanding by the user. In this
paper, we have considered the applications/dataset of the healthcare
domain, but it can be used for any domain where the dataset is in CSV
format.

1.2. Contributions

The main contributions of this work are:

1. Proposing a toolkit called CloudAISim for efficient explainable
machine learning technique modelling and implementation in
the healthcare domain.

. Finding the most accurate and responsive machine learning
model for chronic as well as infectious diseases like diabetes,
heart disease, breast cancer and COVID-19 in the healthcare
domain.

. Simulating a prototype web application for the validation of
CloudAISim to provide a visual display for data, models and the
explainability of results.

. Implementing the CloudAISim in a cloud computing environ-
ment using Google Cloud Functions to increase real-time effi-
ciency.

5. Highlighting the promising future directions.

The rest of the paper is structured as follows: The relevant related
works regarding ML-based data analytics solutions and the requirement
for transparency to build confidence in AI models are covered in
Section 2. The proposed framework is described in Section 3 along
with how its various elements work together to accomplish the desired
outcomes. The results obtained using a few test cases are discussed
in Section 4. Section 5 demonstrates the proposed application and
Section 6 discusses the important findings of this research. Finally,
Section 7 concludes the paper and offers future directions.

11

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100150
2. Related works

Various AutoML systems have been developed in recent years
that offer partial or full ML automation, including systems like Auto-
sklearn [15], tree-based pipeline optimisation tool (TPOT) [16], Auto-
WEKA [17], and ATM [18] and commercialised software like Google
AutoML,' RapidMiner,? and DarwinAL® These methods include auto-
matic feature engineering [19,20], automatic model selection [21,22],
automatic hyperparameter tuning [23], and automatic data prepara-
tion [24,25]. Some methods make an effort to automatically select an
ML algorithm while also optimising its hyper-parameters.

Many of the AutoML solutions, some of which are the results of
contests from 2015 to 2018, were developed in the last few years. The
ChaLearn AutoML Challenges* primarily focused on automating the
solution of supervised machine learning tasks under certain computing
restrictions. These computational restrictions varied significantly across
tasks, but they were typically time (about 20 min for training and
assessment) and memory consumption restrictions. Guyon et al. [26]
review a thorough examination of the AutoML difficulties from 2015
to 2018. In essence, neural architecture may be considered a specific
kind of indifferentiable hyperparameter. Hyperparameter optimisation
is one of these activities that most directly relates to the approach we
suggest in this study. Grid search and random search [27] are two of the
simplest techniques to find a suitable configuration of hyperparameters
from a list of options without considering past results. There are various
sets of approaches that are often used in hyperparameter optimisation.
Being one of the most well-known Sequential Model-based Optimisa-
tion (SMBO) [28] techniques that can take advantage of historical data,
Bayesian optimisation [29] uses the Gaussian method for prototyping
the surrogate function that roughly imitates the relationships between
hyperparameters and their desired outputs. All of these techniques
are, however, black-box optimised. The single study on AutoML for
graph representation [30] employs the Gaussian Process to determine
the performance of the hyperparameters, but it scarcely explains how
individual hyperparameter affects the performance of the model or
why a specific value is picked for a hyperparameter to execute the
subsequent assessment trial.

Al systems that can give human-understandable explanations for
their activities and output are referred to as Explainable AI (XAI) [6].
By their very nature, end users may be curious as to how and why
systems reach any conclusion [31]. They are seen as “black boxes”
when the sophistication of Al algorithms and systems increases [32].
Growing complexity may lead to a lack of openness that makes it
difficult to comprehend these systems’ logic, which has a detrimental
impact on users’ faith in them.

2.1. Critical analysis

Table 1 compares the proposed CloudAISim with existing frame-
works based on important parameters. The model accuracy of the
aforementioned studies is pretty high; however, the generalisation of
the studies is limited. Only 3 of the studies have formalised feature
extraction procedures that can be generalised. Two of the research have
implemented explainability, which can be critical for many industries
such as healthcare. None of the mentioned studies have implemented
their framework in a serverless cloud environment. A novel CloudAISim
framework that has high customisation and consists of a web interface
that can be very easily used by non-technical users. This will enable the
non-expert to unleash the power of Al and can be immensely helpful for
any industry such as the healthcare industry. Moreover, the CloudAISim

https://cloud.google.com/automl
https://rapidminer.com
https://darwinai.com/
http://automl.chalearn.org/

N

https://cloud.google.com/automl
https://rapidminer.com
https://darwinai.com/
http://automl.chalearn.org/

A. Bhowmik et al.

Table 1
Comparison of proposed CloudAISim framework with existing solutions.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100150

Related works Dataset Feature AutoML Cloud computing XAI
extraction (Serverless)
Ferreira et al. [33] Pneumonia dataset X WebDL X X
Shawi et al. [34] Breast Cancer Wisconsin v NNI X X
Alaa et al. [35] Risk factors Cystic Fibrosis v AutoPrognosis X v
Alnegheimish et al. [36] MIMIC-III v MLBlocks X X
Garouani et al. [13] Big Industrial Data X AMLBID X v
Breast Cancer
Wisconsin, Covid,
CloudAISim (Proposed work) Heart Disease v AutoKeras v v

Cleveland Dataset

Hyper
parameter
Optimization

| Feature
L Engineering

Exploratory

> Data Analysis

Dataset

—D[Model Building

Model

validation Model Testing ——> Explainability

Fig. 1. The Abstract View of Proposed Framework.

framework enhances the scalability of the environment and can be
incorporated into a large-scale scenario. To the best of our knowledge,
the proposed solution is the first to use generic explanation techniques
of Auto ML systems as decision support systems in a serverless setting.

3. CloudAISim framework

In this section, the description of the proposed approach used to
achieve the objectives of the work has been discussed. Fig. 1 shows the
abstract view or high-level view of the proposed CloudAISim frame-
work. As shown in Fig. 1, the framework accepts the dataset from the
user’s device, like a smart phone or laptop. Then it is passed to the
Automated EDA tool for explanatory data analysis, and then feature
engineering is done on the dataset by the feature tool, the best machine
learning model is generated, and hyperparameter tuning is done. After
that, the explanation of the prediction is shown using lime. The entire
execution is conducted on a serverless platform.

3.1. Architecture

Fig. 2 shows the main architecture of CloudAISim, which includes
AutoML models, and the usage of Explainable AI (XAI) to demonstrate
the working of the ML models, as well as the serverless architecture of
the prototype. The main components of the proposed architecture are
discussed further in Sections 3.2, 3.3, 3.4, 3.5, 3.6, and 3.7.

3.2. Dataset

Firstly, the “Breast Cancer Wisconsin (Diagnostic) Data Set” by
“UCI ML Repository” is implemented on the novel methodology for the
paper [37]. The dataset contains tabular data with 32 features and over
569 data points. A fine needle aspirate (FNA) of a breast lump is used
to generate the features from a digital image in 3-dimensional space
as described by Bannett et al. [38]. They characterise the properties
of all the observable cell nuclei in the image. Every data point is
classified into either Benign (B) or Malignant (M) class. Secondly, the
architecture is applied to the “Heart Disease Cleveland dataset” Dataset
by “UCI ML Repository” [39]. The dataset constitutes over 300 patients’
data with 75 attributes. However, only 14 of the features are taken
into consideration for determining whether a patient has heart disease
or not. Thirdly, the “Diabetes dataset”, originally from the National
Institute of Diabetes and Digestive and Kidney Diseases, is used in this

12

work [40]. The goal is to determine if a patient has diabetes based on
diagnostic parameters. The implemented Diabetes dataset is a subset of
an enormous dataset with 10 attributes and 768 instances. All patients
are Pima Indian females who are at least 21 years old. Finally the
“Covid-19” is a dataset, used in the paper [41] which contains data
from 800 people and 26 attributes such as their profession, health pa-
rameters and lifestyle parameter, and the risk factor of getting infection
by covid is mentioned. The higher the risk factor the higher chance of
getting infected by Covid. So we classified the person with a risk factor
of more than 0.5 as high (1) and less than 0.5 as low (0).

3.3. Serverless cloud

Serverless computing is a method for providing backend services
on an ‘“as-needed” basis. The cloud provider controls the servers on
behalf of their customers while expanding and maintaining the system
as necessary [42]. This is the cloud computing execution paradigm.
Since any device, regardless of its specifications, may access an ap-
plication, it becomes a resource independently [43]. This allows for
greater scalability and flexibility as the application can automatically
scale up or down based on demand [44]. Additionally, serverless
computing eliminates the need for developers to worry about server
management and infrastructure maintenance, allowing them to focus
solely on writing and deploying code.

The experimental architecture was developed on Google Cloud Plat-
form (GCP), a serverless solution enabling efficient data storage and
analysis. The proposed experiment was conducted using cloud functions
in the Python 3.9 runtime. Google Cloud Storage is also used for storing
the data and its respective output. GCP also allows seamless inter-
actions with other Google Cloud services, like Cloud Storage events,
which are used as triggers for the respective cloud functions. This
architecture also offers built-in security features and automatic scaling
capabilities, ensuring optimal performance and cost efficiency for the
application.

In the proposed architecture, three subsequent cloud functions were
used as shown in Fig. 2:

1. To perform automated feature selection and feature engineering
using the open-source Feature tools;

. To generate an AutoML model and predict the results using the
Auto-Keras Python library; and

. To explain the predicted results.

A. Bhowmik et al.

g PANDAS
7 PROFILING

Co =

Dataset) Google Cloud Platform

i Tabuar Feature.
........ — () —
>O o

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100150

]

®
TensorBoard

A

Engg

Featuretools

——> Cloud - Cloud / On device interaction

""""""""" »> Cloud - Local interaction

: © Explainability £------- > Q
——> O Logs
: K AutoKeras O Lime
v
O re_pata) Auto_ML © Model > () Ex_AI
O Train_Test_ ‘
Data

© Results

i

ilil Plotly

Fig. 2. CloudAISim Architecture.

The model explanation is completed using the Lime library. In place
of standard Lime explanations, SP-Lime (Submodular Pick Locally In-
terpretable Model-Agnostic Explanations) is used to explain the model’s
global decision boundary over a sample set of observations.

3.4. Data preprocessing

Case-specific and automated data pre-processing was a consider-
able challenge while implementing the system in a cloud platform.
This section discusses the implementation of Pandas Profiling® and
Feature Tools® for automated and rapid EDA and Feature Engineering
respectively.

3.4.1. Automated EDA using Pandas profiling

Exploratory data analysis (EDA) is a vital stage in constructing
any impressive model. EDA involves finding outliers, spotting missing
values, figuring out how skewed the datasets are, converting categorical
variables, and overall understanding the underlying characteristics and
ways to apply them in models.

Pandas Profiling® is a user-friendly open-source Python tool for
automated exploratory data analysis. It generates a data frame report
in a range of different formats. Although the Pandas’ df.describe the
operation can demonstrate basic information, it does not give a full
data frame report. Pandas profiling was implemented in the system
architecture for automated and rapid analysis of data.

3.4.2. Automated feature engineering using feature tools

Feature engineering is the process of creating and adding new
features, or variables, to the dataset to enhance the effectiveness and
precision of the machine learning model. Case-based knowledge and
accessible data sources serve as the foundation for the most efficient
feature engineering. Without requiring any human input, automated
feature extraction employs deep networks or specialised algorithms to
automatically extract characteristics from images or signals.

Featuretools’ is a free and open-source Python architecture for au-
tomated feature engineering. It generates features automatically from
relational and temporal information. Deep Feature Synthesis (DFS) is
utilised for implementing automated feature engineering. Featuretools
gives users the ability to perform feature selection by (1) removing null
values; (2) removing single-value features; and (3) removing highly
correlated attributes. For machine learning and predictive modelling,
one can construct useful features by combining the raw data with
information about the data.

5 https://pandas-profiling.ydata.ai/docs/master/index.html
6 https://www.featuretools.com

13

3.5. AutoML

The time-consuming and iterative activities required in developing
a machine learning model may be automated using Automated Ma-
chine Learning or AutoML. It provides a diverse range of approaches
to help those with little background in machine learning access this
technology. It attempts to minimise the requirement for experienced
individuals to create the ML model. Additionally, it helps to increase
productivity and promote machine learning research [13].

To properly comprehend automated machine learning, we must
first understand the life cycle of a data science or machine learning
project. A data science project’s lifetime typically includes many stages,
including data cleaning, feature engineering, model selection, param-
eter optimisation, and model validation. Even though technology has
improved so much, all of these procedures still involve manual labour,
which takes time and calls for several data scientists with the necessary
skills. For non-ML professionals, it is quite challenging to do these jobs
because of their intricacies. The demand for automating these activities
has increased because of the rapid development of ML apps, which will
make it easier for those without technical expertise to utilise them. Con-
sequently, automated machine learning was developed in order to fully
automate the process, from data cleansing to parameter optimisation.
Not only does it save time, but it also performs fantastically.

In this paper, AutoML is considered the first mandatory cloud func-
tion for the framework. It is launched when the clean data is uploaded
to the designated bucket. This will create five different models from
the training set (which makes up 70% of the total data), train them
for 100 iterations, and select the model with the highest accuracy
for the given dataset. The performance matrices (Confusion Matrix,
Classification Report) will be generated after the chosen model has been
evaluated on test data (30% of the supplied data). The model itself,
all training and testing data, performance matrices, and more will be
exported into separate cloud buckets as in Fig. 1. The TensorFlow-Keras
standard format for exporting ML models, .h5, is used to export the
architecture. There are multiple models to perform AutoML operations.
Some of them are given in Table 2.

3.5.1. AutoKeras

A Keras-based AutoML system is called AutoKerac.” It was created
by Texas A & M University’s DATA Lab. Making machine learning
accessible to everyone is the aim of AutoKeras. It searches using Neu-
ral Architecture Search (NAS) algorithms to eventually eliminate the

7 https://autokeras.com/

https://pandas-profiling.ydata.ai/docs/master/index.html
https://www.featuretools.com
https://autokeras.com/

A. Bhowmik et al.

requirement for deep learning engineers. AutoKeras takes advantage of
Keras to conduct a potent neural network search for model parameters.
It offers modular building pieces to carry out architectural searches as
well as high-level end-to-end APIs like ImageClassifier or TextClassifier
to address machine learning challenges in a few lines.

3.5.2. Auto-sklearn

The detailed description of the Auto-sklearn approach by Feurer
et al. [15] demonstrates how it empowers the machine learning user
from algorithm selection and hyperparameter setting. Meta-learning,
Bayesian optimisation (BO), and ensemble construction make up its
three main elements. Auto-sklearn uses traditional ML algorithms pro-
vided by the sklearn library. The optimal hyperparameters may be
found using Bayesian optimisation, which is data-efficient. However,
Auto-Keras performs better than Auto-sklearn when utilising data that
is suitable for deep neural networks. Moreover, the recent version of
Auto-Sklearn has compatibility issues with various Operating systems.
Hence, it was not considered for this research work.

3.5.3. TPOT

The tree-based pipeline optimisation tool (TPOT) [16], an AutoML
framework, is based on an evolutionary method that uses genetic
programming to select a framework for implementation. To provide
the optimal Python code, it can evaluate hundreds of pipelines. It has
built-in classification and regression algorithms. It combines several
pipeline operators to create flexible tree-based pipelines. ML models
from the Sklearn library or different data transformation operators
make up these operators. However, it cannot handle categorical data
and language processing power. TPOT mainly employs ML pipelines
but with complex datasets, deep learning implementation is required
which is provided by AutoKeras.

3.5.4. AutoWEKA

AutoWEKA [17] is an automated machine learning tool, which
has been designed to find the best machine learning algorithm au-
tomatically for any dataset. It uses the WEKA framework which is a
meta-learning approach for finding the best algorithm for a specific
problem by comparing the performance of a lot of machine learning
algorithms on the given dataset. AutoWEKA also tunes the hyperparam-
eters of the best algorithm selected to improve its performance. It is a
user-friendly tool that requires very limited user input and is suitable
for both experts and non-experts. AutoWEKA is an open-source software
tool that can be used freely.

3.5.5. Google AutoML

Google AutoML? is an attempt by Google to empower profession-
als with limited knowledge in Machine Learning to generate models
based on their specific needs. They use techniques like evolutionary
algorithms, and neural architectures to build a deep learning model
using data and prompts by the user. However, it is only restricted to
Google Clouds and it is very difficult to transfer enormous amounts of
data from existing systems to a cloud network.

3.5.6. DarwinAI

DarwinAlI* is an Al solutions provider that provides a range of Al
tools and technologies to develop and deploy Neural Network models.
This allows users to quickly and easily develop highly optimised neural
network architectures without requiring a deep understanding of neural
network architecture design. The platform also includes a range of tools
for data preparation, model training, and model deployment, making it
a comprehensive end-to-end Al tool.

14

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100150

3.5.7. Lale

Lale [45] is a semi-automated approach using scikit-learn, for tuning
hyperparameters and selecting algorithms. It mainly aims at users with
some knowledge of data science and machine learning, providing a
high-level interface to experiment with different neural structures with
their data. Lale uses popular existing tools like GridSearchCV, XGBoost,
etc. for automation and interoperability. Lale is available as an off-the-
shelf tool in Python. Nevertheless, it is only limited to professionals and
is difficult to extend it to other domains.

3.5.8. Auto Pytorch

Auto Pytorch [46] is an automl framework based Pytorch. It was
developed by AutoML Groups Freiburg and Hannover in the year
2021 with close collaboration with the University of Freiburg. This
automl architecture is specialised to solve tabular data and time series
datasets. This framework combines neural architecture search with ML
hyperparameter tuning. It gives a developer-friendly API to interact
with the model similar to AUtoKeras. However it does not optimise for
Image and Text data as input format, so it is less generalised compared
to AutoKeras.

3.5.9. Online AutoML (OAML)

The Online AutoML framework (OMAL) is an extension of an open-
source General Automated Machine Learning Assistant (GAMA) frame-
work. It has been developed by Pieter Gijsbers [47] in 2019. This
framework generates an ideal machine-learning model depending upon
the dataset and resource limitation provided to the framework. GAMA
uses several search processes to find some implacable machine-learning
models and combine them into one ensemble pipeline. OMAL extends
GAMA?’s ability to handle online learning.

3.6. Result visualisation

Once AutoKeras creates the best neural network based on the given
data, it is very important for the user to know and evaluate its perfor-
mance. Hence, it is very important to visualise the result. We have used
Plotly to satisfy this requirement.

3.6.1. Plotly

Plotly® is a graphing tool used to communicate data with customised
visualisation and interactive graphs. It is available as a free-for-use li-
brary available for many coding languages like Python and R languages.
Plotly provides an extensive range of charts and graphs that can be
easily embedded in web applications. Thus, Plotly was used for most
of the visualisations in the application to make it user-friendly and
interactive.

3.7. Explainable AI (XAD)

In the field of machine learning, “explanations” at different levels
offer insights into various elements of the model, from knowledge of
the learnt representations to the identification of various prediction
techniques, general trends and patterns, as well as the evaluation of the
general model behaviour [41]. The two types of model explainability
are global explainability and local explainability. When a model is
globally explainable, users may infer its meaning from its general
organisation. Local explainability only takes into account a single input
and seeks to understand why the model chooses a certain course of
action.

