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A B S T R A C T

Convolutional neural networks for single-image super-resolution have been widely used with great success.
However, most of these methods use L1 loss to guide network optimization, resulting in blurry restored images
with sharp edges smoothed. This is because L1 loss limits the optimization goal of the network to the statistical
average of all solutions within the solution space of that task. To go beyond the L1 loss, this paper designs
an image super-resolution algorithm based on second-order gradient loss. We impose additional constraints by
considering the high-order gradient level of the image so that the network can focus on the recovery of fine
details such as texture during the learning process. This helps to alleviate the problem of restored image texture
over-smoothing to some extent. During network training, we extract the second-order gradient map of the
generated image and the target image of the network by minimizing the distance between them, this guides the
network to pay attention to the high-frequency detail information in the image and generate a high-resolution
image with clearer edge and texture. Besides, the proposed loss function has good embeddability and can be
easily integrated with existing image super-resolution networks. Experimental results show that the second-
order gradient loss can significantly improve both Learned Perceptual Image Patch Similarity (LPIPS) and
Frechet Inception Distance score (FID) performance over other image super-resolution deep learning models.
1. Introduction

As a well-known image restoration task, single-image super-resolu-
tion (SISR) aims to convert a low-resolution (LR) image into its corre-
sponding high-resolution (HR) version. In recent years, SISR has gained
significant attention from researchers owing to its practical applications
in various fields, including video surveillance [1–3], medical imag-
ing [4–6], and so on. Moreover, SISR can also be used in combination
with other high-level computer vision tasks, such as object detection [7,
8] and semantic segmentation [9,10], to improve their performance.
However, SISR is inherently a challenging and ill-posed task, as LR
images lack crucial texture details present in HR images, making it
difficult to generate HR images from LR images alone. Furthermore,
since a single LR image can be generated from multiple HR images that
have undergone different types of degradation, the solution to the SR
problem may not be unique.

Convolutional Neural Networks (CNNs) have recently shown im-
pressive performance in information recovery due to their ability to
handle complex data, and have thus been applied to the field of SISR.

∗ Correspondence to: Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing Jiaotong University, No.3 Shangyuancun,
Haidian District, Beijing, China.

However, several CNN-based SISR methods currently popular priori-
tize high Peak Signal-to -Noise Ratio (PSNR) and Structural Similarity
(SSIM) scores, which can lead to visually blurry restored images. This
is because these methods often neglect the structural prior knowledge
within the image and focus only on minimizing the mean absolute
error between the recovered HR image and the ground truth image.
Consequently, the optimization objective of the network becomes the
statistical mean of all possible solutions in this one-to-many problem,
resulting in blurry reconstructed images.

Images can be broken down into various frequency components,
such as high-frequency and low-frequency components. The low-fre-
quency component corresponds to its smooth regions, such as the sky,
which are relatively simpler to restore. The high-frequency component
pertains to its detailed regions, such as the textures of buildings,
which are comparatively more challenging to restore. The human visual
system is particularly sensitive to the details in images, especially the
edges and textures, which play a crucial role in the perception of image
quality [11]. Therefore, the accuracy of restoring the high-frequency
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components is essential for achieving visually pleasing results, and
blurry images often occur when edge and texture details are lost due
to excessive smoothing.

Numerous studies have demonstrated that incorporating prior kno-
wledge of images, such as total variation prior [12,13], sparse prior
[14–16], and gradient prior [17,18], can partially alleviate the ill-
posedness of the SISR task. These prior knowledge can be viewed as
supplementary constraints on the optimization objective of the net-
work, which narrow down the solution space of the task. Among all
these prior knowledge, the gradient prior is one of the most effective,
as it can suppress noise and preserve edges during image reconstruc-
tion. In fact, an image can be regarded as a two-dimensional discrete
function, and the gradient of the image is actually the derivative of
this two-dimensional discrete function, which measures the change rate
of the pixel grayscale value of the image. As the grayscale values of
image pixels tend to vary greatly in edge and texture areas, the gradient
map of images can accurately capture the edges and texture details
of images. In the field of mathematics, the first-order derivative of a
function provides information that can be utilized to describe the shape
of the functional image, such as monotonicity. While the second-order
derivative of the function contains more information than the first-
order derivative, which has extremely important guiding significance
for accurately modeling the functional image. Similarly, in the field
of image processing, the second-order gradient map of images may
contain more informative prior knowledge than the first-order gradient
map. To validate this idea, we apply the principles of function deriva-
tion to generate the second-order gradient map of images and visualize
it for a more intuitive comparison with the first-order gradient map. As
shown in Fig. 1, the second-order gradient map shows more detailed
information than the first-order gradient map. If fully utilized during
network optimization, it can further compress the solution space of this
task and reduce the difficulty of image restoration.