8 https://plotly.com

https://plotly.com

A. Bhowmik et al.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100150

Table 2
Comparison of different AutoML models.
Tool Framework Auto feature extraction User interface Explainability
Auto-Sklearn [15] Scikit-learn Only Missing Values X X
AutoKeras® Keras X X X
TPOT [16] Scikit-learn X X X
AutoWeka [17] Weka X X X
Google AutoML” TensorFlow,SparkML Only Missing Values v v
DarwinAI® TensorFlow v v v
Lale [45] Scikit-learn X X X
Auto-PyTorch [46] PyTorch X X X
Online AutoML (OAML) [48] GAMA X X X
2 https://plotly.com
b https://rapidminer.com
¢ http://automl.chalearn.org/
3.7.1. Local interpretable model-agnostic explanations (LIME) Table 3
The LIME methodology proposed by Ribeiro et al. [49] generates Classification report for 75:25 train-validation ratio of Breast Cancer dataset.
local explanations of classifier f predictions by fitting a simpler, in- Class Accuracy Precision Recall f1-score
terpretable explanation model g locally around the data point x to 0 0.97 0.99 0.98 0.98
be explained. To maintain interpretability in the generated expla- 1 0.99 0.96 0.98 0.97
nations, LIME represents the data in a way that is comprehensible,
locally accurate, and model-neutral. These explanations are simpler Table 4
because they demonstrate a closer relationship between the input and Classification report for 75:25 train-validation ratio for Heart Disease Cleveland dataset.
prediction [50]. Classes Accuracy Precision Recall fl-score
For instance, let the grey-scale value vector of pixels in an image 0 0.95 0.98 0.94 0.96
be x € R?. A comprehensible representation of the initial dataset is 1 0.95 0.92 0.98 0.95

used to fit the XAI model. The presence or absence of pixels in the
picture might therefore be represented by a binary value vector as an
interpretable representation of x’ € {0,1}4". (absence refers to having
the value of a background colour, e.g., white). As a result of resolving
the optimisation issue, the LIME explanation § is generated (1).

g =argminZ(f,g,m,)+ 2(g) M

geCG
Here,

G = the explanation model family,

< = loss function,

7, = the locality around x,

Q = complexity penalty.

Practically, G is the collection of linear regression models, with Q
limiting the expanse of explanatory features that can possess regression
weights other than zero (even if several explanatory models may be
employed). The weighted L2 distance is assumed to represent the loss
function as in Egs. (2).

L(frgm) = Y mz)(f(z) - 8(z)) @
1

where the sum passes over a collection of selected perturbed points

around x, (z;, z,f)i =1,...,m, where,

z; = a disturbed data point in the initial dataset,

z; = the corresponding explainable version;

Here, ,(z;) assigns a weight to each sample according to how sim-
ilar they are to the point x, which is used to explain the classification
result.

The second cloud function receives the model along with the train-
ing and test data when they are generated and uploaded to their
respective cloud storage. The function generates SP-Lime explanations.
For generating the explanations, a random 20 test data samples were
chosen, among them, 5 results were generated. The combined graphs
were then uploaded to a cloud storage bucket as a single HTML file.
Any client-side web or mobile application can use the Google Cloud
SDK to retrieve data, upload predictions, and explain them.

4. Validation of CloudAISim toolkit: Modelling of healthcare ap-
plication

We used a healthcare application as a case study in order to verify
the scientific reliability of this proposed CloudAISim framework. So,

15

this section discusses the experimental process, datasets, and data
preparation with all the relevant details on several use cases as in
Table 7. The results on different datasets are compared against each
other visually and through various metrics. In the healthcare domain,
we have considered four different datasets such as Breast Cancer Wis-
consin Diagnosis, Heart Disease Cleveland Dataset, Diabetes Dataset
and COVID-19 Dataset.

4.1. Case I: Breast cancer Wisconsin diagnosis

The greatest cause of cancer-related death among women world-
wide and the malignancy with the highest rate of diagnosis is breast
cancer [51]. According to Mubarak’s epidemiological research, breast
cancer, a particularly deadly kind of cancer, can cause death and
mortality in women if it is not recognised in its early stages [52]. It can
be found using a variety of techniques, including X-ray mammography,
3-D ultrasound, computed tomography, positron emission tomography,
magnetic resonance imaging (MRI), and breast temperature monitor-
ing, although a pathology diagnosis is the most reliable [53]. Sex, age,
oestrogen, family history, gene abnormalities, an unhealthy lifestyle,
and other variables linked to the development of the illness are only a
few of the many risk factors for breast cancer [54].

Our dataset contains tabular data with 32 features and over 569
data points. A fine needle aspirate (FNA) of a breast lump is used
to generate the features from a digital image in 3-dimension. The
model is trained-tested with a 75:25 ratio of this dataset as given in
Table 3. With such specifications, The proposed application produced
an accuracy of 98% which is much better than existing cloud-based
models. Further, the Confusion matrix and the ROC curve are also
shown in Fig. 3.

4.2. Case II: Heart Disease Cleveland Dataset

Several different cardiac disorders are referred to as “heart disease”.
Coronary Artery Disease (CAD), which disrupts the blood flow to the
heart, is the most typical kind of heart disease in the United States.
A heart attack may result from reduced blood flow. Heart illness can

https://plotly.com
https://rapidminer.com
http://automl.chalearn.org/

A. Bhowmik et al.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100150

Confusion Matrix

ROC Curves 06
10
’/
-
,z’ g 05
0.8 e P
o} ’,’
& s @ 0.4
v 06 4 -7 =)
2 5 2
g ’r' -
- © -
v 0.4 - 5 e
] e o
B ROC curve of class 0 (area = 0.97) <
021 ,,’ = ROC curve of class 1 (area = 0.97) W -0.2
7 ® = micro-average ROC curve (area = 0.98) ,E
’/’ = = macro-average ROC curve (area = 0.97)
0.0 T T T T -0.1
0.0 0.2 04 06 08 10
False Positive Rate
1
False Tue
Predicted Values
Fig. 3. ROC curve and Confusion matrix for Breast Cancer Dataset.
Confusion Matrix
ROC Curves
10 -’--lunu-l-l-l------- pd
- 05 - - -7
-
3 08 1f s -
= 04 & = -
w 5 - PR
w - -
3 e - -~
S -03 g & 42
o Ed
E g o4 - P
Y
2 K -
- az v B o ROC curve of class 0 (area = 0.95)
£ 02 ’,’ = ROC curve of class 1 (area = 0.95)
-01 -7 = = micro-average ROC curve (area = 0.95)
’/’ ®= = macro-average ROC curve (area = 0.95)
0.0 T T T T
! 0.0 0.2 04 06 08 10
False Tue False Positive Rate
Predicted Values
Fig. 4. ROC curve and Confusion matrix for Heart Disease Cleveland Dataset.
Table 5 Table 6
Classification report for 75:25 train—validation ratio for Diabetes dataset. Classification report for 75:25 train-validation ratio of Covid-19 dataset.
Classes Accuracy Precision Recall fl-score Classes Accuracy Precision Recall fl-score
0 0.99 0.99 0.95 0.97 0 0.96 0.97 0.98 0.97
1 0.9 0.91 0.99 0.95 1 0.94 0.93 0.92 0.93

sometimes go unnoticed until a person exhibits the early symptoms or
signs of a cardiac arrest, heart failure, or an arrhythmia [55].

The dataset implemented in the proposed model constitutes over
300 patients’ data with 75 attributes. With a ratio of 75:25 from this
dataset, the model is trained and validated. With these conditions, the
proposed application obtained an accuracy of 95% with a precision and
recall of 0.95 and 0.96 respectively (as shown in Table 4). In addition,
Fig. 4 also displays the ROC curve and the Confusion matrix.

4.3. Case III: Diabetes dataset

Diabetes is a chronic condition brought on by either insufficient in-
sulin production by the pancreas or inefficient insulin use by the body.
The hormone called insulin controls blood sugar levels. Uncontrolled
diabetes frequently results in hyperglycemia, or elevated blood sugar,
which over time causes substantial harm to many different bodily
systems, including the neurons and blood vessels. A total of 1.5 million

fatalities were directly related to diabetes in 2019, and 48% of these
deaths occurred in those under the age of 70. Diabetes contributed to
an additional 460,000 renal disease deaths, and high blood glucose is
responsible for 20% of cardiovascular fatalities around the world [56].

To test the proposed application, the Diabetes dataset from the
National Institute of Diabetes and Digestive and Kidney Disease is
taken into consideration. The dataset constituted 10 characteristics
and 768 instances with all patients being Pima Indian females who
are at least 21 years old. The model is trained-tested on the 75:25
ratio of the dataset and achieved an overall accuracy of 96%. The
Classification report is provided in Table 5. Further, the ROC-AUC
curve and confusion matrix are given in Fig. 5.

4.4. Case IV: COVID-19 dataset

In general, human life and health have been profoundly dam-
aged by the SARS-Cov2-led COVID-19 pandemic [57]. The majority

16

A. Bhowmik et al.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100150

Confusion Matrix

ROC Curves
10 .- Sttt et et et et et et et [l = ’, 06
-
N -
- ”
081., g Y -0.5
u . g o
] . - fris
< N -7 P -0.4
2 061e »~° g
S -y -7 s
€ [2 T -03
v 044 -, 2
PE b -7 <
b «= ROC curve of class 0 (area = 0.95) N -0.2
02 ’,’ ROC curve of class 1 (area = 0.95) 'E y
PR g = = micro-average ROC curve (area = 0.96) -01
’/' = = macro-average ROC curve (area = 0.95)
0.0 T T T T
00 02 04 06 08 10 !
False Positive Rate Fase e
Predicted Values
Fig. 5. ROC curve and Confusion matrix for Diabetes Dataset.
Confusion Matrix
ROC Curves
10 v
07 T LU NN N -
’/
’I
o 06 08 g
] 217% - -
o - ,’
= o5 2 »”
2 v 06 +*
i 2 -
- = -
5 04 5 -
ol ”
2 _03 4 04 -7
g H -
5 ‘ +— ROC curve of class 0 (area = 0.95)
i 183% 23.33% -02 02 -7 — ROCcurve of class 1 (area = 0.95)
s . micro-average ROC curve (area = 0.96)
-01 = ® = macro-average ROC curve (area = 0.95)
00+ T T T T
Fa;se hlje 0.0 02 04 06 08 10

Predicted Values

False Positive Rate

Fig. 6. ROC curve and Confusion matrix for COVID-19 Dataset.

of COVID-19 patients have mild to moderate symptoms. However, this
devastating outbreak caused suffering and death in people. COVID-19
has the propensity to target and harm lung tissue [58]. This devastating
outbreak caused death in 6,657,706 people around the world. Because
of its fast-spreading ability, the World Health Organisation (WHO)
designated COVID-19 a Public Health Emergency.

For Covid-19 dataset, tabular data is used with about 800 patient
data. It contains 26 attributes such as age, heart conditions, smoking,
pregnancy, etc. With a ratio of 75:25 from this dataset, the model is
trained and validated. With these conditions, the proposed application
has obtained an accuracy of 96% as shown in Table 6. In addition, Fig. 6
also displays the ROC curve and the Confusion matrix.

5. Simulation of proposed healthcare application

The aim of developing this application is to make AI usable for
healthcare professionals and normal users, without any technical knowl-
edge. An interactive web application is developed using StreamLit
Framework to make it possible. The Application is deployed on Stream-
Lit cloud and Google App Engine.

5.1. Implementation details

This section describes the working of the proposed model and its
implementation details. The proposed model uses AutoML to automate
the task of recognising and classifying different diseases and verifying
the diagnosis.

17

The entire system is a hybrid architecture of cloud-based platforms
and physical servers. The user end has a simple easy-to-read interface
to access the proposed framework.

The dataset is uploaded by the user into a cloud storage bucket
using the web interface as shown in Fig. 7. After the dataset is entered
into the system by the user, the basic information of the dataset like
datatype, class distribution, data correlation, etc. is available on the
interface. The next Exploratory Data Analysis tab allows the user to
select the data to be visualised and the attributes for analysis which will
then generate a detailed summary with the help of Pandas Profiling,
as shown in Fig. 8. All these computations are carried out on-device.
For feature engineering, the user has the choice to make the entire
process either manual or automated. In case of manual feature selec-
tion, all computations are carried out in the local device and will then
be uploaded into the feature engineering cloud bucket (FE_Data) in
GCP server. This gives the user freedom to select attributes, impute
missing values, perform feature transformation, and remove outliers
using different methods like Z-score, inter-quartile range, and so on.
When opting for automated feature engineering, the tabular dataset is
uploaded into a cloud bucket and the entire process is carried out in
the serverless platform using Featuretools (Feature_Engg function) and
is uploaded into the FE_Data bucket, as shown in Fig. 9.

As soon as any dataset is uploaded into the FE Data bucket, the
Auto_ML function automatically gets triggered in the cloud. This func-
tion has 3 main tasks (1) To generate the best possible model using
AutoKeras (default hyperparameters: 200 epochs and 50 max trials);
(2) To generate a Train-Test dataset for the upcoming explainability

A. Bhowmik et al.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100150

Table 7
Comparison of proposed model with various train-test ratios for each case study.
Type of datasets Train-Test ratio Precision Recall Accuracy fl-score
90:10 0.98 0.98 0.98 0.98
. . . . 80:20 0.97 0.99 0.98 0.98
Case I: Breast Cancer Wisconsin Diagnosis 70:30 0.97 0.98 0.98 0.98
60:40 0.97 0.96 0.97 0.97
90:10 0.97 0.97 0.97 0.97
. 80:20 0.95 0.96 0.95 0.96
Case II: Heart Disease Cleveland dataset 70:30 0.95 0.96 0.95 0.95
60:40 0.94 0.94 0.94 0.94
90:10 0.97 0.96 0.97 0.96
. 80:20 0.96 0.96 0.97 0.96
Case III: Diabetes dataset 70:30 0.95 0.96 0.96 0.96
60:40 0.91 0.92 0.92 0.92
90:10 0.97 0.97 0.98 0.97
80:20 0.97 0.97 0.98 0.97
Case IV: COVID-19 dataset 70:30 0.95 0.95 0.95 0.95
60:40 0.94 0.95 0.96 0.95
X =
Data: Breast Cancer Dataset
/ Data Sample Data . i Class Distribution
ataset Info
&) EDA us_mean = texture_mean rimeter_mean m
- Number of variables | 30 ms

g FeatureEn
d EE 12.3200 12.3900
/ Model

10.6000 18.9500
J Results

11.0400 16.8300
il Explanations

11.2800 13.3900

15.1900 13.2100
11.5700 19.0400
11.5100 23.9300
13.8100 23.7500
10.4900 19.2900

11.0600 14.9600

Data Corellation

Select attributes

s man § ot man § et e | s x

78.8500

69.2800

70.9200

73.0000

97.6500

74.2000

74.5200

91.5600

67.4100

71.4900

464.1000

Number of

346.4000 569

°

observations
373.2000

Number of classes 2
384.8000 0.1

Missing cells 0
711.8000 0.0
409.7000 00 DataType
403.5000 | 00| | Numeric 17070
597.8000 0.1 "

Categorical | 569
336.1000 0.0

Boolean 0
373.9000 0.1

Date 0

Scatterplot matrix of selected attributes

Fig. 7. Web Interface Showing Dataset Page with Breast Cancer Dataset.

function (default Train-Test split: 70-30); (3) To generate results in
form of confusion matrics, ROC-AUC curve, PR-curve and classification
reports which are plotted using Plotly to make the graphs interactive,
as shown in Fig. 10; (4) To generate Tensorflow Logs of the AutoKeras
model in the .zip format to the cloud bucket. This data can be accessed
by the client-side application using TensorBoard as demonstrated in
Fig. 11. Lastly, the LIME explainer cloud function(Ex_Al) is initiated
which accesses this model file along with the Train-Test dataset file
from the respective cloud bucket and generates 5 sample explanations
which are then displayed on the user screen in an HTML format, as
shown in Fig. 12. The Lime Explainer displays a feature value table
and a plot showing which feature contributed to a particular decision
and how much the contribution concerning other features. This means
more the value in the feature table, the higher the impact of the feature
in the predicted outcome by the model.

6. Discussion

By testing several instances of the function in different conditions,
we have realised that the execution lasted almost 2 min on average.
Although there are instances when the ‘auto_ml’ cloud function exe-
cutes for up to 4 min, it is evident that the large dataset requires more

18

Exploratory Data Analysis
o vata

T

& Featureéngg,
7 Model

2 Results

1l Bxplanations

Overview

Dataset statistics

Reproduction

Variable types
Number of variables 3 Numeric
Missing colls o

ing cels (%) oo%

15K8

Fig. 8. The EDA page with Breast Cancer Dataset.

memory and hardware capacity. On the other hand, we are also able
to understand from Fig. 13 that many of the function instances have
crashed due to several reasons. Two major reasons are the incompatibil-
ity of the dataset and the long execution time. As GCP has a limit on the

A. Bhowmik et al.

Feature Engineering

o/ bata

@ oA

G FeatureEngg
7 Model

2 Results

ul Explanations

{m-)uuoa @0

3
i
H

Results

o oaa
@ eoa Modelperformance report

@ FestureEng.

Confusion Matrix Metrics

7 Model
J Results

1l Explanations

ROC curve (07) Precison - Recallcurve

B0 —{ }—{)

AdoML

Explanatie Al Explanatons

Automated FE

Fig. 11. The Model page with Breast Cancer Dataset.

o Explainable Al: LIME Explainer

o Featurctngs Choos
7 Model

7 Results

il exptinetions Prdicion proabities NoT

diagnos's N 100

1615 <texture_m

Fig. 12. The LIME Explainer page with Breast Cancer Dataset.

19

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100150

Execution times
4min

= 2min

T T
UTC+5:30 06:00 12:00

Fig. 13. Execution Time Graph of ‘auto_ml’ cloud function.

Per call memory
1,000MIB

500MIB

UTC4+5:30

Fig. 14. Per call memory utilisation Graph of ‘auto_ml’ cloud function.

execution time of up to 5 min for cloud functions, the implementation
of a large ML model with a long training time might be problematic.
There are multiple ways to fix this issue, which include using multiple
functions parallelly or consecutively for a long training period.

Not only does execution time matter for cloud functions, but the
memory capacity of the functions also plays a very important role in a
cloud environment. According to Fig. 14, most of the function execution
took 500 MB to 1000 MB of memory bandwidth. The right balance
of memory and processing capability is crucial for smooth function
execution. As these are tabular datasets, this execution requires less
amount of memory bandwidth in comparison to the image and time
series datasets. That means while dealing with image and time-series
data we must increase the function memory capacity. The memory
bandwidth of the ‘auto_ml’ function is set at 4 GB at max so that any
interruption can be prevented.

It has been concluded that the CloudAISim framework only needs its
users to upload the dataset. After uploading the dataset, the CloudAISim
framework performs tasks such as EDA, feature engineering, selection
of the best machine learning/deep learning model, hyperparameter
optimisation, result prediction, and explainability of the result. This
makes the CloudAISim framework suitable for all non-experts and non-
coders to use the power of Al without writing a single line of code.
The CloudAISim framework has achieved a better accuracy of 98% in
comparison with existing work [34], which has achieved 85.75% while
considering the breast cancer Wisconsin dataset only.

7. Conclusions and future work

There has been substantial progress in globalizing the use of ML
to non-experts in data analysis. However, these robust support sys-
tems behave like highly efficient black boxes since they do not offer
comprehensive information on the recommendations and the internal
workings of these models. Traditional ML methods do not always
cater to the diverse nature of the datasets, and it is very difficult and
tedious for a non-professional to design models specifically for specific
datasets. Additionally, these powerful systems are mostly resource-
intensive models, which is a big obstacle for the healthcare industry.
Moreover, conventional machine learning approaches may not consis-
tently address the varied characteristics of datasets, making it chal-
lenging and laborious for individuals without the expertise to create
models tailored to particular datasets. In this paper, we have presented

A. Bhowmik et al.

a novel transparent serverless and self-explanatory AutoML framework
called CloudAISim to overcome these issues. The proposed framework
possesses the ability to autonomously select models in accordance with
the given dataset and the task. Further, we designed a healthcare
application as a case study in order to verify the scientific reliability of
this proposed CloudAISim toolkit. The proposed healthcare application
is promising for automated machine learning that has the potential to
make Al accessible to non-technical individuals and healthcare pro-
fessionals. An interactive web application that is user-friendly and
effective has been created using the StreamLit Framework and deployed
on both the Google App Engine and the StreamLit cloud. The model’s
maximum accuracy of 98% demonstrates that it is successful in achiev-
ing its objective. By providing a more effective and precise way to
analyse medical data, the application has the potential to help both
patients and healthcare professionals significantly.