Based on the aforementioned discussion, this paper proposes an
image super-resolution algorithm based on the second-order gradient
(SG) loss. This algorithm replaces the loss function of the network with
a combination of the SG loss and the L1 loss. The SG loss takes the
second-order gradient map of the image as the starting point. To be
specific, it first extracts the second-order gradient maps of the restored
image and the HR image and then minimizes the distance between
them to fully exploit the high-frequency information contained in the
second-order gradient map of the image. This encourages the network
to concentrate on the restoration of high-frequency components such
as textures and image boundaries, improving the blurring of restored
images caused by some existing methods that only use L1 loss as a
constraint. The main contributions of this paper can be summarized
as follows:

• We propose an image super-resolution algorithm based on the
second-order gradient (SG) loss. By combining the SG loss with
the L1 loss, our algorithm effectively guides the network opti-
mization process and mitigates the problem of excessive blurring
in the images restored by some existing image restoration meth-
ods to some extent. The SG loss can be easily integrated into most
existing SR methods without adding extra training parameters.

• The experimental results on five widely used benchmark datasets
demonstrate that the proposed SG loss can enhance high-freq-
uency information in images and help the network recover clearer
and more natural textures and edges.

2. Related works

This section provides a review of relevant image super-resolution
methods from two perspectives: single-image super-resolution methods

and gradient-guided super-resolution methods.

2

Fig. 1. Visualization of the first-order and second-order gradient maps of images.

2.1. Single image super-resolution methods

To date, numerous SISR methods have been proposed by researchers,
which can be broadly classified into three categories: interpolation-
based methods [19], signal processing-based methods [20–22], and
deep learning-based methods [23–50].

In the initial stages of research on SISR, interpolation-based meth-
ods were commonly used. The main idea of these methods is to infer
the pixel value at a specific position in the HR image by performing a
weighted average of the known pixel values in the LR image surround-
ing that position. Different weighting schemes have been designed for
image interpolation based on the fact that common pixel variations in a
local region of an image can be approximated by a continuous function.
For instance, bilinear interpolation, which leverages local linearity,
and bicubic interpolation [19], which utilizes high-order continuity,
are two examples of interpolation methods that have been proposed.
Despite their simplicity and computational efficiency, these methods
often result in generated images that exhibit unnatural artifacts and
structural distortions. This is primarily due to the fact that the pixel
variations within an image are often highly complex and cannot be ac-
curately described by such simple predefined functions, particularly in
the case of images with intricate textures. Signal processing-based SISR
methods have been designed to address this issue. They apply signal
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processing techniques such as sparse representation [22], local adaptive
filtering [21], and wavelet transform [20] to LR images to obtain
their corresponding HR images. While signal processing-based methods
have shown improvements in image restoration quality compared to
interpolation-based methods, they often come with high computational
complexity and are susceptible to noise.

For the last few years, deep learning-based methods have revealed
xtraordinary capabilities in feature learning and extraction, allowing
eural networks to theoretically simulate any function. Through end-
o-end model training, these deep learning networks can learn the
apping relationship between LR and HR images from massive data
irectly. These data-driven deep learning approaches lead to momen-
ous performance gains compared to earlier traditional approaches. As
railblazers, Dong et al. are the first to establish a connection between
NN and image SR reconstruction. They devise a super-resolution
onvolutional neural network composed of three convolutional layers,
hich lay the groundwork for deep learning-based SISR methods.
onetheless, the limited receptive field of the three convolutional

ayers restricts their capacity to perfectly leverage the surrounding
ixel information, leading to constrained performance enhancement.
or the purpose of enlarging the receptive field, Kim et al. [27] stack
ore convolutional layers and integrate residual learning to tackle the
roblem of gradient vanishing triggered by network thickening. Given
he distinct sizes of LR and HR images in SISR, the aforementioned
ethods typically necessitate preprocessing of LR images utilizing bicu-

ic interpolation to upscale them to match the size of HR images
efore feeding them into the network for training. Nevertheless, this
reprocessing is time-consuming and exacerbates the noise and blur in
R images. To deal with this issue, a deconvolution layer is appended
y Dong et al. [30] at the end of the network to accomplish end-to-
nd mapping from LR images to HR images. Shi et al. [32] present
novel sub-pixel convolutional layer that can achieve magnification

y dynamically adjusting the number of feature channels. Both of
hem place the upscaling operation of the LR image at the final stage
f the network and make it learnable. This can not only decrease
he computational burden but also enhance the precision of image
estoration.

Subsequently, SR models based on neural networks have emerged
ontinuously. For instance, Zhang et al. [34] employ a dense connection
tructure to augment feature propagation through feature reuse. Li
t al. [35] devise a multi-scale network to selectively extract image
eatures of varying scales to facilitate image reconstruction, which leads
o further performance improvement compared to the model using only
single scale. According to Zhang et al. [36], most existing methods

reat LR input features indiscriminately and disregard the correlation
etween low-frequency information. Consequently, they integrate the
ttention mechanism into the SR network to enable it to concentrate
n the more critical parts of the image for restoration. Several recent
tudies have attempted to combine transformers from the field of nat-
ral language processing with SR networks, obtaining state-of-the-art
erformance.

.2. Gradient guided super-resolution methods

By exploiting gradient prior knowledge in many traditional meth-
ds [12,51–54], the solution space can be narrowed to generate a
harper image. For example, Fattal [52] designs a method that lever-
ges image gradient edge statistics to learn the prior correlations across
ifferent resolutions. Zhu et al. [51] introduce an innovative method
hat gathers a dictionary of gradient patterns and characterizes de-
ormable gradient combinations. Yan et al. [53] propose a stochastic
esonance method based on gradient contour sharpness. Motivated by
he effectiveness of gradient prior in traditional methods, some recent
orks have also endeavored to integrate image prior knowledge with
eural networks [17,18,55]. Yang et al. [17] employ a pre-trained edge

etector to extract image gradients, which are subsequently utilized to

3

guide the deep network in reconstructing SR images. Ma et al. [18]
construct a dual-branch joint optimization network consisting of a main
SR branch and a gradient-assisted branch, where the gradient-assisted
branch takes the gradient map extracted from the LR image as input,
and the optimization target becomes the gradient map of its corre-
sponding HR image. While previous methods leverage gradient prior
knowledge to enhance the visual quality of restored images, they often
incorporate learnable parameters associated with gradient information
into the model significantly increasing its complexity and diminishing
its computational efficiency. Unlike them, the proposed method in this
paper utilizes a second-order gradient prior solely during network op-
timization to provide supplementary supervision information, without
adding any learnable parameters. Hence, the computational cost can be
disregarded.

3. Second-order gradient loss guided single-image super-resolution

3.1. Problem definition

For the task of SISR, the goal is to predict a reasonable HR image
𝐼𝑆𝑅 from a LR input image 𝐼𝐿𝑅, given its corresponding ground truth
HR image 𝐼𝐻𝑅, and ensure that the predicted HR image 𝐼𝑆𝑅 is as
similar as possible to the ground truth HR image 𝐼𝐻𝑅. Consequently,
during the actual model training, it is imperative to use pre-existing
paired LR and HR image pairs (𝐼𝐿𝑅, 𝐼𝐻𝑅). In reality, the LR image
is typically obtained from the HR image through various types of
degradation, but due to the complex and diverse forms of degradation
and difficult modeling, for convenience of research, most works simply
model the degradation process of the image as a bicubic interpolation
downsampling operation. Therefore, the corresponding LR image can
be generated from the HR image by the following formula:

𝐼𝐿𝑅 = (𝐼𝐻𝑅) ↓𝑠 (1)

where ↓𝑠 denotes a bicubic interpolation downsampling operation with
a scaling factor of 𝑠. Typically, both LR and HR images are 3-channel
RGB images, with sizes of 3×ℎ×𝑤 and 3×𝑠⋅ℎ×𝑠⋅𝑤, respectively, where
ℎ and 𝑤 are the height and width of the LR image. If we represent the
SR network as 𝐹 with parameters 𝜃, then the process of image SR can
be expressed as:

𝐼𝑆𝑅 = 𝐹 (𝐼𝐿𝑅; 𝜃) (2)

Assuming that the loss function 𝐿 can be applied to guide the network
learning. In this case, we can formulate the optimization process of the
network as follows:

𝜃 = 𝑎𝑟𝑔min
𝜃
E𝐼𝑆𝑅𝐿(𝐹 (𝐼𝐿𝑅; 𝜃), 𝐼𝐻𝑅) (3)