7.1. Possible extensions of CloudAISim toolkit

In the future, the CloudAISim can be further extended in the follow-
ing ways:

1. Regression Model: The model is primarily addressing the classi-
fication data problem as it is the most prominent use case in the
healthcare domain. It can be extended into regression problems
as well.

. IoT Applications: The application of this model can be ex-
tended to further domains from agriculture to manufacturing
and finance [44].

. Training: The model can also be trained for incorporating
different types of inputs like images, audio files, text data etc.

. Time-series Data: StrutureDataClassifier and StrutureDataRe-
gressor deal with tabular data and it does not count on the other
forms of data such as time-series data [59]. Although time-series
data are less frequent than image data in the context of health
care, it is useful while measuring real-time patient activity.

. Data Variability: Different forms of data like images and videos
need more processing capability, which can be implemented us-
ing edge architecture and extended using a cloud model training
schedule [60].

. Edge Computing: Real-time disease detection using on-device
model prediction can be implemented in edge-fog and cloud
models.

. Privacy: Federated learning [61] can be implemented for the
privacy protection of the patients by which the learning model
can improve from individual patients’ model feedback.

Software availability

All the data, material and code involved in this research work are
available for public use in Github at abhimanyubhowmik/CloudAISim.

CRediT authorship contribution statement

Abhimanyu Bhowmik: Writing — original draft, Methodology, In-
vestigation, Formal analysis, Data curation, Conceptualization. Mad-
hushree Sannigrahi: Writing — original draft, Methodology, Inves-
tigation, Formal analysis, Data curation, Conceptualization. Deepraj
Chowdhury: Writing — original draft, Methodology, Investigation, For-
mal analysis, Data curation, Conceptualization. Ajoy Dey: Writing
— original draft, Methodology, Investigation, Formal analysis, Data
curation, Conceptualization. Sukhpal Singh Gill: Writing — original
draft, Supervision, Methodology, Investigation, Formal analysis, Data
curation, Conceptualization.

20

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100150
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to

influence the work reported in this paper.
References

[1] E. Brynjolfsson, L.M. Hitt, H.H. Kim, Strength in numbers: How does data-driven
decisionmaking affect firm performance? 2011, Available at SSRN 1819486.
[2] W. Samek, K.-R. Miiller, Towards explainable artificial intelligence, in: Explain-
able AI: Interpreting, Explaining and Visualizing Deep Learning, Springer, 2019,
pp. 5-22.
Y. Bengio, Y. LeCun, et al., Scaling learning algorithms towards Al, Large-Scale
Kernel Mach. 34 (5) (2007) 1-41.
E. Lindholm, J. Nickolls, S. Oberman, J. Montrym, NVIDIA Tesla: A unified
graphics and computing architecture, IEEE Micro 28 (2) (2008) 39-55.
S.S. Gill, M. Xu, C. Ottaviani, P. Patros, R. Bahsoon, A. Shaghaghi, M. Golec,
V. Stankovski, H. Wu, A. Abraham, et al., Al for next generation computing:
Emerging trends and future directions, Internet Things 19 (2022) 100514.
F. Xu, H. Uszkoreit, Y. Du, W. Fan, D. Zhao, J. Zhu, Explainable AI: A brief survey
on history, research areas, approaches and challenges, in: CCF International
Conference on Natural Language Processing and Chinese Computing, Springer,
2019, pp. 563-574.
[7] R. Singh, et al., Edge AL a survey, Internet Things Cyber-Phys. Syst. (2023).
[8] S. Iftikhar, et al., Al-based fog and edge computing: A systematic review,
taxonomy and future directions, Internet Things (2022) 100674.
G.K. Walia, et al., Al-empowered fog/edge resource management for IoT appli-
cations: A comprehensive review, research challenges and future perspectives,
IEEE Commun. Surv. Tutor. (2023).
A. Bhowmik, M. Sannigrahi, D. Chowdhury, A.D. Dwivedi, R.R. Mukkamala,
DBNex: Deep belief network and explainable Al based financial fraud detection,
in: 2022 IEEE International Conference on Big Data, Big Data, IEEE, 2022, pp.
3033-3042.
S. Tuli, et al., Predicting the growth and trend of COVID-19 pandemic using
machine learning and cloud computing, Internet Things 11 (2020) 100222.
F. Desai, et al., HealthCloud: A system for monitoring health status of heart
patients using machine learning and cloud computing, Internet Things 17 (2022)
100485.
M. Garouani, A. Ahmad, M. Bouneffa, M. Hamlich, G. Bourguin, A. Lewandowski,
Towards big industrial data mining through explainable automated machine
learning, Int. J. Adv. Manuf. Technol. 120 (1) (2022) 1169-1188.
M. Golec, et al., HealthFaaS: Al based smart healthcare system for heart patients
using serverless computing, IEEE Internet Things J. (2023).
M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, F. Hutter, Auto-sklearn 2.0:
Hands-free automl via meta-learning, 2020, arXiv:2007.04074 [cs.LG].
R.S. Olson, J.H. Moore, TPOT: A tree-based pipeline optimization tool for
automating machine learning, in: Workshop on Automatic Machine Learning,
PMLR, 2016, pp. 66-74.
L. Kotthoff, C. Thornton, H.H. Hoos, F. Hutter, K. Leyton-Brown, Auto-WEKA:
Automatic model selection and hyperparameter optimization in WEKA, in:
Automated Machine Learning, Springer, Cham, 2019, pp. 81-95.
T. Swearingen, W. Drevo, B. Cyphers, A. Cuesta-Infante, A. Ross, K. Veeramacha-
neni, ATM: A distributed, collaborative, scalable system for automated machine
learning, in: 2017 IEEE International Conference on Big Data, Big Data, IEEE,
2017, pp. 151-162.
U. Khurana, H. Samulowitz, D. Turaga, Feature engineering for predictive
modeling using reinforcement learning, in: Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 32, No. 1, 2018.
F. Nargesian, H. Samulowitz, U. Khurana, E.B. Khalil, D.S. Turaga, Learning
feature engineering for classification, in: Ijcai, 2017, pp. 2529-2535.
M. Reif, F. Shafait, M. Goldstein, T. Breuel, A. Dengel, Automatic classifier
selection for non-experts, Pattern Anal. Appl. 17 (1) (2014) 83-96.
R. Vainshtein, A. Greenstein-Messica, G. Katz, B. Shapira, L. Rokach, A hybrid
approach for automatic model recommendation, in: Proceedings of the 27th ACM

[3]
[4]

[5]

[6]

[91

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]

International Conference on Information and Knowledge Management, 2018, pp.
1623-1626.

M. Feurer, J. Springenberg, F. Hutter, Initializing bayesian hyperparameter
optimization via meta-learning, in: Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 29, No. 1, 2015.

B. Bilalli, A. Abell, T. Aluja-Banet, R. Wrembel, Automated data pre-processing
via meta-learning, in: International Conference on Model and Data Engineering,
Springer, 2016, pp. 194-208.

B. Bilalli, A. Abellé, T. Aluja-Banet, R.F. Munir, R. Wrembel, Presistant: data
pre-processing assistant, in: International Conference on Advanced Information
Systems Engineering, Springer, 2018, pp. 57-65.

1. Guyon, L. Sun-Hosoya, M. Boullé, H.J. Escalante, S. Escalera, Z. Liu, D. Jajetic,
B. Ray, M. Saeed, M. Sebag, et al., Analysis of the automl challenge series,
Autom. Mach. Learn. (2019) 177.

[23]

[24]

[25]

[26]

https://github.com/abhimanyubhowmik/CloudAISim
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb1
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb1
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb1
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb2
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb2
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb2
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb2
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb2
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb3
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb3
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb3
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb4
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb4
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb4
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb5
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb5
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb5
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb5
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb5
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb6
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb6
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb6
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb6
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb6
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb6
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb6
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb7
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb8
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb8
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb8
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb9
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb9
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb9
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb9
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb9
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb10
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb10
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb10
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb10
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb10
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb10
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb10
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb11
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb11
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb11
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb12
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb12
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb12
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb12
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb12
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb13
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb13
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb13
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb13
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb13
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb14
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb14
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb14
http://arxiv.org/abs/2007.04074
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb16
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb16
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb16
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb16
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb16
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb17
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb17
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb17
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb17
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb17
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb18
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb18
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb18
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb18
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb18
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb18
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb18
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb19
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb19
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb19
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb19
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb19
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb20
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb20
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb20
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb21
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb21
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb21
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb22
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb22
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb22
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb22
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb22
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb22
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb22
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb23
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb23
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb23
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb23
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb23
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb24
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb24
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb24
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb24
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb24
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb25
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb25
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb25
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb25
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb25
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb26
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb26
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb26
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb26
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb26

A. Bhowmik et al.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, J. Mach.
Learn. Res. 13 (2) (2012).

F. Hutter, H.H. Hoos, K. Leyton-Brown, Sequential model-based optimization for
general algorithm configuration, in: International Conference on Learning and
Intelligent Optimization, Springer, 2011, pp. 507-523.

J. Snoek, H. Larochelle, R.P. Adams, Practical bayesian optimization of machine
learning algorithms, Adv. Neural Inf. Process. Syst. 25 (2012).

K. Tu, J. Ma, P. Cui, J. Pei, W. Zhu, Autone: Hyperparameter optimization
for massive network embedding, in: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2019, pp.
216-225.

B. Hall, D.D. Henningsen, Social facilitation and human-computer interaction,
Comput. Hum. Behav. 24 (6) (2008) 2965-2971.

M. Garouani, A. Ahmad, M. Bouneffa, A. Lewandowski, G. Bourguin, M. Hamlich,
Towards the automation of industrial data science: A meta-learning based
approach, in: ICEIS (1), 2021, pp. 709-716.

J. Ferreira, C. Costa, Web platform for medical deep learning services, in: 2021
IEEE International Conference on Bioinformatics and Biomedicine, BIBM, IEEE,
2021, pp. 1727-1732.

R.E. Shawi, K. Kilanava, S. Sakr, An interpretable semi-supervised framework for
patch-based classification of breast cancer, Sci. Rep. 12 (1) (2022) 1-15.

A.M. Alaa, M. van der Schaar, Prognostication and risk factors for cystic fibrosis
via automated machine learning, Sci. Rep. 8 (1) (2018) 1-19.

S. Alnegheimish, N. Alrashed, F. Aleissa, S. Althobaiti, D. Liu, M. Alsaleh, K.
Veeramachaneni, Cardea: An open automated machine learning framework for
electronic health records, in: 2020 IEEE 7th International Conference on Data
Science and Advanced Analytics, DSAA, IEEE, 2020, pp. 536-545.

Breast cancer wisconsin (diagnostic) data set, 1995, URL: https://archive.ics.uci.
edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29.

K.P. Bennett, O.L. Mangasarian, Robust linear programming discrimination of
two linearly inseparable sets, Optim. Methods Softw. 1 (1) (1992) 23-34.

UCI Machine Learning Repository, Heart disease data set, 1998, URL: https:
//archive.ics.uci.edu/ml/datasets/heart+Disease.

National Institute of Diabetes and Digestive and Kidney Diseases, Diabetes
dataset, 2022, URL: https://www.kaggle.com/datasets/mathchi/diabetes-data-
set.

D. Chowdhury, S. Poddar, S. Banarjee, R. Pal, A. Gani, C. Ellis, R.C. Arya, S.S.
Gill, S. Uhlig, CovidXAIL: Explainable Al assisted web application for COVID-19
vaccine prioritisation, Internet Technol. Lett. (2022) e381.

S.S. Gill, Quantum and blockchain based serverless edge computing: A vision,
model, new trends and future directions, Internet Technol. Lett. (2021) e275.
A. Bhowmik, M. Sannigrahi, D. Chowdhury, D. Das, RiceCloud: A cloud inte-
grated ensemble learning based rice leaf diseases prediction system, in: 2022
IEEE 19th India Council International Conference, INDICON, IEEE, 2022, pp.
1-6.

S.S. Gill, et al.,, Modern computing: Vision and challenges, Telematics Inform.
Rep. (2024) 1-46.

21

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100150

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

M. Hirzel, K. Kate, P. Ram, A. Shinnar, J. Tsay, Gradual automl! using lale, in:
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2022, pp. 4794-4795.

L. Zimmer, M. Lindauer, F. Hutter, Auto-pytorch tabular: Multi-fidelity Met-
aLearning for efficient and robust AutoDLL. arXiv 2020, 2000, arXiv preprint
arXiv:2006.13799.

P. Gijsbers, J. Vanschoren, GAMA: Genetic automated machine learning assistant,
J. Open Source Softw. 4 (33) (2019) 1132, http://dx.doi.org/10.21105/joss.
01132.

B. Celik, P. Singh, J. Vanschoren, Online automl: An adaptive automl framework
for online learning, Mach. Learn. 112 (6) (2023) 1897-1921.

M.T. Ribeiro, S. Singh, C. Guestrin, Model-agnostic interpretability of machine
learning, 2016, arXiv preprint arXiv:1606.05386.

T. Peltola, Local interpretable model-agnostic explanations of Bayesian predictive
models via Kullback-Leibler projections, 2018, arXiv preprint arXiv:1810.02678.
L. Wilkinson, T. Gathani, Understanding breast cancer as a global health concern,
Br. J. Radiol. 95 (1130) (2022) 20211033.

S. Mubarik, Y. Yu, F. Wang, S.S. Malik, X. Liu, M. Fawad, F. Shi, C. Yu, Epi-
demiological and sociodemographic transitions of female breast cancer incidence,
death, case fatality and DALYs in 21 world regions and globally, from 1990 to
2017: an age-period-cohort analysis, J. Adv. Res. 37 (2022) 185-196.

X. Zhou, C. Li, M.M. Rahaman, Y. Yao, S. Ai, C. Sun, Q. Wang, Y. Zhang, M. Li,
X. Li, et al., A comprehensive review for breast histopathology image analysis
using classical and deep neural networks, IEEE Access 8 (2020) 90931-90956.

W. Majeed, B. Aslam, 1. Javed, T. Khaliq, F. Muhammad, A. Ali, A. Raza, Breast
cancer: major risk factors and recent developments in treatment, Asian Pac. J.
Cancer Prev. 15 (8) (2014) 3353-3358.

About heart disease, 2022, URL: https://www.cdc.gov/heartdisease/about.htm.

Diabetes, 2022, URL: https://www.who.int/news-room/fact-sheets/detail/
diabetes.

M. Singh, et al., Quantifying COVID-19 enforced global changes in atmospheric
pollutants using cloud computing based remote sensing, Remote Sens. Appl.: Soc.
Environ. 22 (2021) 100489.

D. Chowdhury, A. Das, A. Dey, S. Banerjee, M. Golec, D. Kollias, M. Kumar, G.
Kaur, R. Kaur, R.C. Arya, et al., CoviDetector: A transfer learning-based semi
supervised approach to detect Covid-19 using CXR images, BenchCouncil Trans.
Benchmarks Stand. Eval. 3 (2) (2023) 100119.

A. Bhowmik, et al., DYNAMITE: Dynamic aggregation of mutually-connected
points based clustering algorithm for time series data, Internet Technol. Lett.
(2022) e395.

A. Bhowmik, M. Sannigrahi, P.K. Dutta, S. Bandyopadhyay, Using edge com-
puting framework with the internet of things for intelligent vertical gardening,
in: 2023 1st International Conference on Advanced Innovations in Smart Cities,
ICAISC, IEEE, 2023, pp. 1-6.

D. Chowdhury, S. Banerjee, M. Sannigrahi, A. Chakraborty, A. Das, A. Dey, A.D.
Dwivedi, Federated learning based Covid-19 detection, Expert Syst. 40 (5) (2023)
el3173.

http://refhub.elsevier.com/S2772-4859(24)00002-4/sb27
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb27
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb27
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb28
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb28
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb28
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb28
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb28
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb29
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb29
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb29
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb30
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb30
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb30
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb30
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb30
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb30
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb30
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb31
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb31
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb31
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb32
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb32
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb32
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb32
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb32
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb33
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb33
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb33
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb33
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb33
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb34
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb34
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb34
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb35
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb35
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb35
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb36
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb36
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb36
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb36
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb36
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb36
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb36
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb38
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb38
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb38
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://www.kaggle.com/datasets/mathchi/diabetes-data-set
https://www.kaggle.com/datasets/mathchi/diabetes-data-set
https://www.kaggle.com/datasets/mathchi/diabetes-data-set
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb42
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb42
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb42
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb43
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb43
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb43
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb43
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb43
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb43
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb43
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb44
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb44
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb44
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb45
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb45
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb45
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb45
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb45
http://arxiv.org/abs/2006.13799
http://dx.doi.org/10.21105/joss.01132
http://dx.doi.org/10.21105/joss.01132
http://dx.doi.org/10.21105/joss.01132
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb48
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb48
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb48
http://arxiv.org/abs/1606.05386
http://arxiv.org/abs/1810.02678
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb51
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb51
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb51
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb52
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb52
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb52
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb52
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb52
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb52
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb52
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb53
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb53
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb53
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb53
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb53
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb54
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb54
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb54
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb54
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb54
https://www.cdc.gov/heartdisease/about.htm
https://www.who.int/news-room/fact-sheets/detail/diabetes
https://www.who.int/news-room/fact-sheets/detail/diabetes
https://www.who.int/news-room/fact-sheets/detail/diabetes
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb57
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb57
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb57
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb57
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb57
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb58
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb58
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb58
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb58
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb58
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb58
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb58
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb59
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb59
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb59
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb59
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb59
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb60
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb60
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb60
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb60
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb60
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb60
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb60
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb61
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb61
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb61
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb61
http://refhub.elsevier.com/S2772-4859(24)00002-4/sb61

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151

KeAi e

Contents lists available at ScienceDirect
BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

BenchCouncil Transactions
on Benchmarks, Standards

and Evaluations

KeAi

CHINESE ROOTS
GLOBAL IMPACT

Full length article ')

Check for

Characterizing and understanding deep neural network batching systemson &=t
GPUs

Feng Yu®P, Hao Zhang ¢, Ao Chen ®°, Xueying Wang ¢, Xiaoxia Liang ¢, Sheng Wang ¢,
Guangli Li *>%*, Huimin Cui »°, Xiaobing Feng *"

a State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, China
b University of Chinese Academy of Sciences, China

¢ China Mobile Research Institute, China

d Beijing University of Posts and Telecommunications, China

¢ Intel Corporation, China

f UNSW Sydney, Australia

ARTICLE INFO ABSTRACT

Keywords:

Deep learning systems
Dynamic batching
Neural networks

As neural network inference demands are ever-increasing in intelligent applications, the performance opti-
mization of model serving becomes a challenging problem. Dynamic batching is an important feature of
contemporary deep learning serving systems, which combines multiple requests of model inference and
executes them together to improve the system’s throughput. However, the behavior characteristics of each part
in deep neural network batching systems as well as their performance impact on different model structures
are still unknown. In this paper, we characterize the batching system by leveraging three representative
deep neural networks on GPUs, performing a systematic analysis of the performance effects from the request
batching module, model slicing module, and stage reorchestrating module. Based on experimental results,
several insights and recommendations are offered to facilitate the system design and optimization for deep
learning serving.

Performance characterization

1. Introduction Traditional deep learning serving systems represented by Triton [1]
and TensorFlow-Serving [2] relied on configuring the model-allowed
maximum batch size (MAX-BS), which limits the input that can be
batched, and the batching time window (TW), which indicates the

longest wait time for inputs for combining a batch, as hyper-parameters.