3.2. Second-order gradient loss

Most existing deep learning-based SR methods primarily rely on
the L1 loss to constrain network training. The L1 loss is computed
by measuring the mean absolute error between the predicted image
𝐼𝑆𝑅 generated by the network and the ground truth HR image 𝐼𝐻𝑅

at each pixel. This loss function tends to yield high Peak Signal-to-
Noise Ratio (PSNR) values for the restored image. In fact, one of the
limitations of using the L1 loss function in SR is that the visual results
often exhibit blurriness and lack of preservation of sharp edges present
in the original image. Despite the limitation aforementioned, the L1
loss function remains the most popular choice due to its effectiveness
in accelerating convergence and improving the overall performance.

𝐿1 = E𝐼𝑆𝑅‖(𝐼
𝐻𝑅 − 𝐼𝑆𝑅)‖1 (4)

Considering that the L1 loss treats high-frequency and low-frequency
information equally, without taking into account the fact that the inher-
ent difficulty in recovering high-frequency details, this paper proposes
to utilize the second-order gradient map of the image as additional
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Fig. 2. Overall framework of our proposed pluggable SISR algorithm based on second-order gradient loss. The left half of this figure represents a generic deep learning-based
image SR network architecture which can be easily replaced. 𝐼𝐻𝑅𝐺 , 𝐼𝑆𝑅𝐺 respectively represent the second-order gradient map extracted by using the gradient extraction function
𝑀(⋅) twice from high-resolution image 𝐼𝐻𝑅 and super-resolution image 𝐼𝑆𝑅.
Table 1
Quantitative comparisons of cnn-based SISR models with and without second-order gradient loss on five benchmark datasets for ×4 SR. Best
results are highlighted.

DataSet Metric EDSR EDSR+SG RDN RDN+SG RCAN RCAN+SG SwinIR SwinIR+SG

Set5 LPIPS ↓ 0.1728 0.1446 0.1716 0.1560 0.1720 0.1401 0.1700 0.1412
FID ↓ 58.86 56.52 57.88 52.65 59.74 54.27 58.80 55.75

Set14 LPIPS ↓ 0.2776 0.2353 0.2808 0.2564 0.2783 0.2268 0.2705 0.2262
FID ↓ 86.45 80.94 88.75 86.55 91.95 86.51 89.17 82.09

Urban100 LPIPS ↓ 0.2037 0.1837 0.2107 0.1984 0.2047 0.1756 0.1923 0.1698
FID ↓ 25.56 23.10 26.12 23.85 25.71 22.39 24.54 21.63

B100 LPIPS ↓ 0.3589 0.3018 0.3634 0.3274 0.3602 0.2906 0.3549 0.2894
FID ↓ 96.08 88.47 96.36 90.86 98.15 83.83 95.59 84.28

Manga109 LPIPS ↓ 0.0997 0.0856 0.1018 0.0931 0.0991 0.0810 0.0938 0.0787
FID ↓ 12.58 10.77 13.25 11.39 12.48 10.80 11.82 9.97
supervision information in the optimization process to encourage the
network to pay more attention to high-frequency information during
the recovery process and alleviate the problem of smoothing sharp
edges. The reason why not utilizing higher-order gradient maps of the
image is that studies have indicated that as the order of the gradient
increases, the detail information in the gradient map becomes more
intricate and complex, which may lead to instability during training
and introduce additional errors. The loss function proposed in this
paper involves the extraction of the second-order gradient map of the
image. More precisely, to obtain the first-order gradient map of the
image, we calculate the pixel-wise differences between adjacent pixels
in both the horizontal and vertical directions. Subsequently, the second-
order gradient map of the image is derived by calculating the pixel-wise
differences between adjacent pixels of the first-order gradient map.
During the actual training process, an additional constraint is imposed
on the predicted high-resolution image 𝐼𝑆𝑅. This constraint is to min-
imize the discrepancy between the second-order gradient maps of 𝐼𝑆𝑅
and 𝐼𝐻𝑅. The gradient map of the image 𝐼 can be generated using the
following formula:

𝑑𝑥(𝑖, 𝑗) = 𝐼(𝑖 + 1, 𝑗) − 𝐼(𝑖 − 1, 𝑗)

𝑑𝑦(𝑖, 𝑗) = 𝐼(𝑖, 𝑗 + 1) − 𝐼(𝑖, 𝑗 − 1)