As the demand for deep learning algorithms based on deep neural
networks (DNNs) continues to increase, serving systems [1-3], which
provide DNN training and inference as services to users on computing
platforms, are sparking interest in both academia and industry. Given

the user’s real-time response desire, achieving low-latency inference
becomes a fundamental prerequisite in these serving systems. To ef-
fectively handle model inference requests, dynamic batching plays
a crucial role in existing serving systems for improving the system
throughput by leveraging parallelism and locality between batched
inputs. Unlike training, where all training inputs are available before
training starts, inference presents a different challenge as input arrives
at the serving system over time, and its arrival rate depends on the
popularity of the deployed models. Therefore, inference batching must
carefully balance the trade-off between latency and throughput. For
instance, larger batch sizes may improve throughput but introduce
longer waits for the scheduler to accumulate a sufficiently large input
batch and thus increase latency, whereas smaller batch sizes may
reduce latency but at the cost of lower throughput.

Unfortunately, these statically configured serving systems lack the
flexibility to dynamically adjust server traffic to accommodate varying
loads, leading to sub-optimal performance. For instance, during periods
of low-load inference request traffic, employing a large time window
results in over-provisioning, as queued requests within the window
increase the average response time. Conversely, in server congestion
scenarios, larger batch time windows and batch sizes may prove advan-
tageous. Traditional serving systems lack the capability of interrupting
ongoing batches to serve new arriving requests. Recently, multi-entry
multi-exit batching systems, e.g., DVABatch [3], have arisen, which
adopt sub-graphs as the scheduling granularity and introduce several
meta-operations to improve the system throughput.

* Correspondence to: Institute of Computing Technology, Chinese Academy of Sciences, 100190 Beijing, China.
E-mail addresses: yufeng@ict.ac.cn (F. Yu), zhanghao@chinamobile.com (H. Zhang), chenao23s@ict.ac.cn (A. Chen), wangxueying@bupt.edu.cn (X. Wang),
xiaoxia.liang@intel.com (X. Liang), wangshengyjy@chinamobile.com (S. Wang), liguangli@ict.ac.cn (G. Li), cuihm@ict.ac.cn (H. Cui), fxb@ict.ac.cn (X. Feng).

https://doi.org/10.1016/j.tbench.2024.100151

Received 2 November 2023; Received in revised form 3 January 2024; Accepted 6 January 2024

Available online 13 January 2024

2772-4859/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
mailto:yufeng@ict.ac.cn
mailto:zhanghao@chinamobile.com
mailto:chenao23s@ict.ac.cn
mailto:wangxueying@bupt.edu.cn
mailto:xiaoxia.liang@intel.com
mailto:wangshengyjy@chinamobile.com
mailto:liguangli@ict.ac.cn
mailto:cuihm@ict.ac.cn
mailto:fxb@ict.ac.cn
https://doi.org/10.1016/j.tbench.2024.100151
https://doi.org/10.1016/j.tbench.2024.100151
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2024.100151&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

F. Yu et al.

DNN serving systems are intrinsically intricate, influenced by nu-
merous factors encompassing neural network models, load levels, and
model slicing patterns, among others. However, existing studies pre-
dominantly focus on a localized perspective of batching systems, with-
out providing a comprehensive characterization and understanding of
batch behavior. As such, this paper aims to reveal the intricacies of
batching behavior in DNN serving systems, offering valuable insights
into resource management and system design, particularly concerning
typical neural network models and workloads encountered by service
providers. Meanwhile, we underscore the limitations of existing serving
system batching techniques while presenting innovative optimization
avenues for serving system developers.

To characterize the batch behavior within DNN serving systems, we
perform a comprehensive systematic evaluation on a GPU platform. We
conducted experimental evaluations using representative DNN models
from three different domains, including ResNet [4] for image classifica-
tion, BERT [5] for natural language processing (NLP), and LinkNet [6]
for image segmentation. As described in Section 3.2, ResNet has low
utilization of computing resources, BERT can saturate system resources
even with small batches, and LinkNet is memory-bounded. Leveraging
these three representative models, we conduct an in-depth investigation
into the behaviors of the request batching, model slicing, and stage
reorchestrating within batched serving systems. Regarding the request
batching module, we initially examine the impact of batch size on sys-
tem throughput and request average latency (Section 4.1), followed by
a comprehensive exploration of hyperparameters, specifically the MAX-
BS and TW, and their relationship with system throughput (Sections 4.2
and 4.3). For the model slicing module, we discuss the influence
of slicing positions and the number of stages on system through-
put (Sections 5.1 and 5.2), respectively. For the stage reorchestrating
module, we analyze the correlation between reorchestrating strategies
and system throughput across varying workloads and network models
(Section 6.1). Subsequently, we conduct a comprehensive analysis of
meta-operations in multi-entry multi-exit systems, including split and
stretch operations (Sections 6.2 and 6.3). Based on observations, we
present potential application scenarios, along with insights for various
research directions (Section 7). Our contribution can be summarized as
follows:

» We perform a comprehensive analysis of batching behavior within
deep learning serving systems on GPUs by leveraging three rep-
resentative neural network models from different application sce-
narios.

We characterize the effects of batch sizes and hyperparameters
on the behavior of the request batching module, explore different
slicing patterns associated with batching within the model slicing
module and analyze the influence of stage reorchestrating strate-
gies and meta-operations on the behavior of the reorchestrating
module.

Based on experimental studies, we provide several insights and
recommendations to facilitate the system design and optimization
for deep learning serving. We hope that these observations could
pave the road for developing high-efficiency deep neural network
batching systems.

2. DNN batching serving systems
2.1. Meta-operations

In traditional DNN serving systems, such as Triton, the batch size
remains constant until the inference is completed, as depicted in the
upper part of Fig. 1. In such a design, the next batch can only be
launched for execution after the ongoing batch inference is completed,
and the requests in the batch cannot be exited early, resulting in longer
response latency [7]. To support requests being able to exit or join the
serving system, DVABatch abstract the two actions of request exit and

23

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151

join into meta-operations, namely split and stretch operations. Fig. 1
shows how meta-operations can reduce average latency. To simplify the
explanation, we assume that each operator completes in 1 time unit (T)
and the MAX-BS is 4. In this case, once 4 requests are received or the
batching time window ends, the received requests will be batched and
issued for execution.

Through the split operation, a large ongoing batch is split into
several smaller batches for individual processing, which makes it easier
for some queries in the batch to exit early. Fig. 2 shows the execution
time of two convolution operations in Resnet under different batch
sizes. Convolution operations dominate DNNs (accounting for 86% of
the computation time) [8]. As shown in the figure, the preferred batch
sizes of Convolution-A and Convolution-B are 4 and 1, respectively.
For Convolution-A, using a batch size smaller than 4 cannot fully
utilize the GPU (the processing time starts to increase only when the
batch size is greater than 4). For Convolution-B, batching will only
increase its execution time without improving processing throughput.
Fig. 1(a) shows how the split operation can reduce average latency,
where operator A has a preferred batch size of 4, operators B, C, and D
have a preferred batch size of 1, and the received requests have been
batched and are ready to be issued for execution. In Triton, (upper
half of Fig. 1(a)), the requests in the batch start processing at the same
time and end at the same time. The lower half of Fig. 1(a) shows the
split operation, i.e., operator A executes the full batch, then splits the
batch into four smaller batches with a batch size of 1 at operator B, and
executes these small batches in sequence. In this way, Requests @, @,
and ® can exit earlier. The average latency can be reduced by 28.1%
(from 4 T to 2.875 T).

Through the stretch operation, new incoming queries are added
to the ongoing batch to form a larger batch, thereby utilizing the
hardware computing power. Fig. 1(b) shows how the stretch operation
can reduce average latency, where the batching time window is 4 T and
the operator preferred batch size is 4. In Triton (i.e., the upper half
of Fig. 1(b)), Request @ starts running individually after waiting for
a time window, leaving the GPU underutilized. During the processing
of Request @, Requests @, @, and @ arrive, but they must wait to
be executed in the next batch. The lower half of Fig. 1(b) shows the
stretch operation, where the first batch (containing only Request @)
waits for the second batch after completing operator A, and then the
two insufficient batches are merged into a new large batch to fully
utilize the hardware. In this way, the average latency can be reduced
by 34.4% (from 8 T to 5.25 T).

2.2. Major components

In this section, we introduce three major components of contem-
porary DNN batching serving systems, including a request batching
module, a model slicing module, and a stage reorchestrating module.
These three components are ubiquitously present in DNN batching
serving systems, such as Triton [1], DVABatch [3], Ebird [9], and
LazyBatching [7], among others.

Request Batching Module (RBM). The serving system initiates by
placing end-users’ requests into a request queue. The RBM subsequently
organizes these requests into batches, based on two hyperparameters:
MAX-BS and TW. These formed batches are placed in a batch queue for
the request processing module to utilize. Fig. 3 illustrates the behavior
of different configurations of RBM under the circumstance where re-
quest R; enters the request queue at time ¢;. RBM with configuration
0 efficiently aggregates two requests within a specified time window
to form a batch. Conversely, RBM with configuration 1 can accumulate
three requests during the same time window, resulting in a batch of size
equal to MAX-BS. However, RBM with configuration 2, although also
capable of collecting three requests within the designated time window,
is constrained by MAX-BS, leading to the creation of a reduced-size
batch of 2.

F. Yu et al.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151

! 2@
2@ i @'I TWHAT == TWHT |
g PO ANEBNmcHEDE | @ 2
: Request: =~ -~ ' @ A B C D () A B C D
' Operator:) ANEBHEenNEDE 1 ©Q A B C D
i perator A E @ A B c D i@ A B C D
| . |
1 Wasted: i @ : I TW=4T |
|
. 1
i Idle:) ANEED @ A B — —~
| Time | |) A 4T BEB) A B C D
! window: <> ! ©) A 3at 347 BED i ® A B @ D
: L@ A 34t 34T 347 BED P @ A B (© D
_________________ Timelne Timeline

(a) Split operation

(b) Stretch operation

Fig. 1. Illustration of how meta-operations address the long latency problem of user requests. Split operation enables requests to exit early when encountering operators with high
parallelism. Stretch operation enables the merging of multiple insufficient batches to reduce waiting time and fully utilize hardware.

—e— Convolution-A Convolution-B

0.25
-
172]
g/ 0.2
£
el 0.15 " where batching takes effect
§ 0.1 \
S
8005 | leg—
g °
oo

0 2 4 6 8 10 12 14 16

Batch Size

Fig. 2. Execution time of two convolution operators from ResNet with different batch
sizes on A100.

[0 [1 [2 [3 t4 ':5

Configuration 1
(MAX-BS=3, TW=3t)

Request
Queue

Configuration 2
(MAX-BS=2, TW=3t)

Batch
Queue 7

1

EIELT [RFIR] (Rl R] [Rol Rl [(el R [l]

Fig. 3. The behavior of the request batching module under various parameter config-
urations, namely, the maximum allowed batch size (MAX-BS) and the time window

(TW).
o)~ som)om (e o(1e9

Stage, ﬂ Model Slicing Stage,

(i JofComyseom-ofoms)ofa) L Yol Eom)-ofoms)>omo(aaa)
X X

Fig. 4. Diagram of model slicing, where IN/OUT are input/output tensors, and FT are
feature tensors.

Model Slicing Module (MSM). To support interruptible batch ex-
ecution, the serving system needs to slice the models during deploy-
ment, which includes determining the slice positions and the number
of stages formed after slicing [3]. Fig. 4 provides an example of
graph slicing, where slicing occurs after the first Add operation and
only once, resulting in two stages with identical graph structures.
Batching serving systems frequently employ stage performance models
to guide meta-operation decisions, making model slicing critical for
system throughput due to its direct influence on stage determination.

Stage Reorchestrating Module (SRM). The stage reorchestrating
module typically employs a reorchestrating strategy involving split
and stretch operations to control batch and stage execution. The split
operation is employed to split large batches into multiple smaller sub-
batches, enabling the early completion of smaller sub-batches without
waiting for the entire large batch, thus reducing the average request

24

Stage,

anand
1oreg

anand

1o3eg
-

l !

-

g [z
S
o
S
£l

1%

g
-

E H

S

S

=

H

Fig. 5. Diagram of split and stretch operations, where the numbers inside the rounded
rectangles represent batch sizes.

latency. As illustrated in Fig. 5, the split operation divides a batch of
size 64 from the Stage, output into two sub-batches of size 32 each,
which are then processed sequentially by two stage instances (Stage,
and Stage,;). On the other hand, the stretch operation is used to merge
multiple small sub-batches into a larger batch, harnessing hardware
parallelism to enhance throughput. As shown in Fig. 5, when a new
batch arrives, the current batch is undergoing inference in Stage,.
Once the current batch completes the inference in Srage,, SRM passes
the new batch to Stage,, for processing. Subsequently, the stretch
operation increases the batch size from 16 to a larger batch of size
32, combining the outputs from these two stage instances for Stage,
inference.

3. Experimental setup

3.1. Hardware and software setting

Table 1 lists the setups of the experiments. In this paper, we
characterize and analyze the dynamic batching with two serving sys-
tems, Triton Inference Server (version 22.05) [1] and DVABatch (main
branch) [3], on a high-performance platform that integrates Intel
Xeon CPUs and an NVIDIA A100 GPU. As the latency of a DNN
model/operator varies with DNN frameworks or compilers [10-12],
we employ TensorRT (version 8.2.3) [13] as the inference engine for
both of these serving systems to provide SOTA operator performance.
Additionally, We use the NVIDIA Triton client [14], which employs an
approach similar to MLPerf [15] for generating workloads with arrival
times that conform to a uniform distribution. The client uses the HTTP
protocol to send requests and sets the QoS target to 200 ms. Regarding
DVABatch, we set request rates corresponding to 1/4, 3/5, and 9/10
of the peak throughput as low, medium, and high loads. For ease of
experimentation, we align the request rate with the number of client
threads, which is 64. Leveraging NVIDIA’s Model Analyzer tool [16],
we ascertain the maximum throughput attainable by the serving system
for specific models. Specifically, the Model Analyzer indicates peak
throughputs for ResNet, BERT, and LinkNet as 4288, 1088, and 3264
in DVABatch, respectively.

F. Yu et al.

Table 1
Evaluation specifications.

Hardware CPU: Intel Xeon Gold 6248
GPU: NVIDIA A100
OS & Driver Ubuntu: 18.04.2 (kernel 5.4.0-72)
GPU Driver: 515.43.04
Client NVIDIA Triton Client: v22.05
Software Server NVIDIA Triton inference server: v22.05
DVABatch: main branch
Inference engine TensorRT: v8.2.3
Computation Memory Access Computation Memory Access
100% 100%
o 80% o 80%
=] =]
‘2 60% g 60%
% 40% g 40%
A 20% & 20%
0% 0%
/‘)YCP/O‘”’E’O;?@{PQ% /‘JVCP/G‘{?O;?@(PQ\)‘@
Batch Size Batch Size
(a) ResNet (b) BERT
Computation Memory Access ——ResNet BERT LinkNet
100%
o 80% g 200
g 60% EF 150
% 40% Té g 100
= 20% 55 s0
Z =
0% k= 0 /
7 VAN
MRRGREAN 0 64 128 192 256
Batch Size Batch Size
(c) LinkNet (d) Inference time of models

Fig. 6. Performance of three benchmarked models.

3.2. Benchmarked deep neural networks

Incumbent Internet giants have been offering services for tasks
such as image classification, natural language processing, and image
segmentation, exemplified by Google Cloud Vision AI [17,18], Mi-
crosoft Azure Text Analytics [19,20], and Amazon Rekognition [21,
22]. This study focuses on these Al domains, employing benchmark
network architectures: ResNet [4], BERT [5], and LinkNet [6] for
experimental evaluation. Specifically, the study utilizes Torchvision’s
resnetl52 [23], HuggingFace’s bert-base-uncased [24], and LinkNet
from Purdue University’s e-Lab project.

Fig. 6 visually illustrates the end-to-end inference latency of these
neural network models for different batch sizes, while also presenting
a detailed breakdown of time allocation for computation and memory
access. We observe that for the ResNet and BERT models, computation
time takes the lead (see Fig. 6(a) and (b)), whereas in the LinkNet
model, memory access time predominates (see Fig. 6(c)). Furthermore,
Fig. 6(d) illustrates the relationship between inference time and batch
size. It is evident from the figure that as the batch size increases, the
time of the ResNet model increases relatively slowly, whereas the time
of the BERT model experiences a sharp rise. In other words, under small
batch sizes, ResNet exhibits lower resource utilization, while BERT
potentially leads to system resource saturation.

In summary, ResNet and BERT primarily emphasize computational
resources, with ResNet demonstrating efficient resource utilization un-
der small batch sizes, while BERT’s resource demands quickly saturate
the system. In contrast, LinkNet places a stronger focus on memory
access, making it more memory-bound compared to the other models.

3.3. Evaluation metrics

The evaluation metrics include:

25

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151

+ Latency, defined as the average time taken by the serving system
to process a query, encompassing both the waiting time and the
inference time for the query.

» Throughput, defined as the average number of queries processed
by the system per second.

« Inference time, defined as the time required for a DNN model to
perform inferences on input data. Unlike request latency, infer-
ence time does not encompass the waiting time associated with
the request.

Since batching is a technique employed to enhance the throughput of
the serving system, in this paper, we will use “system performance”
interchangeably with system throughput.

4. Analysis of request batching
4.1. Performance of different batch sizes

Popular DNN serving systems such as Triton support batch execu-
tion of multiple requests. In this experiment, as the serving system
receives batched inputs that are already formed, it does not wait for
them to be collected; thus, we set the time window to 0. Fig. 7 presents
the throughput of batching for three typical networks across various
batch sizes. Additionally, we demonstrate the benefits of batching in re-
ducing request latency, indicated by the blue line in the corresponding
figure.

Finding 1. In general, the system’s throughput can be enhanced by in-
creasing the batch size while meeting QoS requirements. Observing Fig. 7, it
becomes apparent that as the batch size increases, effective throughput
rapidly rises, amortizing the inference cost and significantly reducing
the request latency. This phenomenon occurs because larger batch sizes
increase the computational workload required for inference, allow-
ing better saturation of the GPU’s computational resources, thereby
achieving higher throughput.

Finding 2. Enlarging the batch size does not always lead to an im-
provement for the system throughput. Once a specific threshold for batch
size is exceeded, GPU resources are fully utilized, and further in-
creasing the batch size may lead to request latency exceeding users’
expected response time, without yielding additional enhancements in
throughput.

4.2. Effects of max batch size settings

We evaluate Triton’s performance across various workloads by run-
ning three typical neural networks under different MAX-BS configu-
rations. In this experiment, for ResNet, BERT, and LinkNet, the time
windows are set to 500 ps, 10 ps, and 10 ps, respectively, aligning with
the observations presented in Section 4.3. Our corresponding results
are presented in Tables 2, 3, and 4. In these tables, “Collected-BS”
represents the batch size formed by the batcher, and “Latency” denotes
the average request latency (in milliseconds).

Finding 3. For ResNet and BERT models, enlarging the MAX-BS param-
eter has the potential to improve the system throughput. We observe that
as MAX-BS gradually increases, the batch size formed by the RBM also
increases correspondingly. For both ResNet and BERT models, Triton’s
throughput steadily increases with the increasing values of MAX-BS,
eventually plateauing, regardless of the workload. In situations where
MAX-BS is configured with a smaller value, such as 1, it may lead
to a substantial number of requests being blocked in the queue. This
occurrence stems from Triton’s operational design, where a new batch
will initiate execution only upon the completion of the preceding batch.
To mitigate this, we can increase MAX-BS to maximize the batch size
per execution, thereby reducing the average wait time for requests.
However, as MAX-BS increases to a certain extent, although the batch
scheduler can form larger batches to amortize inference overhead, it
also leads to longer waiting times for requests in the queue.