∇𝐼(𝑥, 𝑦) = (𝑑𝑥(𝑖, 𝑗), 𝑑𝑦(𝑖, 𝑗))

𝑀(𝐼) = ‖∇𝐼‖

(5)

where (𝑖, 𝑗) represents the coordinates of any point in the image, and
𝐼(𝑖, 𝑗) represents the pixel value of the image at (𝑖, 𝑗). The operation
𝑀(⋅) refers to the process of extracting image gradients. It can be im-
plemented by designing a convolution layer with fixed-weight kernels.
In this paper, the weights of the convolution kernel are designed by
simulating the Sobel filter. The Sobel filter is capable of detecting edge
4

information in both the horizontal and vertical directions, making it an
effective way to extract the gradient map from the image. Compared
with other edge detection filters, it is not only simple to implement
and fast in computation but also accurate in edge localization and good
noise suppression in images. By applying the operation 𝑀(⋅) twice, we
can obtain the second-order gradient map of the image. In summary,
the proposed second-order gradient loss in this paper can be formulated
as follows:

𝐿𝑆𝐺 = E𝐼𝑆𝑅‖𝑀(𝑀(𝐼𝐻𝑅)) −𝑀(𝑀(𝐼𝑆𝑅))‖1 (6)

Nevertheless, the second-order gradient loss primarily captures high-
frequency information while lacking low-frequency information. To
provide comprehensive guidance for network optimization, it is weigh-
ted and combined with the L1 loss to form the final loss function:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿1 + 𝜆𝐿𝑆𝐺 (7)

where 𝜆 is a hyperparameter that controls the weight of the SG loss
𝐿𝑆𝐺 in the total loss 𝐿𝑡𝑜𝑡𝑎𝑙.

To facilitate a more intuitive comprehension of the proposed seco-
nd-order gradient loss, we have visualized it for illustrative purposes.
As shown in Fig. 2, the left half of the figure represents a generic
image SR network architecture, which consists of three parts: shallow
feature extraction module, deep feature extraction module, and high-
quality image reconstruction module. Typically, the shallow feature
extraction module is composed of two convolutional layers that are
intended to extract low-level features from the image and capture local
information. The deep feature extraction module is more intricate and
lacks a standardized structure, as it aims to extract high-level features
from the image to capture global information. The high-quality image
reconstruction module usually comprises an upsampling module and a
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convolutional layer. The upsampling module is responsible for increas-
ing the size of the features, while the convolutional layer is responsible
for transforming the features into an HR image. It is important to note
that the specific architecture of the deep feature extraction module
varies across different super-resolution networks, contributing to the
variations in their restoration performance. The right half of the figure
represents our proposed SG loss, it can be easily observed that it is
a plug-and-play loss function, as the left half of the figure can be
substituted with any image SR network. In summary, our proposed SG
loss is generalizable. For ease of understanding, we list the meanings
of the symbols used in this paper in Table 4.

4. Experiments

This section commences with an overview of the datasets, evalua-
ion metrics, and implementation details employed in the experiment.
ubsequently, a comparative analysis is presented, comparing the per-
ormance and visualization of several state-of-the-art SISR networks
efore and after the integration of the proposed SG loss. Furthermore,
e investigate the influence of the 𝜆 value on the model performance.

.1. DataSets and metrics

All the models are trained on the 800 images from the DIV2K [57]
ataset. It is a widely recognized high-quality visual dataset in the field
f SISR. For testing purposes, we utilize five standard public datasets:
et5 [58], Set14 [59], Urban100 [60], B100 [61], and Manga109 [62],
hich contain various scenes and can comprehensively analyze the
ffectiveness of the proposed loss. Since paired HR and LR images are
equired for training, the corresponding LR images are obtained by
ownsampling the HR images with a scaling factor of 4 using bicubic
nterpolation before conducting experiments. Considering that evalua-
ion metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural
imilarity (SSIM) often contradict human perceptual quality, this paper
dopts perceptual metrics Learned Perceptual Image Patch Similarity
LPIPS) [63] and Frechet Inception Distance score (FID) [64], which
re more consistent with human perception, as evaluation metrics to
uantitatively compare the restoration results of the datasets. Lower
PIPS and FID values indicate better visual quality.