F. Yu et al.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151

== Throughput =O=Latency
6000 1.6 1200 1.6 5000 1.6
% 5000 12 2 1000 125 24000 125
7 2. £ 2% 7 25
2 4000 g g 800 g S 3000 £
83000 08 g 600 085 § 08 >
£ 000 TS g 22000 B
5 5 = 048 2 2
B 1000 H 0'4§ £ 200 g E1000 045
2 o n 0 2 o 0 2 o 0
& 1 2 4 8 16 32 64128256 & 1 2 4 8 16 32 64 128256 & 1 2 4 8 16 32 64 128256
Batch Size Batch Size Batch Size
(a) ResNet (b) BERT (b) LinkNet

Fig. 7. Effect of batching on throughput and latency of batched execution as a function of batch size. For this experiment, we assume that the batched inputs are already formed,

without waiting for them to be collected.

Table 2
Performance of Triton with varying MAX-BS for ResNet model across three workloads.
MAX-BS Low load Medium load High load
Throughput Latency Collected-BS Throughput Latency Collected-BS Throughput Latency Collected-BS
1 211.40 406.73 1 212.76 410.08 1 212.37 411.79 1
2 414.65 214.52 2 415.43 218.64 2 413.89 220.13 2
4 798.72 109.98 4 810.27 114.45 4 801.31 116.01 4
8 1082.94 8.33 6 1475.22 63.29 8 1476.97 63.67 8
16 1083.26 8.32 6 2356.09 38.30 16 2485.64 37.93 16
32 1082.79 8.34 6 2604.12 13.35 22 3458.38 27.19 32
64 1083.20 8.38 6 2606.72 13.63 22 3463.90 27.28 47
Table 3
Performance of Triton with varying MAX-BS for the BERT model across three workloads.
MAX-BS Low load Medium load High load
Throughput Latency Collected-BS Throughput Latency Collected-BS Throughput Latency Collected-BS
1 319.33 2.83 1 664.29 64.48 1 663.88 91.08 1
2 319.37 2.95 1 702.70 4.17 1 797.73 74.48 2
4 319.33 2.83 1 700.26 7.56 2 889.94 65.50 4
8 319.32 2.75 1 700.13 13.19 4 1002.18 37.82 8
16 319.30 2.93 1 696.00 22.00 3 1000.02 50.39 13
32 319.32 2.83 1 695.00 22.00 3 989.57 53.73 18
64 319.32 2.84 1 697.06 22.41 5 1003.20 48.88 23
Table 4
Performance of Triton with varying MAX-BS for the LinkNet model across three workloads.
MAX-BS Low load Medium load High load
Throughput Latency Collected-BS Throughput Latency Collected-BS Throughput Latency Collected-BS
1 830.63 1.37 1 1977.77 1.80 1 2044.28 30.63 1
2 830.34 1.47 1 1976.69 2.52 2 2453.50 25.37 2
4 830.27 1.45 1 1975.77 4.15 3 2541.31 24.58 4
8 830.18 1.55 1 1974.40 8.74 5 2570.41 24.44 8
16 830.31 1.61 1 1967.48 16.67 10 2195.27 28.68 13
32 830.31 1.75 1 1964.68 24.64 16 2006.76 31.41 21
64 829.64 2.26 1 1966.96 23.27 16 1947.94 32.37 20
observed throughput initially increases but then decreases as MAX-BS
mOthers ®Wait = Computation = Memory Access values continue to grow. To further analyze this behavior, we provide a
40 decomposition graph of request latency for different MAX-BS values, as
’g 30 shown in Fig. 8. Fig. 8 shows that as the batch size gradually increases,
= the waiting time decreases, but memory access time increases due
220
g to the growing data volume. In Triton, excessive batch sizes cause a
5 10 significant increase in request latency, as the memory access time for
0 == - = = = a request equals that of the entire batch.
1 2 4 8 16 32 64
MAX-BS

Fig. 8. Performance breakdown with different MAX-BS for the LinkNet model.

Finding 4. MAX-BS mainly influences the queue wait time, the data
transmission time, and the computation time. For the LinkNet model,
Triton exhibits similar behavior to ResNet and BERT models under
medium to low workloads. However, under high workloads, Triton’s

26

4.3. Effects of batching time window

Fig. 9 depicts the influence of time windows on system through-
put. In this experiment, for ResNet, BERT, and LinkNet, we configure
MAX-BS as 64, 16, and 8, respectively, based on the observations in
Section 4.2. The x-axis represents the request rate (the number of client
requests sent per second), while the y-axis signifies the system through-
put. In addition, the positions of symbols L, M, and H correspond to
low, medium, and high rates, respectively.

F. Yu et al.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151

—0 10 50 100 — 500 1000 =—=5000 =——10000 = 50000
5000 L M H 2000 L Mo H 4000 L M H
_ i i i . i i i _ i i i
2 4000 i i j & i i i 2 3500 i i i
2 I 1 2 1500 i i i 7 1 1 i
Ed i i 2 i i i 2 i i :
33000 i i g i i i 3 2400 i i
= | ' < 1000 ' ! Z ! : v
£ 2000 . ! ES ! ! ! £, 1600 ! ! !
5 \ i & 500 1 1 1) \ i i
2’ 1000 i : 2 5 ; o 2 500 : :
= i i = | i i = i i i
~ 0 1 1 1 == 0 1 1 1 == 0 1 1 1
0 1000 2000 3000 4000 5000 0 500 1000 1500 2000 0 800 1600 2400 3200 4000
Request Rate Request Rate Request Rate
(a) ResNet (b) BERT (c) LinkNet

Fig. 9. Effects of time windows on Triton throughput with different request rates. At low and medium loads, the impact of the time window on system throughput is limited,
indicating a linear correlation between system throughput and request rate. At high loads, BERT exhibits lower sensitivity to the time window compared to ResNet and LinkNet.

Finding 5. Under medium to low workloads, the effect of time windows
on the system throughput is limited. As the request rate increases, system
throughput exhibits linear growth. This behavior stems from the fact
that, under medium to low workloads, the RBM collects a relatively
small number of requests. Elevating the request rate can augment the
quantity of requests gathered by the RBM, consequently amplifying
the system throughput. Nonetheless, once the request rate surpasses
a certain threshold, further increases do not contribute to enhanced
throughput. This is because, when the request rate surpasses the sys-
tem’s processing capability, requests will be blocked in the queue,
resulting in heightened latency.

Finding 6. Under high workloads, for models that do not fully utilize
the resources, time windows impact the system throughput through wait-
ing times and batch sizes. When subjected to high workloads, Triton’s
peak throughput for the BERT model exhibits minimal variance across
different time windows. Since the BERT model saturates the system’s
resources with small batches, necessitating requests to wait in the
batch queue until resources become available. The time window serves
as a parameter for regulating the waiting time of requests in the
request queue and the size of batches formed. Selecting an appropriate
time window size can enhance the overall throughput of the system.
A shorter window reduces queue wait times but limits batch size,
underutilizing hardware. Conversely, a longer window extends waits
but yields larger batches, maximizing hardware utilization. Therefore,
compared to models like BERT, the impact of the time window is more
pronounced for models that underutilize resources, such as ResNet and
LinkNet.

5. Analysis of model slicing
5.1. Effects of slice positions

In this section, we slice the model into two subgraphs (i.e., stages)
and investigate the impact of varying the slicing position on system
throughput. We use a slicing ratio to denote the slicing position,
specifically, the percentage of the total network compute time allocated
to Stage,, that is, %. The evaluation results are presented
in Fig. 10, with the x-axis denoting the slicing ratio and the y-axis
representing throughput.

Finding 7. The choice of slice positions has an impact on both the
model’s computation time and memory access time. Fig. 11 illustrates
the breakdown of end-to-end model inference time at various slice
positions. In Fig. 11, there are slight variations in computation time at
different slice positions. This phenomenon is attributed to the fact that
model slice disrupts operator fusion and other optimizations within the
graph. Furthermore, we observe that memory access time at different
slice positions is closely related to the model’s architecture, specifically,
it is influenced by the volume of data exchanged between stages. In
addition, although Fig. 11 shows that the model inference time is the
lowest when the model is not sliced (i.e., the slicing ratio is 100%),
this also implies that meta-operations cannot be applied, so the system
throughput is not necessarily optimal, as shown in Table 5.

27

Finding 8. When selecting slice points, the computation time, the model
structure, and the memory access time are important factors that need
to be considered. Fig. 10 demonstrates the impact of slice points on
system throughput. ‘“Naive Batching” refers to a system devoid of meta-
operations and pipelined execution. The x-axis represents the slice
ratio, and the y-axis represents throughput. Fig. 10 clearly indicates
that slice points significantly influence the performance of pipelining
execution systems by affecting pipeline balance. We also note that for
ResNet, optimal throughput is achieved when slicing occurs in the
model’s middle, while for LinkNet, it is more advantageous towards the
model’s end. This variation is attributed to data transfer costs between
stages, as depicted in Fig. 11.

5.2. Effects of stage counts

In this experiment, we employ the PipeDream [25] tool to slice the
model into several stages with approximately equal execution time,
aligning with the experimental methodology of the DVABatch. Fig. 12
illustrates the impact of the number of stages on system through-
put, where the x-axis represents the number of stages, and the y-axis
represents throughput.

Finding 9. The optimal number of stages is typically small and, in
most cases is not equal to 1. As the number of stages increases, sys-
tem throughput experiences a brief increase followed by a gradual
decline. In contrast to schemes without model slicing, multi-stage
designs support batch interruptions to leverage meta-operations for
enhanced system throughput. However, increasing the number of stages
introduces additional system overhead, such as synchronization costs
between stages, resulting in finer scheduling granularity that under-
mines graph optimizations like layout selection and operator fusion,
subsequently reducing system throughput. Additionally, we observe
that pipelined execution is highly sensitive to the number of stages;
as the stage count increases, system throughput deteriorates rapidly.
Increasing the number of pipelined stages can enhance system through-
put, but surpassing a specific threshold may reduce throughput due to
resource contention.

6. Analysis of stage reorchestrating
6.1. Effects of reorchestrating strategies

Reorchestrating strategy is a method that prescribes execution in
batches or stages, aimed at enhancing system throughput. In batch-
ing serving systems, reorchestrating strategy manages batch execution
through meta-operations while also determining whether pipelining
execution of stage instances is permissible. Stretch, split and pipeline
execution are mutually independent, thereby allowing users to config-
ure strategies to determine how these three operations are employed.
Table 5 presents the system throughput of eight strategies for the model
under various workloads. It can be observed from this table that the
impact of strategies on system performance is limited in medium and

F. Yu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151
= Naive Batching Batching with Pipelined Execution Batching with Split Operation Batching with Stretch Operation
4000 1100 3000
= —~ 3800 PR /=~ 1000 ——— =~ 2800
22 APAT~AT 13 22
—go :"’) 3600 %D %’ 900 %D % 2600 ‘/\
S 53400 S 5 800 S 22400 “AS CQA e
= O = 9 = O N~ v
==3200 \ == 700 = =2200
3000 600 2000
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Stage,/(Stage, + Stage;) Stage,/(Stage, + Stage;) Stage,/(Stage, + Stage,)
(a) ResNet (b) BERT (c) LinkNet

Fig. 10. Effects of slice position on the system’s throughput. The optimal slicing position is related to the model structure. For example, the optimal slicing position for ResNet
models is in the middle, while the optimal slicing position for LinkNet models is at the end. Pipeline parallel execution is highly sensitive to the selection of the slicing position.

BERT models are not suitable for pipeline parallel execution.

Table 5

Effects of reorchestrating strategies on the system’s throughput. At low and medium loads, the system throughput is hardly affected by variations with different reorchestrating
strategy. Under high loads, however, the performance of the reorchestrating strategy differs among different types of models.

Strategy Stretch Split Pipeline ResNet BERT LinkNet
Low Medium High Low Medium High Low Medium High

1 0 0 0 1083.14 2608.62 3455.97 319.32 698.61 999.95 830.10 1974.27 2315.73
I 0 0 1 1081.07 2603.97 3867.68 319.33 692.98 749.00 830.02 1974.22 2774.40
it 0 1 0 1083.07 2607.60 3087.69 319.34 697.34 999.47 829.97 1974.36 2409.07
v 0 1 1 1081.04 2604.87 3740.58 319.35 695.63 997.73 829.98 1974.86 2351.10
A 1 0 0 1081.12 2605.03 3854.02 319.30 696.19 995.43 830.03 1974.49 2368.43
VI 1 0 1 1080.92 2602.08 3866.82 319.33 686.51 752.64 829.91 1973.39 2764.35
A 1 1 0 1080.89 2604.82 3756.22 319.34 695.99 993.90 829.94 1974.31 2322.81
VIII 1 1 1 1080.88 2602.44 3867.37 319.33 681.77 737.95 829.99 1974.06 2746.51

O Stage,-Computation B Stage,-Computation ~ B Stage,-Memory Access B Stage, -Memory Access

40
235 2-Stage ResNet 2-Stage LinkNet
Ex Position
g 25 D #Operators | Proportion | #Operators | Proportion
£ (Stageo) | (Stageo) | (Stageo) | (Stageo)
g 15 1 18 10% 1 14%
210
£ 5 2 47 20% 8 25%
<0
= 12345678910 3 88 30% 16 34%

Position ID 4 133 40% 32 45%

o (a) ResNet 5 178 50% 5 55%

I 6 214 60% 62 64%
23 7 272 70% 69 74%
S 8 337 80% 73 84%
8
510 l:l 9 401 90% 76 91%
B
£ 0 10 465 100% 77 100%
= 123456782910

Position ID

(b) LinkNet (c) Instructions for 10 slice positions

Fig. 11. Performance breakdown of 2-stage models with different slice positions. The
impact of slicing positions on memory access time is notably significant and correlates
with the model structure.

low-load scenarios. Under high load, the impact of strategies varies
depending on the model type.

Finding 10. Pipelined parallel execution is suitable for models with
unsaturated computational resources or those encountering memory access
bottlenecks. Stretch operations enhance the utilization of system computa-
tional resources, and split operations are effective for models bottlenecked
by memory access. For the ResNet model, strategies involving pipelined
execution or stretch operations effectively improve resource utilization,
thereby enhancing system throughput. However, for strategies that only
involve split operations, performance decreases due to the sequential
execution of the sub-batches, which prolongs request completion times.
For models with saturated system resources, such as BERT, pipelined
execution exacerbates resource contention and leads to performance
degradation. In contrast, strategies incorporating meta-operations pre-
vent performance degradation because the timing of operations is based
on stage-specific performance models. For models with memory access
bottlenecks, such as LinkNet, strategies involving pipelined execution
effectively hide memory latency and enhance the system’s throughput,
while stretch operations only marginally reduce average computational

28

time. Furthermore, split operations enable requests to finish in advance,
enhancing system throughput by eliminating the need to wait for the
entire batch to complete.

6.2. Performance analysis on split operations

The split operation allows requests to exit early, reducing average
latency, but the resulting sub-batches may suffer from lower resource
utilization, potentially reducing throughput. Therefore, the timing of
split operations is a critical factor affecting system throughput. In this
section, we explore the impact of the slice position, initial batch size
for split, and the number of final sub-batches on the effectiveness of
split operations. The evaluation results are presented in Figs. 13 and 14,
where the x-axis represents the slice ratio, and the y-axis represents the
speedup achieved by split operations compared to naive batching. We
divide the model into two stages, Stage, and Stage;, and the slice ratio
refers to the percentage of the total network compute time allocated to
Stage.

Finding 11. Split operations yield more pronounced acceleration when
occurring earlier (i.e., with lower slice ratios). Observing Figs. 13 and
14, it is evident that split operations achieve their optimal effects with
lower slice ratios. As the slice ratio increases, split operations gradually
degrade into graph batching. This is because the benefits of split
operations stem from the reduced average latency during the execution
of sub-batches in the Stage, sequence. Therefore, a higher percentage
of time allocated to Stage;, the primary contributor to performance
gains, implies greater potential benefits from split operations.

Finding 12. Split operations are effective for the system under large
batches, and the larger the batch to be divided, the greater the performance
gain of split operations achieved. Examining Fig. 13, it becomes apparent
that, given a fixed slice ratio (e.g., 5%), split operations yield higher
benefits as the batch size to be divided increases. Large batches may
lead to resource contention due to the system’s limited resources. Split
operations mitigate resource competition by subdividing large batches
into smaller sub-batches, thereby reducing average latency. Smaller
sub-batches, on the other hand, are often unable to fully utilize hard-
ware resources, and split operations further decrease hardware resource
utilization, consequently reducing system throughput. Additionally,

F. Yu et al.

= Naive Batching = Batching with Pipelined Execution

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151

Batching with Split Operation Batching with Stretch Operation

— [—
200 S L w 5 200 N
= o~ = o~ —_
2% 3000 Zoomin 1,101 2% 500 2% 2400 L Zoom in[IT0]
28 2500 @8 700 2 6 2000
52 82 52 o5
£ 2000 . £ 5 600 =~ E §ie00 AT
== 1500 \ == 500 | F =120)
1000 400 800
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Stage Count Stage Count Stage Count
(a) ResNet (b) BERT (c) LinkNet

Fig. 12. Effects of stage counts on the system’s throughput. As the number of stages increases, the system throughput initially experiences a transient increase, followed by a

gradual decline.

—0x(BS=2) — 2x(BS=4) 2x(BS=8) 2X(BS=16) = 2X(BS=32) = 2X(BS=64)
14 _ L4 14
;‘)].3 ED].:; .Eﬂla
N ———
a2 5@ a7
EE 32 EE
2:5 09 2209 2209
27z 0.8 ©nZ 0.8 Nz 0.8
807 507 507
206 306 Bos6
RO N < REROR R N O BRI R O
Stage,/(Stage, + Stage,) Stage,/(Stage, + Stage,) Stage, /(Stage, + Stage;)
(a) ResNet (b) BERT (c) LinkNet

Fig. 13. Effects of split operations on batching process across varying batch sizes, where the legend “2x(BS = N)” represents dividing a batch of size N into two sub-batches,

each of size N/2.

—2x(BS=64) = 4x(BS=64) 8X(BS=64)

(.-
=N

<
'S

Speedups
(over Naive Batching)
=3 =3
e)
Speedups
(over Naive Batching)
=1
>

o
=3

T e >E S >
Stage,/(Stage, + Stage;)
(a) ResNet

/

Speedups
(over Naive Batching)
o -
%

FOR IR R O
Stage,/(Stage, + Stage;)
(b) BERT

16X(BS=64) == 32X(BS=64) == 64x(BS=64)

o>

|

<
~

=3

9

9 P 95

% RO RSO I
Stage,/(Stage, + Stage;)

(c) LinkNet

Fig. 14. Effects of split operations on batching process across varying sub-batch counts, where the legend “nx(BS = 64)” represents dividing a batch of size 64 into n sub-batches,

each of size 64/n.

—BS, =BS,=1 == BS, =BS, =2 BS, =BS, =4 BS, =BS,=8 = BS, =BS, =16 —— BS, =BS, =32
16 16 _ 16
g 2 £
5 1.2 5 1.2 5 1.2
w2 % 2 o 2
as as as
T \ LY R
8 2 3z 8.z
'3 2.3 5,8
NZ 04 NZ 04 NZ 04
o o 5
123 123 >
> z 3
g o 30 2
BRI RO RO R O RO IR IR O 2
Stage,/(Stage, + Stage;) Stage,/(Stage, + Stage;) Stage,/(Stage, + Stage;)
(a) ResNet (b) BERT (c) LinkNet

Fig. 15. Effects of stretch operations on the batching process across varying batch sizes.

since the BERT model saturates system resources with small batches,
split operations result in acceleration across various batch sizes.
Finding 13. The optimal number of sub-batches could be guided by the
stage’s performance model and does not follow the “more is better” principle.
Split operation is applicable to the scenario where resource utilization
is saturated, that is, batching only increases its inference time without
improving the processing throughput, such as Convolution-B in Fig. 2.
Consequently, the split operation can split the original batch into sev-
eral sequentially executed sub-batches to reduce the average latency, as
shown in Fig. 1 (a). Observing the speedups of the split operation for
the slice ratio of 5% in Fig. 14, we can find that the optimal number of
sub-batches is not 64 (i.e., the green line), that is, the number of sub-
batches is not the more the better. This is because when the sub-batch
size reaches a certain threshold, further reducing the batch size will

lead to insufficient hardware resource utilization due to the small batch
size, which does not meet the premise of using the split operation, and
thus leads to the ineffectiveness of the split operation or even negative
effects. For this reason, we recommend that the timing of using the
split operation should be referenced to the curve of the execution time
of the stage with the batch size (such as Fig. 2), that is, the performance
model.

6.3. Performance analysis on stretch operations

The stretch operation enhances system throughput by consolidating
multiple small batches into a larger batch to fully exploit hardware
resources. Fig. 5 illustrates the stretch operation process: when a new

29

F. Yu et al.

-1.4
-1.2

16 11 162126311611 1621263116 111621 26 31

Sy S1 Si
(a) ResNet (b) BERT (c) LmkNet

Fig. 16. Effects of various batch combinations on the effectiveness of stretch oper-
ations, where B.S, and BS, denote two batches arriving subsequently. The intensity
of color shading indicates the acceleration effect of stretch operations. For clarity, we
also use 1 to represent negative effects. Stretch operations have a significant effect on
ResNet models.

batch (B.S)) arrives, the current batch (B.S)) is in the middle of infer-
ence at Stage,. The stretch operation first completes the inference of
BS|, at Stage,, then proceeds to perform inference on BS, at Stage,
and finally merges them into a larger batch for Stage, inference. While
stretch operations maximize computational resources by forming larger
batches, they introduce waiting time during the batching process. This
section analyzes the impact of the sizes and combinations of BS,, and
BS,, as well as slice positions, on the effectiveness of stretch operations.
For ease of analysis, we consider the scenario where BS, has just
started execution at stage 0 and BS, arrives as our target scenario.
Fig. 15 illustrates the impact of slice positions on the effectiveness of
stretch operations, where the x-axis represents the slice ratio, and the
y-axis represents the speedups over not using stretch operations. Fig. 16
illustrates the influence of various combinations of BS, and BS,; on
stretch operation efficacy. The brightness of the color signifies speedup
levels relative to non-stretch operation scenarios, with instances of
negative effect (speedups less than 1) marked as 1 for clarity.

Finding 14. Stretch operations yield more significant acceleration when
performed earlier. As seen in Fig. 15, stretch operations are more likely
to achieve noticeable acceleration when the slice ratio is low. This is
because a lower slice ratio implies less waiting time, and with a higher
proportion in stage 1 when system resources are not saturated, batch
processing benefits more. As the slice ratio increases, the acceleration
ratio of stretch operations tends to converge to 0.75. This is because
when the slice ratio approaches 100, the proportion of stage 1 be-
comes nearly zero. Due to the necessity to wait for BS; to finish at
stage 0, BS|, cannot exit prematurely, resulting in an average delay of
approximately 1.75 times that of batch processing.

Finding 15. Applying stretch operations can usually enhance the system
throughput under small batches. As shown in Fig. 15, stretch operations
exhibit noticeable acceleration when merging small batches, as the
system cannot efficiently utilize hardware resources with small batches.
However, for models like BERT, the system resources are already
saturated with small batches, making stretch operations unsuitable for
such models.

Finding 16. Stretch operations are more suitable for ResNet-like models
when computational resources are not saturated, and they are influenced
by waiting time and batch processing gains. Fig. 16 shows that in ResNet
models, stretch operations generally have an acceleration effect, par-
ticularly when BS|, is small, as it reduces the waiting time for B.S)
execution and still improves resource utilization after merging. How-
ever, for BERT models, stretch operations have minimal acceleration
as the system resources are already saturated with small batches. For
LinkNet models, stretch operations produce acceleration only with
specific batch combinations. Thus, systems should decide whether to
adopt stretch operations based on stage-specific performance models.

7. Discussion

In this work, an in-depth analysis and appraisal of the DNN batching
serving system were undertaken, offering significant findings. This

30

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151

section gives the application scenarios and potential inspirations based
on these findings.

7.1. Serving system configuration

In existing serving systems, the configuration of hyperparameters
is a critical factor that affects the effectiveness of batching. However,
there is a lack of comprehensive analysis and guidance on the configu-
ration of these hyperparameters. This work fills this gap by providing
insights into the impact of hyperparameters on batching effectiveness.
Model deployment personnel can use the Finding 3 to configure MAX-
BS to a larger value when deploying computationally intensive models.
This will help to improve hardware resource utilization by forming
larger batches. Furthermore, Finding 5 suggests that deployment per-
sonnel need not overly focus on the time window under medium to low
loads. Serving system developers can adhere to the recommendations
in Finding 9 for setting the number of stages. With these findings and
suggestions in place, users of the serving system can more easily obtain
appropriate parameter settings without undergoing complex, tedious,
and time-consuming experiments and adjustments, thereby accelerating
the application of the serving system.

7.2. DNN system optimization

We explore the potential directions outlined by the findings in this
paper for promoting optimization and design of DNN serving systems.
We first analyzed the relationship between the hyperparameters in the
request batching module and the batching effect, and revealed the con-
stituents of request latency (Findings 3-6). This provides a foundation
for researchers to design adaptive parameter tuning systems for serving
systems. Considering that workloads in practical scenarios often exhibit
burstiness [26], and the inference serving time is deterministic [27],
we can fit the collected request arrival traces to a Markov arrival pro-
cess [28] at runtime to capture the burstiness. Based on the components
of latency and deterministic inference time, we design a parameter
tuner. The tuner determines optimal hyperparameter configurations
based on the arrival process and QoS, maximizing throughput while
meeting the QoS. Furthermore, we discover that in the model slicing
module, the selection of slicing positions should consider computation
time, model structure, and memory access time. Additionally, the num-
ber of stages correlates with runtime synchronization overhead. The
aforementioned analysis offers possibilities for researchers to automat-
ically determine optimal slicing positions and the number of stages.
This inspires researchers to design an profiler to obtain computation
time and access time under different slicing locations. Then, they
can model the inference process under different stage reorchestrating
strategies and query arrival processes, subsequently automatically de-
termining the optimal slicing positions and stage numbers based on
the performance model. Lastly, we examine the stage reorchestrating
module and find that the conditions for utilizing pipelined execution
and meta-operations should consider model characteristics and stage
performance models. This insight guides researchers designing multi-
tenant serving systems to execute computation- intensive stages and
memory access-intensive stages in a pipelined manner to fully utilize
hardware resources. Concurrently, performance models of stages in-
form the execution of meta-operations and resource allocation for the
stages.

7.3. DNN application development

The findings in this paper also have implications for neural network
application developers. Findings 1 and 2 indicate that the performance
improvements achieved through batching techniques primarily arise
from the efficient utilization of hardware computing resources, particu-
larly when larger batch sizes are employed. Therefore, in the design of
neural network models, efforts should be made to reduce the proportion

F. Yu et al.

of memory access time. This hints at the importance for application
developers to use lightweight operators whenever possible, such as
employing depth-wise convolution operations in place of naive convo-
lutions, and adopting quantization techniques to reduce memory access
time. Finding 8 indicates that the position of model slices affects data
flow and tensor lifecycle management. Long-lived tensors occupy mem-
ory resources for extended periods, increasing memory consumption
and limiting the number of batching requests. Thus, DNN application
developers should avoid designing long-lived tensors. Finding 9 sug-
gests that model slicing may impact graph optimization techniques like
operator fusion. Therefore, our advice to model designers is to construct
network models using small, reusable blocks as much as possible to
minimize the impact on graph optimization techniques such as operator
fusion.

7.4. Impact on large language models

In various applications, the significance of language generation
tasks has escalated, sparking heightened interest in optimizing serv-
ing systems via batching techniques. Orca represents the inaugural
adaptation of DVABatch tailored for Large Language Models (LLMs).
A pivotal insight of Orca posits that Transformer-based generative
models function iteratively, so the batching should focus on iterations
rather than individual requests. Consequently, Orca aligns DVABatch
stages with LLM iterations and supports batching arbitrary requests by
executing the iterations in a batch that are in prefill and decode states
separately. In this study, we conducted a comprehensive evaluation of
the DVABatch system, yielding several critical insights.

BERT and Transformer models differ in terms of task objectives
and output layers. Transformer is a sequence processing model that
uses SoftMax for probability distribution computation at the output
layer, while BERT focuses on learning language representations from
text data, which is typically used to generate context-related word
embeddings. However, they are both implemented based on multiple
stacked transformer layers (i.e., including attention layers and forward
feedback layers). In this paper, we discover that BERT can saturate
hardware resources even with small batch sizes. Furthermore, serving
systems utilizing pipeline parallelism exhibit lower throughput when
confronted with the BERT model compared to naive serving systems.
Consequently, this insight suggests that designers of LLM serving sys-
tems should refrain from employing pipeline parallelism on a single
GPU platform.

Given that LLMs typically operate iteratively, and the behavioral
characteristics during the prefill and decode phases exhibit significant
differences [29,30], this constitutes the most prominent distinction
between LLM and BERT. Researchers can leverage the findings of this
paper and integrate the unique features of LLM to design serving
systems effectively. In this context, we propose two potential research
directions and offer possible solutions to stimulate further scholarly
discourse. Findings 4 and 6 elucidate that the queue’s waiting time
markedly impacts the serving system, primarily due to the unpre-
dictable request distribution. In LLM, the arrival time distribution and
iteration count remain indeterminate. Hence, researchers may formu-
late a multi-feedback queue scheduler for handling unknown arrival
times [31] and develop a compact model consistent with LLM to
forecast request iteration counts [32], facilitating batch processing of
requests with analogous iteration counts to minimize latency. Find-
ing 10 suggests that the design and use of meta-operations should
align with model characteristics, offering insights for researchers in
designing new meta-operations for LLM serving systems. This prompted
researchers to develop new meta-operations that couple multiple itera-
tions in decoding states with a iteration in prefill states, utilizing weight
data reuse to reduce memory access and thereby improve system
throughput [33].

In future work, we will augment the characterization of batching be-
havior within the LLM serving system and undertake a more profound
exploration based on the aforementioned two research directions.

31

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151
7.5. Multi-GPU platforms

In existing DNN serving system designs, the batching module and
the inference engine module are independently designed, encompassing
serving systems such as Triton, DVABatch, and Orca. In contemporary
DNN serving systems, tensor parallelism and pipeline parallelism are
commonly utilized for inference services across multiple GPUs [34],
primarily within the confines of the inference engine module. While
this paper focuses on the batching system, insights into the design
of the inference engine remain beneficial. For instance, in Section 5,
we highlight that the selection of model slicing positions is associated
with the model structure, which can provide guidance for the design
of the pipeline stages of the pipeline parallelism paradigm in the
execution engine layer. Furthermore, this work clarifies existing DNN
serving system designs, laying the groundwork for future collaborative
designs between the batching system and the inference engine. For
example, considering a machine equipped with two GPU cards (GPU,
and GPU,) using the pipeline parallelism paradigm—where GPU,
handles the front portion of the model and GPU, manages the rear
portion. Assuming two batches of varying sizes, A and B (with A having
a larger batch size than B), arrive sequentially. Orca would first execute
A on GPU, (front portion of the model) followed by A on GPU, (rear
portion) while simultaneously processing B on GPU, (front portion).
Due to A’s larger batch size compared to B, a bubble occurs on GPU,. If
the batching system layer can perceive that the execution engine layer
uses the pipeline parallelism paradigm, it can reduce the occurrence of
bubbles by dividing the requests into finer granularities.

8. Related work

Dynamic Batching. In the realm of model training, researchers
focused on adjusting batch sizes to strike a balance between training
efficiency and model generalization [35-37]. In the training phase, all
input data is available, allowing for the efficient collection of multiple
samples without latency. However, in the inference phase, since the ML
serving systems receive input at different times, and batching system
needs to balance latency and throughput, which poses challenges.
Therefore, our paper focuses on analyzing batching techniques in the
inference phase.

Regarding batching techniques during model inference, there are
three primary types, as delineated in prior studies [7,38]: static batch-
ing, dynamic batching, and application-specific batching. Static batch-
ing, as exemplified by systems such as Triton and TensorFlow-Serving,
relied on two critical hyperparameters: the model-allowed maximum
batch size and the time window, which govern request batching be-
havior. In a static batching system, new batches can only be executed
after the current batch inference is done, causing longer request wait
times.

Therefore, researchers have proposed dynamic batching, allowing
batch size modification during the inference process, with some typ-
ical serving systems including LazyBatching [7] and DVAbatch [3].
In dynamic batching techniques, models are sliced into different sub-
graphs to support the addition of new requests and the early exit
of old requests. LazyBatching slices the model at the granularity of
operators and employs a QoS-aware slack time prediction algorithm to
delay request processing, creating larger batches. DVABatch, built upon
LazyBatching, uses subgraphs as the slice granularity and introduces
stretch and split operations to adapt to different application scenarios.

Furthermore, there have been batching techniques tailored for spe-
cific applications. As the number of iterations varies for different
requests in the generation model, Orca [39] introduces iteration-level
batching, i.e., considering whether to incorporate new iterations or
early exit the iteration from the batch. In applications involving diverse
sequence lengths, researchers explored strategies for concatenating
requests into larger inputs [40] or adopting finer-grained grouping
techniques [41] to improve performance.

F. Yu et al.

Despite numerous DNN serving system batching techniques, their
applicability and operational contexts remain unclear. Additionally,
these methods often target specific modules, such as static batching for
request batching module and dynamic batching for stage reorchestrat-
ing modules. This work delivers a holistic assessment of the influence of
parameter configurations, model slicing strategies, and stage reorches-
trating strategies on batching serving systems across diverse models and
workloads. To the best of our knowledge, this is the first study that
comprehensively evaluates and analyzes DNN batching serving system.

Serving Systems. In serving systems, batch processing was often
considered in conjunction with factors such as resource allocation and
QoS. Various approaches were devised to employ adaptive strategies,
enhancing efficiency and ensuring equitable resource distribution to
fulfill users’ inference demands. DyBatch [42] adjusted batch sizes
based on device workloads and task requisites to uphold fairness.
Nanily [43] dynamically allocated computational resources, aiming to
meet QoS requirements while optimizing resource utilization. Ebird [9,
44] excelled in performance maximization across fluctuating work-
loads. In the design of serving systems, batching techniques typically
need to be collaboratively designed with other optimization techniques.
This study contributes to a better understanding of batching techniques
for developers and lays the foundation for designing superior serving
systems.

9. Conclusion

Optimizing and deploying DNN serving systems lay in understand-
ing the behavior of batching throughout the entire system. In this
paper, we characterized the behavior of the request batching module,
model slicing module, and stage reorchestrating module, in deep neu-
ral network batching systems on GPUs, by using three representative
models. Based on experimental results, several meaningful insights
and findings are provided for future research to further enhance deep
learning serving systems.

CRediT authorship contribution statement

Feng Yu: Writing - original draft, Methodology, Conceptualiza-
tion. Hao Zhang: Software, Formal analysis. Ao Chen: Validation,
Investigation. Xueying Wang: Validation, Formal analysis. Xiaoxia
Liang: Software, Investigation. Sheng Wang: Validation, Investigation.
Guangli Li: Project administration, Methodology, Conceptualization.
Huimin Cui: Supervision, Methodology. Xiaobing Feng: Supervision,
Methodology.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is supported by the National Natural Science Foundation
of China (62232015, 62090024, 62302479), the China Postdoctoral
Science Foundation (2023M733566), and the Innovation Funding of
ICT, CAS, China (E361010).

References

[1]1 N. Inc., NVIDIA triton inference server, 2023, URL https://docs.nvidia.com/
deeplearning/triton-inference-server/, Accessed: August, 2023.

[2] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Rajashekhar,
S. Ramesh, J. Soyke, Tensorflow-serving: Flexible, high-performance ml serving,
2017, arXiv preprint arXiv:1712.06139.

32

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151

[3] W. Cui, H. Zhao, Q. Chen, H. Wei, Z. Li, D. Zeng, C. Li, M. Guo, DVABatch:
Diversity-aware Multi-Entry Multi-Exit batching for efficient processing of DNN
services on GPUs, in: 2022 USENIX Annual Technical Conference, 2022, pp.
183-198.

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770-778.

J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, 2018, arXiv preprint
arXiv:1810.04805.

A. Chaurasia, E. Culurciello, Linknet: Exploiting encoder representations for
efficient semantic segmentation, 2017, arXiv preprint arXiv:1707.03718.

Y. Choi, Y. Kim, M. Rhu, Lazy batching: An SLA-aware batching system for cloud
machine learning inference, in: International Symposium on High-Performance
Computer Architecture, 2021, pp. 493-506.

X. Li, G. Zhang, H.H. Huang, Z. Wang, W. Zheng, Performance analysis of GPU-
based convolutional neural networks, in: 2016 45th International Conference on
Parallel Processing, ICPP, IEEE, 2016, pp. 67-76.

W. Cui, M. Wei, Q. Chen, X. Tang, J. Leng, L. Li, M. Guo, Ebird: Elastic
batch for improving responsiveness and throughput of deep learning services,
in: International Conference on Computer Design, 2019, pp. 497-505.

T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang,
Y. Hu, L. Ceze, et al., TVM: An automated End-to-End optimizing compiler for
deep learning, in: 13th USENIX Symposium on Operating Systems Design and
Implementation, 2018, pp. 578-594.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-performance
deep learning library, Adv. Neural Inf. Process. Syst. 32 (2019).

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, T. Darrell, Caffe: Convolutional architecture for fast feature embedding,
in: Proceedings of the 22nd ACM International Conference on Multimedia, 2014,
pp. 675-678.

N. Inc., NVIDIA tensorRT, 2021, URL: https://developer.nvidia.com/tensorrt,
Accessed on 2023-09-04.

N. inc, Triton client libraries and examples, 2021, URL: https://github.com/
triton-inference-server/client, Accessed on 2023-09-04.

V.J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J. Wu, B. Ander-
son, M. Breughe, M. Charlebois, W. Chou, et al., Mlperf inference benchmark,
in: International Symposium on Computer Architecture, 2020, pp. 446-459.

D. Yastremsky, Maximizing deep learning infer-ence performance with NVIDIA
model analyzer, 2020, URL https://developer.nvidia.com/blog/maximizing-deep-
learning-inference-performance-with-nvidia-model-analyzer, Accessed: August,
2023.

S.V. Saavedra, A.L. Uribe, Google cloud vision and its application in image
processing using a raspberry Pi, in: Colombian Conference on Computing,
Springer, 2022, pp. 102-113.

D. Avinash, J.A. Kumar, R. Chandansingh, Use of Al in cloud-based certificate
authentication for travel concession, in: Mobile Computing and Sustainable
Informatics: Proceedings of ICMCSI 2023, Springer, 2023, pp. 349-361.

A. Satapathi, A. Mishra, Build a multilanguage text translator using azure
cognitive services, in: Developing Cloud-Native Solutions with Microsoft Azure
and. NET: Build Highly Scalable Solutions for the Enterprise, Springer, 2022, pp.
231-248.

H.-M. Sormunen, Enhancing customer feedback processing with machine learning
in Microsoft Azure, 2022.

M. Singh, Single stage facial recognition based on YOLOVS5, in: 2022 International
Conference on INnovations in Intelligent SysTems and Applications, INISTA,
IEEE, 2022, pp. 1-6.

T. Leonor Estévez Dorantes, D. Bertani Hernandez, A. Le6n Reyes, C. Elena
Miranda Medina, Development of a powerful facial recognition system through
an API using ESP32-Cam and amazon rekognition service as tools offered by
industry 5.0, in: 2022 the 5th International Conference on Machine Vision and
Applications, ICMVA, 2022, pp. 76-81.

S. Marcel, Y. Rodriguez, Torchvision the machine-vision package of torch, in:
Proceedings of the 18th ACM International Conference on Multimedia, 2010,
pp. 1485-1488.

S.M. Jain, Hugging face, in: Introduction to Transformers for NLP: With the
Hugging Face Library and Models to Solve Problems, Springer, 2022, pp. 51-67.
D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N.R. Devanur, G.R.
Ganger, P.B. Gibbons, M. Zaharia, PipeDream: Generalized pipeline parallelism
for DNN training, in: Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, Association for Computing Machinery, New York,
NY, USA, ISBN: 9781450368735, 2019, pp. 1-15, http://dx.doi.org/10.1145/
3341301.3359646.

A. Ali, R. Pinciroli, F. Yan, E. Smirni, Batch: machine learning inference serving
on serverless platforms with adaptive batching, in: International Conference for
High Performance Computing, Networking, Storage and Analysis, 2020, pp. 1-15.
F. Yan, O. Ruwase, Y. He, E. Smirni, SERF: Efficient scheduling for fast deep
neural network serving via judicious parallelism, in: SC’16: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, IEEE, 2016, pp. 300-311.

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

https://docs.nvidia.com/deeplearning/triton-inference-server/
https://docs.nvidia.com/deeplearning/triton-inference-server/
https://docs.nvidia.com/deeplearning/triton-inference-server/
http://arxiv.org/abs/1712.06139
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb3
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb3
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb3
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb3
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb3
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb3
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb3
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb4
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb4
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb4
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb4
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb4
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1707.03718
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb7
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb7
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb7
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb7
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb7
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb8
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb8
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb8
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb8
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb8
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb9
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb9
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb9
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb9
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb9
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb10
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb10
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb10
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb10
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb10
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb10
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb10
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb11
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb11
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb11
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb11
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb11
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb12
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb12
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb12
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb12
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb12
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb12
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb12
https://developer.nvidia.com/tensorrt
https://github.com/triton-inference-server/client
https://github.com/triton-inference-server/client
https://github.com/triton-inference-server/client
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb15
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb15
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb15
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb15
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb15
https://developer.nvidia.com/blog/maximizing-deep-learning-inference-performance-with-nvidia-model-analyzer
https://developer.nvidia.com/blog/maximizing-deep-learning-inference-performance-with-nvidia-model-analyzer
https://developer.nvidia.com/blog/maximizing-deep-learning-inference-performance-with-nvidia-model-analyzer
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb17
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb17
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb17
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb17
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb17
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb18
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb18
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb18
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb18
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb18
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb19
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb19
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb19
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb19
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb19
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb19
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb19
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb20
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb20
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb20
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb21
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb21
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb21
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb21
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb21
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb22
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb22
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb22
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb22
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb22
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb22
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb22
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb22
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb22
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb23
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb23
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb23
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb23
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb23
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb24
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb24
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb24
http://dx.doi.org/10.1145/3341301.3359646
http://dx.doi.org/10.1145/3341301.3359646
http://dx.doi.org/10.1145/3341301.3359646
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb26
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb26
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb26
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb26
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb26
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb27
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb27
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb27
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb27
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb27
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb27
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb27

F. Yu et al.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

M.F. Neuts, A versatile Markovian point process, J. Appl. Probab. 16 (4) (1979)
764-779.

K. Hong, G. Dai, J. Xu, Q. Mao, X. Li, J. Liu, K. Chen, H. Dong, Y. Wang,
FlashDecoding++: Faster large language model inference on GPUs, 2023, arXiv
preprint arXiv:2311.01282.

W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C.H. Yu, J. Gonzalez, H. Zhang,
I. Stoica, Efficient memory management for large language model serving with
pagedattention, in: Proceedings of the 29th Symposium on Operating Systems
Principles, 2023, pp. 611-626.

B. Wu, Y. Zhong, Z. Zhang, G. Huang, X. Liu, X. Jin, Fast distributed inference
serving for large language models, 2023, arXiv preprint arXiv:2305.05920.

Q. Su, C. Giannoula, G. Pekhimenko, The synergy of speculative decoding
and batching in serving large language models, 2023, arXiv preprint arXiv:
2310.18813.

A. Agrawal, A. Panwar, J. Mohan, N. Kwatra, B.S. Gulavani, R. Ramjee,
SARATHI: Efficient LLM inference by piggybacking decodes with chunked
prefills, 2023, arXiv preprint arXiv:2308.16369.

X. Miao, C. Shi, J. Duan, X. Xi, D. Lin, B. Cui, Z. Jia, SpotServe: Serving
generative large language models on preemptible instances, 2023, arXiv preprint
arXiv:2311.15566.

A. Devarakonda, M. Naumov, M. Garland, Adabatch: Adaptive batch sizes for
training deep neural networks, 2017, arXiv preprint arXiv:1712.02029.

A. Lydia, S. Francis, Adagrad—an optimizer for stochastic gradient descent, Int.
J. Inf. Comput. Sci. 6 (5) (2019) 566-568.

M. Zaheer, S. Reddi, D. Sachan, S. Kale, S. Kumar, Adaptive methods for
nonconvex optimization, Adv. Neural Inf. Process. Syst. 31 (2018).

33

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151

[38]

[39]

[40]

[41]

[42]

[43]

[44]

E.L. Cade Daniel, R. Liaw, How continuous batching enables 23x throughput in
LLM inference while reducing p50 latency, 2023, URL: https://www.anyscale.
com/blog/continuous-batching-1lm-inference, Accessed on 2023-09-04.

G.-L. Yu, J.S. Jeong, G.-W. Kim, S. Kim, B.-G. Chun, Orca: A distributed serving
system for transformer-based generative models, in: USENIX Symposium on
Operating Systems Design and Implementation, 2022, pp. 521-538.

B. Fu, F. Chen, P. Li, D. Zeng, TCB: Accelerating transformer inference services
with request concatenation, in: Proceedings of the 51st International Conference
on Parallel Processing, 2022, pp. 1-11.

Y. Zhai, C. Jiang, L. Wang, X. Jia, S. Zhang, Z. Chen, X. Liu, Y. Zhu,
ByteTransformer: A high-performance transformer boosted for variable-length
inputs, in: International Parallel and Distributed Processing Symposium, 2023,
pp. 344-355.

S. Zhang, W. Li, C. Wang, Z. Tari, A.Y. Zomaya, DyBatch: Efficient batching
and fair scheduling for deep learning inference on time-sharing devices, in:
International Symposium on Cluster, Cloud and Internet Computing, 2020, pp.
609-618.

X. Tang, P. Wang, Q. Liu, W. Wang, J. Han, Nanily: A qos-aware scheduling
for dnn inference workload in clouds, in: International Conference on High
Performance Computing and Communications, 2019, pp. 2395-2402.

W. Cui, Q. Chen, H. Zhao, M. Wei, X. Tang, M. Guo, E2bird: Enhanced elastic
batch for improving responsiveness and throughput of deep learning services,
IEEE Trans. Parallel Distrib. Syst. 32 (6) (2020) 1307-1321.

http://refhub.elsevier.com/S2772-4859(24)00003-6/sb28
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb28
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb28
http://arxiv.org/abs/2311.01282
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb30
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb30
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb30
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb30
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb30
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb30
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb30
http://arxiv.org/abs/2305.05920
http://arxiv.org/abs/2310.18813
http://arxiv.org/abs/2310.18813
http://arxiv.org/abs/2310.18813
http://arxiv.org/abs/2308.16369
http://arxiv.org/abs/2311.15566
http://arxiv.org/abs/1712.02029
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb36
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb36
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb36
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb37
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb37
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb37
https://www.anyscale.com/blog/continuous-batching-llm-inference
https://www.anyscale.com/blog/continuous-batching-llm-inference
https://www.anyscale.com/blog/continuous-batching-llm-inference
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb39
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb39
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb39
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb39
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb39
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb40
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb40
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb40
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb40
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb40
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb41
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb41
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb41
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb41
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb41
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb41
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb41
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb42
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb42
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb42
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb42
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb42
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb42
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb42
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb43
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb43
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb43
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb43
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb43
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb44
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb44
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb44
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb44
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb44

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100152

KeAi e

Contents lists available at ScienceDirect
BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

BenchCouncil Transactions
on Benchmarks, Standards

and Evaluations

KeAi

CHINESE ROOTS
GLOBAL IMPACT

Full length article ')

Check for

AIGCBench: Comprehensive evaluation of image-to-video content generated [’
by Al

Fanda Fan *", Chunjie Luo ?, Wanling Gao ?, Jianfeng Zhan ®"-*

a Research Center for Advanced Computer Systems, State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, China
b University of Chinese Academy of Sciences, China

ARTICLE INFO ABSTRACT

Keywords:

Artificial intelligence generated content
Video generation

Image-to-video benchmark

Diffusion model

Multimodal Al

The burgeoning field of Artificial Intelligence Generated Content (AIGC) is witnessing rapid advancements,
particularly in video generation. This paper introduces AIGCBench, a pioneering comprehensive and scalable
benchmark designed to evaluate a variety of video generation tasks, with a primary focus on Image-to-Video
(I2V) generation. AIGCBench tackles the limitations of existing benchmarks, which suffer from a lack of
diverse datasets, by including a varied and open-domain image—text dataset that evaluates different state-
of-the-art algorithms under equivalent conditions. We employ a novel text combiner and GPT-4 to create rich
text prompts, which are then used to generate images via advanced Text-to-Image models. To establish a
unified evaluation framework for video generation tasks, our benchmark includes 11 metrics spanning four
dimensions to assess algorithm performance. These dimensions are control-video alignment, motion effects,
temporal consistency, and video quality. These metrics are both reference video-based and video-free, ensuring
a comprehensive evaluation strategy. The evaluation standard proposed correlates well with human judgment,
providing insights into the strengths and weaknesses of current 12V algorithms. The findings from our extensive
experiments aim to stimulate further research and development in the 12V field. AIGCBench represents a
significant step toward creating standardized benchmarks for the broader AIGC landscape, proposing an
adaptable and equitable framework for future assessments of video generation tasks. We have open-sourced
the dataset and evaluation code on the project website: https://www.benchcouncil.org/AIGCBench.

1. Introduction results [7,8,15-19]. However, using text alone makes it difficult to

depict the specific scenes that users want. Recently, 12V has ignited the

Artificial Intelligence Generated Content (AIGC) encompasses a
wide array of applications that leverage Al technologies to automate
the creation or editing of content across different media types, such as
text, images, audio, and video. With the rapid advancement of diffusion
models [1-5] and multimodal AI technologies [6], the AIGC field is
experiencing considerable and rapid progress. The explosive growth of
AIGC has made its evaluation and benchmarking an urgent task.

A representative application of AIGC is video generation [7-11].
Current video generation includes Text-to-Video (T2V), Image-to-Video
(12V), Video-to-Video (V2V), as well as a few other works that utilize
additional information such as depth [10], pose [12], trajectory [13],
and frequency [14] to generate videos. Among these, T2V and 12V
are the two most mainstream tasks at present. Early video generation
primarily used text prompts to generate videos and achieved good

AIGC community. The 12V task refers to the generation of a dynamic,
moving video sequence based on a static input image and is usually ac-
companied by a text prompt.! Compared to T2V, 12V can better define
the content of video generation, achieving excellent results in many
scenarios such as film, e-commerce advertising, and micro-animation
effects.

While benchmarks for the T2V task have seen notable progress
[20-22], benchmarks for the I2V task have scarcely advanced. Pre-
vious efforts like Latent Flow Diffusion Models (LFDM) [23] and
CATER-GEN [24] were tested under domain-specific video scenarios.
VideoCrafter [25] and I12VGen-XL [26] only utilized visual comparisons
for the 12V task. Seer [27] and Stable Video Diffusion (SVD) [28]
employed video—text datasets and utilized a few metrics that require
reference videos. Existing 12V benchmarks suffer from (1) a lack of

* Corresponding author at: Research Center for Advanced Computer Systems, State Key Lab of Processors, Institute of Computing Technology, Chinese Academy

of Sciences, China.

E-mail addresses: fanfanda@ict.ac.cn (F. Fan), zhanjianfeng@ict.ac.cn (J. Zhan).
1 However, the community often refers to it as Image-to-Video, rather than Text-Image-to-Video.
2 Open-domain images refer to images that cover a wide variety of subjects or topics without specific restrictions on the content or category.
3 Here, equivalent conditions refer to using the same evaluation dataset and assessment dimensions for all video generation tasks.

https://doi.org/10.1016/j.tbench.2024.100152

Received 3 January 2024; Received in revised form 17 January 2024; Accepted 23 January 2024

Available online 26 January 2024

2772-4859/© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.benchcouncil.org/AIGCBench
mailto:fanfanda@ict.ac.cn
mailto:zhanjianfeng@ict.ac.cn
https://doi.org/10.1016/j.tbench.2024.100152
https://doi.org/10.1016/j.tbench.2024.100152
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2024.100152&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

F. Fan et al.

A girl slides down a slide

Video-Text W ‘ _ﬂ ‘:"

= Pair ,
“ - 3.
= Girls walking ... the beach A wman riding...
2 k i
Image-Text
Pair
°
g
[\l Image-Text
2 Pair
)
(C)

3

Gram-gl g We
=S
~| N NAOL R

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100152

Video Generation Models
Gen-2 .
Pika

VideoCrafter Stable Video Diffusion

Evaluation Metrics

Control-Video Motion
Alignment Effects
Human
Validation
Temporal Video
Consistency Quality

Fig. 1. Illustration of our AIGCBench. Our AIGCBench is divided into three modules: the evaluation dataset, the evaluation metrics, and the video generation models to be assessed.
Our benchmark encompasses two types of datasets: video-text and image—text datasets. To construct a more comprehensive evaluation dataset, we expand the image—text dataset by
our generation pipeline. Additionally, for a thorough evaluation of video generation models, we introduce a set of evaluation metrics comprising 11 metrics across four dimensions.
These metrics include both reference video-based and reference video-free metrics, making full use of the benchmark we propose. We also adopted human validation to confirm

the rationality of the evaluation standards we proposed.

diverse, open-domain images® with various subjects and styles to test
the efficacy of different state-of-the-art algorithms; (2) an absence of a
unified consensus on which evaluation metrics should be used to assess
the final generated results. From the perspective of [29], these two
shortcomings hinder the capability of capturing stakeholders’ concerns
and interests, while also failing to construct equivalent evaluation
conditions.®

To address this gap, we present AIGCBench, a unified benchmark
for video generation tasks. AIGCBench aims to encapsulate all main-
stream video generation tasks, such as T2V, 12V, V2V, and the syn-
thesis of video from additional modalities like depth, pose, trajectory,
and frequency. We present an overview of AIGCBench in Fig. 1. Our
AIGCBench is divided into three modules: the evaluation dataset, the
evaluation metrics, and the video generation models to be assessed.
Considering the high relevance and interconnectivity* of video gen-
eration tasks, our AIGCBench can enable the comparison of different
algorithms under equivalent evaluation conditions. This allows for an
analysis of the strengths and weaknesses of different state-of-the-art
video generation algorithms, thereby aiding progress in the field of
video generation. In the first version of our AIGCBench, we address
the current lack of a reasonable benchmark for 12V tasks by providing
a thorough evaluation for them. In subsequent versions, we plan to
include more video generation tasks and place them under equivalent
evaluation conditions for a fair comparison.

Recognizing the limitations of existing benchmarks, AIGCBench is
engineered to meet the diverse demands of users looking to animate a
broad array of static images. Where previous benchmarks have fallen
short, not fully accommodating the expansive range of images users
might choose to animate — such as a blue dragon skateboarding in
Times Square — AIGCBench rises to the challenge. We address this by
deploying a text combiner to generate a rich assortment of text prompts
that span a multitude of subjects, behaviors, backgrounds, and artistic
styles. Further refining the creative process, we employ the advanced
capabilities of GPT-4 [30] to enhance the text prompts, rendering them
more vivid and intricate. These detailed prompts then guide the genera-
tion of images through state-of-the-art Text-to-Image diffusion models.

4 The interconnectivity arises because some algorithms have the capability
to perform multiple types of video generation tasks.

35

By judiciously blending video-text and image—text datasets, along with
our generated image-text pairs, AIGCBench ensures a robust and com-
prehensive evaluation of an array of 12V algorithms, thus addressing
the first major shortcoming identified in existing benchmarks.

To establish a comprehensive and standardized set of evaluation
metrics for video generation tasks that cater to mainstream tasks such
as T2V and 12V, our AIGCBench evaluates four critical dimensions:
control-video alignment, motion effects, temporal consistency, and
video quality, thereby capturing every aspect of video generation. This
integrated framework combines metrics that are both reference video-
based and video-free metrics, enhancing the benchmark’s rigor without
exclusively relying on video-text datasets or image-text datasets alone.
We strengthen this approach by incorporating image-text datasets into
our evaluations, which allows us to assess content beyond the scope
of existing video-text datasets and add reference video-free metrics
for assessment. Considering the complexity and diversity of tasks, we
believe that the evaluation metrics should cover at least these four
aspects. For each aspect, we aim to use both reference video-based and
video-free metrics. After satisfying these categorizations, the benefits
of increasing the number of metrics become marginal, while it is
insufficient without covering these aspects. The experimental results
demonstrate that our evaluation standard correlates well with human
ratings, confirming its effectiveness. Following a thorough evaluation,
we present the strengths and weaknesses of each model, alongside sev-
eral insightful findings, in hopes of spurring discussions that advance
the 12V field.

Our contributions are as follows:

1. We introduce AIGCBench, a benchmark for comprehensive eval-
uation of diverse video generation tasks, with an initial focus on
Image-to-Video (I2V) generation and a commitment to placing
these models under equivalent evaluation conditions for fair
comparison.

. We extend our image-text dataset using a text combiner and
GPT-4, complemented by state-of-the-art Text-to-Image models
to generate high-quality images, enabling a deeper evaluation
of 12V algorithm performance;

. We evaluate 12V algorithms comprehensively using both refer-
ence video-based and video-free metrics across four aspects and
verify the validity of our proposed evaluation standard with
human judgment;

F. Fan et al.

Table 1

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100152

Compare the features of our AIGCBench with other 12V benchmarks. X and v indicate whether the benchmark includes the features listed in the respective columns.
Video-based metrics, which use reference videos, contrast with video-free metrics that do not. Considering the difficulty of the evaluation, we are not counting the

sample numbers for domain-specific benchmarks [23,24,27].

Benchmark Open-Domain Video-Text Pairs Image-Text Pairs Generated Dataset #Samples Metric Types # Metrics
LFDM Eval [23] X v X X - Video-based 3
CATER-GEN [24] X 4 4 v - Video-based & Video-free 7
Seer Eval [27] X v X X - Video-based 2
VideoCrafter Eval [25] v v 4 X - -

12VGen-XL Eval [26] 4 4 v X - - -
SVD Eval [28] v v v X 900 Video-based 5
AnimateBench [31] v X X v 105 Video-free 2
AIGCBench (Ours) v v v v 3928 Video-based & Video-free 11

. We offer several insightful findings to aid the better development
of the 12V community.

2. Background and related work

Current video generation primarily encompasses two major tasks:
Text-to-Video (T2V) and Image-to-Video (I2V). Given the high rele-
vance of T2V tasks to 12V tasks, we discuss video generation models,
with a particular focus on I2V models, in Section 2.1. We will introduce
related benchmarks for T2V in Section 2.2 and describe the existing
benchmarks for I2V in Section 2.3.

2.1. Video generation models

Thanks to the development of diffusion models [1-5] and mul-
timodal techniques [6], video generation algorithms are becoming
increasingly sophisticated. Early video generation was primarily based
on text-to-video approaches [7,8,10,15,17-19,32-36]. Most of the work
is based on diffusion models [2-5,16], with some being transformer-
based [15,33]. They all rely on extensive video-text or image-text
datasets to train scalable models. However, considering that using only
text can make it challenging to intuitively depict the video scenes users
want to generate, image-to-video has started to gain popularity in the
video generation community.

Seer [27] introduced an approach for 12V tasks that combines the
conditional image latent with a noisy latent, utilizing causal atten-
tion within the temporal component of a 3D U-Net [37]. VideoCom-
poser [38] concatenated image embedding with image style embedding
to preserve the initial image information. Recently, VideoCrafter [25]
encoded the image prompt through a lightweight image encoder and
fed it into the cross-attention layer. Similarly, I2VGen-XL [26] not only
merges the image latent with the noisy latent at the input layer but
also employs a global encoder that extracts the image CLIP feature into
the video latent diffusion model (VLDM). Stable video diffusion [28]
is an extension of a pretrained image-based diffusion model [39]. It
is trained through three stages: text-to-image pretraining, video pre-
training, and high-quality video fine-tuning. Emu Video [40] identified
critical design decisions, such as adjusted noise schedules for diffusion
and multi-stage training, which enabled the generation of high-quality
videos without requiring a deep cascade of models as in prior work.
Beyond academic research, the video generation results from industry
players like Pika [9] and Gen2 [10] are also quite impressive. All of
these 12V algorithms are based on video diffusion models, and the
majority leverage the parameter priors from image diffusion models to
aid in the convergence of video models.

To evaluate state-of-the-art 12V models, we have reviewed three
open-source works in this paper: VideoCrafter [25], 12VGen-XL [26],
and Stable Video Diffusion [28], as well as two closed-source industry
efforts, Pika [9] and Gen2 [10]. These currently represent the five

36

most influential works in the video generation community, and we will
briefly introduce their experimental parameters in Section 5.1.

2.2. Benchmarks for text-to-video generation

The FETV benchmark [20] conducts a comprehensive manual eval-
uation of representative T2V models and reveals their strengths and
weaknesses in handling a diverse range of text prompts from multiple
perspectives. EvalCrafter [21] starts by creating a new set of prompts
for T2V generation with the assistance of a large language model,
ensuring that the prompts are representative of actual user queries.
EvalCrafter’s benchmarks [21] are meticulously designed to evaluate
generated videos from several critical dimensions: visual quality, con-
tent accuracy, motion dynamics, and the alignment between generated
video content and the original text captions. VBench [22] has created
16 distinct evaluation dimensions, each with specialized prompts for
precise assessment.

The task of T2V differs from 12V, as videos generated from the same
text can vary widely, making it less suitable for evaluation metrics
that require a reference video. For T2V tasks, the results generated
by different models for the same text prompt can be quite dissimilar.
However, for 12V tasks, since the image imposes certain constraints,
the variation in results produced by different models is generally not as
pronounced. This allows us to conduct a comprehensive evaluation of
different Image-to-Video (I2V) algorithms on video-text datasets using
evaluation metrics that are based on reference videos. Our AIGCBench
draws on these T2V benchmarks but differs from them in several
respects: (1). We need to collect or construct images for the I2V model’s
input, which requires considering the comprehensiveness of both the
text prompt set and the image set. (2). Although our evaluations are
similar to those of the T2V task in terms of the dimensions assessed,
we need to employ new evaluation standards due to the differences
between T2V and I2V tasks.

2.3. Benchmarks for image-to-video generation

Domain-specific 12V benchmark. LFDM Eval [23] is evaluated on facial
expression and human action datasets, employing just a few evaluation
metrics to gauge the quality of video generation. The CATER-GEN [24]
benchmark uses predefined 3D objects and specific initial images for
testing the quality of videos that depict the motion of 3D objects.
Nonetheless, neither LFDM Eval [23] nor the CATER-GEN [24] bench-
mark is appropriate for evaluating video generation in open-domain
scenarios.

Open-domain 12V benchmark. The open-domain 12V benchmark is cur-
rently based on two main types of evaluation data: video-text and
image-text datasets. Seer [27] and SVD [28] have utilized video-
text datasets and employed a limited number of metrics that require
reference videos for evaluation. VideoCrafter [25] and 12VGen-XL [26]

F. Fan et al.

have used image-text datasets and relied solely on visual compar-
isons. Very recently, AnimateBench [31] was released for the purpose
of evaluating I2V tasks. They also generated images using Text-to-
Image models. However, they were limited by a small number of text
prompts and a limited collection of images. At the same time, there
is a lack of comprehensive evaluation metrics. Both are constrained
by limited evaluation datasets and an incomplete set of assessment
metrics. This leads to the evaluation datasets not being representative
of all stakeholders’ concerns and interests, and there is also a lack of
a unified and comprehensive consensus on evaluation. In this paper,
we expand the image-text dataset using state-of-the-art Text-to-Image
models. To ensure the complexity of the generated text prompts, we
generate prompts through the combinatorial traversal of four metatypes
and enhance them with the capabilities of large language models. We
compare our AIGCBench with other 12V benchmarks in Table 1.

Generating image—text dataset. While most benchmarks gather datasets
from the real world, CATER-GEN [24] constructs datasets using a
limited set of text prompts for specific object movement scenarios. Very
recently, AnimateBench [31] utilized a limited number of manually
designed text prompts and also employed Text-to-Image models to gen-
erate images. However, this approach is constrained by the simplicity
of the text combinations and the limited diversity of the images. Our
generation pipeline uses a text combiner to randomly generate text
prompts and incorporates GPT-4 [30] to enrich the content. Simultane-
ously, we filter the generated results to select high-quality image-text
pairs.

3. AIGCBench: Establishing the image-to-video generation bench-
mark

The framework of our AIGCBench is shown in Fig. 1. Our AIGCBench
framework comprises three components: the evaluation dataset, the
video generation models to be assessed, and the evaluation metrics. To
construct a comprehensive benchmark, we evaluate 12V models using
two types of datasets: video-text and image-text. For the image-text
dataset, we utilize evaluation metrics that do not require reference
videos. In this section, we will introduce how we collected the evalu-
ation datasets, in Section 4 we present the evaluation criteria we have
established, and in Section 5.1 we provide a brief introduction to the
video generation models to be evaluated.

3.1. Collect dataset from real-world

Video-text pairs. The WebVid-10M [41] dataset is a substantial collec-
tion specifically designed to aid in the development and training of Al
models for video understanding tasks. It consists of approximately 10
million video-text pairs, making it one of the larger datasets available
for this type of research. Considering that video generation is time-
consuming, we have sampled 1000 videos from the validation set of the
WebVid10M [41] dataset based on subtype for evaluation purposes.

Image—text pairs. The LAION-5B [42] dataset is a large-scale, open
dataset consisting of around 5,85 billion image-text pairs. It was cre-
ated to facilitate research in computer vision and machine learning,
specifically in areas such as multi-modal language-vision models, Text-
to-Image generation, and more (e.g. CLIP [6], DALL-E [43]). LAION-
Aesthetics is a subset from LAION-5B [42] with high visual quality.
We randomly sampled 925 image-text pairs from the LAION-Aesthetics
dataset to serve as a reference for video-free evaluation metrics.

3.2. Generated image—text pairs

Using only real-world datasets is insufficient. Users often input
images and text generated by designers or T2I (Text-to-Image) models
to create videos. This includes certain image-text pairs that cannot
be sampled in the real world. To bridge this gap, we propose a T2I
generation pipeline. As shown in Fig. 2, we provide an overview of our
generation pipeline above and present some generated cases below.

37

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100152

3.2.1. Text combiner

To generate as diverse text prompts as possible, we construct text
templates based on four types: subject, behavior, background, and
image style. We then generate a list of 3000 text prompts randomly
by following the template: subject + behavior + background, in the
image style style. We have listed some examples:

1. Subject: a dragon, a knight, an alien, a robot, a panda, a nymph;

2. Behavior: riding a bike, fight a monster, searching for a treasure,
dancing, solving a puzzle;

. Background: in a forest, in a futuristic city, in a space station, in an
old western town at high noon;

. Image style: oil painting, water color, cartoon, realistic, Van Gogh,
Picasso.

We have compiled our text corpus from high-frequency words often
entered by users in the T2I community of Civit Al [44], along with
some potentially valuable text prompts. Considering the flexibility of
our generation pipeline, our benchmark is scalable. Subsequently, we
can update and iterate on the versions of our text corpus.

3.2.2. Optimizing text prompts

Although utilizing text templates with various text corpora can
generate reasonable images, it might lead to poor diversity in the
generated images, which is not conducive to evaluating I2V tasks. We
leverage the capabilities of the GPT-4 model [30], using the prompt
“make the content more vivid and rich” to optimize the texts generated
from templates.

3.2.3. Generate images and filter

To generate high-quality images based on the generated texts, we
have employed the best Text-to-Image (T2I) model available to date
— the Stable Diffusion model [39]. The Stable Diffusion model [39] is
particularly notable for its ability to create high-quality and coherent
images that closely match the style and content described by the input
text prompts. We utilized the latest xl-base T2I model released by their
community. Considering that the 12V model is primarily trained with
an aspect ratio of 16:9, we used a height of 720 and a width of 1280
to generate images.

In order to select high-quality image-text pairs, we filtered out
the top 2003 high-quality image-text pairs based on the automatic
metrics from the T2I-CompBench [45]. Some examples generated by
our pipeline can be seen in the lower half of Fig. 2.

4. Evaluation metrics

Our evaluation dataset includes both video-text and image-text
datasets. To conduct a comprehensive evaluation, we employ two types
of assessment metrics: one that requires reference videos and another
that does not. In addition, we considered previous Text-to-Video bench-
marks [20-22] and have integrated to propose an evaluation standard
suitable for the Image-to-Video (I2V) task, covering both types of
dataset. We assess the performance of different 12V models from four
aspects: control-video alignment.® motion effects, temporal consistency,
and overall video quality®. Considering that videos generated by dif-
ferent algorithms have varying numbers of frames, for a standardized
evaluation, we adopt the approach of extracting the first 16 frames,
unless otherwise specified.

5 “control” refers to the input signals from the user, such as text, images,
and other forms of control signals.
6 The code is available at https://github.com/BenchCouncil/AIGCBench.

https://github.com/BenchCouncil/AIGCBench

F. Fan et al.

Text Combiner

{Subject} + {Behavior} +
{Background} , in the
{Image Style} style

e.9., An alien dancing at the edge
of a sevene Lalke, in the

style and rich

Prompt: Make the
content more vivid

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100152

T2l Prompt T2l Model

A vibrant alien performs a
lively dance on the tranquil

: |
& lakeshore, its quirky moves ' - “’ ‘ ’

and bouncy rhythm
capturing the essence of
cartoon animation.

A man flghting a wonster
at the edge of a sevene lake,
In the 2D render style.

A nywmph whispering to

n the oil painting sty le.

animals on an alien planet,

A dragon strumming the
guitar tn o futuristic ci,tg,
in the realistic style.

A panda solving a puzzle
in a mystical forest, in the
watercolor style.

A robot expertly cchng n
a dense jungle, rendered
with photorealistic detatl.

A mermaid feasting
hungrily tn an enchanted

photographic realism.

garden, captured with stark

A plrate casting a spell in
an enchanted garden, with
vawn Gogh's passionate
brushwork

A rogue robot brewing a
potion on a snowy
mowntaintop, depicted in
vibrant pixel art.

Fig. 2. Image-text dataset generation pipeline and results. Above: An overview of our T2I generation pipeline is presented. Below: Eight generated cases are showcased, with the

original text produced by the text combiner displayed beneath each image.

4.1. Control-video alignment

The control-video alignment measures the degree of alignment be-
tween the user’s input control signals, such as text and images, and
the generated video. Considering that current video generation tasks
primarily involve two types of inputs—a starting image and a text
prompt—we introduce two evaluation metrics in the first version of
our benchmark: image fidelity and text-video alignment. The image
fidelity metric evaluates how similar the generated video frames are
to the image input into the 12V model, especially the first frame. To
assess fidelity, for the first frame of the generated video, we use metrics
such as Mean Squared Error (MSE) and Structural Similarity Index
Measure (SSIM) [46] to calculate the degree of preservation of the first
frame. For all frames of the video, we calculate the similarity of CLIP
(Contrastive Language-Image Pre-training) [6] embeddings between
the input image and each frame of the generated video. We use MSE
(First), SSIM (First), and Image-GenVideo CLIP to represent these three
evaluation metrics, respectively.

Considering that the 12V models we evaluate also take text as
input, we need to assess whether the generated videos are relevant
to the input text. For the generated videos, we use CLIP [6] to cal-
culate the similarity between the input text and the generated video
results. We assume that the videos in the video-text dataset are con-
sistent with the textual descriptions. For the video-text dataset, we use
the keyframes from the reference videos and the generated videos to
compute the CLIP [6] similarity. Considering that the text typically
describes high-level semantics and that the generated videos may not
correspond perfectly with the original videos, we uniformly sample four
keyframes for comparison. We use GenVideo-Text Clip and GenVideo-
RefVideo CLIP (Keyframes) to represent these two evaluation metrics,
respectively.

38

4.2. Motion effects

Motion effects primarily evaluate whether the amplitude of the mo-
tion in the generated video is significant and whether the movements
are reasonable. As for the amplitude of the motion, we follow the [21,
22] and use a pretrained optical flow estimation method, RAFT [47],
to calculate the flow score between adjacent frames of the generated
video, with the final average value representing the magnitude of the
motion effects. We use the square average of the predicted values from
adjacent frames to represent the motion dynamics of the video, with
higher values indicating stronger motion effects. Considering that there
are some bad cases in video generation, we set a threshold where the
square average value must be less than 10 to filter out these bad cases.
For the video-text dataset, we have real videos corresponding to the
text. We measure the reasonableness of the generated motion effects
by calculating the similarity between each frame of the generated video
and each frame of the reference video, and then taking the average. For
robustness, we use the image CLIP [6] metric to calculate the similarity
between frames. We use Flow-Square-Mean and GenVideo-RefVideo
CLIP (Corresponding frames) to represent these two evaluation metrics,
respectively.

4.3. Temporal consistency

Temporal consistency measures whether the generated video frames
are consistent and coherent with each other. We calculate the image
CLIP [6] similarity between every two adjacent frames in the gen-
erated video and take the average as an indicator of the temporal
consistency of the generated video. We use GenVideo Clip (Adja-
cent frames) to represent this evaluation metric. In addition, we also
use GenVideo-RefVideo (Corresponding frames) from Section 4.2 to
represent temporal consistency.

F. Fan et al.

Table 2

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100152

Quantitative analysis for different Image-to-Video algorithms. An upward arrow indicates that higher values are better, while a downward arrow

means lower values are preferable.

Dimensions Metrics VideoCrafter [25] I12VGen-XL [26] SVD [28] Pika [9] Gen2 [10]
MSE (First) | 3929.65 4491.90 640.75 155.30 235.53
Control-video SSIM (First) 1 0.300 0.354 0.612 0.800 0.803
alignment Image-GenVideo Clip 1 0.830 0.832 0.919 0.930 0.939
€ GenVideo-Text Clip 1 0.23 0.24 - 0.271 0.270
GenVideo-RefVideo CliP (Keyframes) 1 0.763 0.764 - 0.824 0.820
Motion Flow-Square-Mean 1.24 1.80 2.52 0.281 1.18
effects GenVideo-RefVideo CliP (Corresponding frames) 1 0.764 0.764 0.796 0.823 0.818
Temporal GenVideo Clip (Adjacent frames) t 0.980 0.971 0.974 0.996 0.995
consistency GenVideo-RefVideo CliP (Corresponding frames) 1 0.764 0.764 0.796 0.823 0.818
Video Frame Count 1 16 32 25 72 96
alit DOVER 1 0.518 0.510 0.623 0.715 0.775
4 y GenVideo-RefVideo SSIM 1 0.367 0.304 0.507 0.560 0.504

4.4. Video quality

Video quality is a relatively subjective dimension, measuring the
overall quality of video production. We first use the number of frames
generated by videos to gauge the ability of different algorithms to
generate long videos. We utilize disentangled objective video quality
evaluator (DOVER) [48], a no-reference video quality assessment met-
ric. DOVER [48] comprehensively rates videos from both aesthetic and
technical perspectives, using the collected DIVIDE-3k dataset. Experi-
mental results show that the DOVER [48] metric highly correlates with
human opinions in both aesthetic and technical perspectives. For the
DOVER evaluation metric, we calculate it using all frames generated by
their respective algorithms. For the video-text dataset, since we have
reference videos available, we measure the spatial structural similarity
of the generated videos to the reference videos by calculating the
SSIM (Structural Similarity Index Measure) between the corresponding
frames of the generated and reference videos. We denote this evaluation
metric as GenVideo-RefVideo SSIM.

5. Experiments
5.1. Evaluated models

5.1.1. Open-source project

VideoCrafter. VideoCrafter [25] is an open-source video generation
and editing toolbox for crafting video content. It supports the gener-
ation of videos from images. We use a guidance scale of 12 and ddim
steps of 25. For videos with an aspect ratio of 1, we employ a resolution
of 512 * 512, while for videos with an aspect ratio of 0.5625, we use
a resolution of 512 * 320, and then uniformly resize to align with the
resolutions used by other methods.

2vgen-XL. 12VGen-XL [26] is an open-source video synthesis codebase
developed by Tongyi Lab at Alibaba Group, which features state-of-the-
art video generative models. We use a guide scale of 9 and infer with
fp16 precision.

Stable video diffusion. Stable Video Diffusion (SVD) [28] is an expan-
sion of the model based on Image Stable Diffusion [39]. We use the
25-frame version of Stable Video Diffusion. It is worth noting that the
current model does not support text input temporarily, hence we did
not calculate the text-video alignment for this model.

5.1.2. Closed-source project

Pika. Pika [9] is a technology company revolutionizing video creation
by making it effortless and accessible for everyone. In just six months,
Pika has built a community of half a million users producing millions of
videos per week. The company recently launched Pika 1.0, a significant
upgrade featuring a new Al model that supports various video styles,

39

including 3D animation, anime, cartoons, and cinematic, coupled with
an improved web experience. Considering that Pika [9] does not have
open-source code, we manually tested 60 cases on the Discord platform
(30 from the WebVid dataset and 30 from our own generated dataset).
We used the default parameters of motion set to 1 and the guidance
scale set to 12.

Gen2. Gen2 [10] is a multimodal Al system that can generate novel
videos with text, images, or video clips. We used the default motion
setting of 5 from the demo and did not employ the camera movement
parameter to generate videos.

5.2. Comprehensive results analysis

Table 2 presents the evaluation of five state-of-the-art (SOTA) 12V
algorithms across five dimensions: image fidelity, motion effects, text-
video alignment, temporal consistency, and video quality. We present
the qualitative results of different I2V algorithms in Fig. 3. We find that
VideoCrafter and 12VGen-xl struggle to preserve the original image.
12VGen-xI maintains relatively good semantics, but the spatial structure
of the initial image is mostly not preserved. VideoCrafter can approx-
imate the spatial structure of the initial image to some extent, but
the preservation of details is generally mediocre. SVD, Pika, and Gen2
preserve the original image quite well, with Gen2 achieving the best
preservation effect. As for the aspect of Text-video alignment, Gen2
and Pika are nearly on par with each other and both outperform the
open-source algorithms. However, existing algorithms and evaluation
metrics do not effectively capture fine-grained textual changes. In
terms of motion effects, VideoCrafter tends to remain static. I2VGen-xl
and SVD lean towards camera movement rather than subject motion,
which is why they score high on the flow-square-mean but obtain
low GenVideo-RefVideo Clip scores. Pika tends to favor both local and
subject movement, thus achieving high GenVideo-RefVideo Clip scores
and low flow-square-mean scores. Gen2, on the other hand, favors
movement in both the foreground and background, but the background
movement is not as pronounced as with SVD.

In the aspect of temporal Consistency, VideoCrafter, due to its
poorer motion effects, does not perform poorly in terms of temporal
consistency. Considering that SVD has stronger motion effects and still
maintains good temporal consistency, it has achieved the best perfor-
mance among open-source 12V algorithms. Similarly, Pika, because of
its tendency for local movement, has achieved the highest score in
overall temporal consistency. As for video quality, Gen2 is capable of
generating the longest videos of up to 96 fra