.2. Implementation details

For the purpose of conducting a fair comparison, several represen-
ative deep learning-based SR networks were retrained to establish a
onsistent benchmark. Specifically, during the training process, data
ugmentation techniques are performed on the training dataset. This
ncludes random cropping, rotation by 90◦, 180◦, and 270◦, as well
s flipping the original images, resulting in approximately 32,000 HR
mages of size 480 × 480. In each training iteration, we take in 16 LR
mage patches with the size of 48 × 48 as input. The ADAM optimizer
s employed for training, with default values of 𝛽1 = 0.9, 𝛽2 = 0.999 and
𝜖 = 1×10−8. The learning rate is initialized as 1×10−4 and undergoes a
halving operation every 2×105 iterations of back-propagation. Through
empirical analysis, the hyperparameter 𝜆 is determined to be 1. Further
details regarding the selection and impact of different 𝜆 values will
be discussed in Section 4.5. The entire process is carried out on the
PyTorch 2.0 platform, leveraging a Nvidia GeForce RTX 3090 24 GB
GPU for accelerated computations.

4.3. Quantitative comparison

We select several widely recognized SR network models, including
EDSR [56], RDN [34], RCAN [36], and SwinIR [37], to assess the
effectiveness of our proposed SG loss function. No modifications have
been made to their network architectures. Rather than using the L1

loss function alone, we augment it by adding an SG loss term to
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Table 2
Comparison of model restoration results trained with some training strategy and
hyperparameters..

DataSet Metric 1 2 3 4 5

Set5 LPIPS ↓ 0.1446 0.1443 0.1447 0.1443 0.1441
FID ↓ 56.52 57.07 56.67 56.65 56.96

Set14 LPIPS ↓ 0.2353 0.2361 0.2351 0.2355 0.2360
FID ↓ 80.94 81.54 80.89 80.05 81.36

Urban100 LPIPS ↓ 0.1837 0.1837 0.1838 0.1836 0.1838
FID ↓ 23.10 22.92 23.08 22.95 22.87

B100 LPIPS ↓ 0.3018 0.3018 0.3020 0.3023 0.3018
FID ↓ 88.47 88.64 88.03 87.63 87.32

Manga109 LPIPS ↓ 0.0856 0.0856 0.0855 0.0856 0.0857
FID ↓ 10.77 10.67 10.65 10.70 10.80

provide extra supervision information. The computational overhead
incurred by this operation is negligible. The ×4 SR results on five
benchmark datasets are presented in Table 1. The results marked
with ‘‘+SG’’ indicate the outcomes obtained by adding the SG loss
for auxiliary optimization to the original SR methods. The data in
Table 1 demonstrates that the incorporation of the SG loss function as
an auxiliary network optimization leads to lower LPIPS and FID values
on all datasets for all models, compared to the original models. This
observation strongly supports the belief that the second-order gradient
map of the image, which contains high-frequency information, plays
a crucial role in aiding the network to restore images with better
perceptual quality. In particular, on the more severely degraded B100
dataset, our method achieves a substantial reduction in LPIPS scores
for the SwinIR and RCAN models, with descents of 0.0655 and 0.0696,
respectively. Additionally, the FID scores of these two models also
exhibit notable improvements compared to the original method.

4.4. Qualitative comparison

In order to provide further evidence of the effectiveness of our
proposed SG loss, this section showcases visual results of the restored
images obtained from the Set14, B100, and Urban100 datasets, with the
majority of images selected from the Urban100 dataset. The Urban100
dataset was chosen for its collection of 100 images depicting buildings
in urban areas. These images are rich in intricate texture details,
making it an ideal dataset to demonstrate the effectiveness of the SG
loss in restoring fine details. As illustrated in Fig. 3, the methods trained
only using the L1 loss are capable of restoring the main contours of
objects. However, they struggle to accurately restore complex image
boundaries, often resulting in distorted and deformed textures. In con-
trast, after integrating the SG loss as supplementary supervision, the
network preserves the fine details within images to a greater extent,
and the reconstructed textures appear more natural and realistic.

4.5. Robustness experiment

To substantiate the robustness of the proposed SG loss function, we
retrain the EDSR model multiple times using the same training strategy
and hyperparameters, and the results of each training are exhibited
in Table 2. We can find that although there are discrepancies in the
recovery results of the models trained each time, these discrepancies
are extremely minimal. This provides substantial evidence that the
enhancement in model recovery performance attributed to the SG loss
function is not incidental.

4.6. Ablation study of 𝜆

To investigate the influence of different 𝜆 values on the performance
of image restoration models, we train four distinct models with 𝜆 values

of 0.01, 0.1, 1, and 10, respectively, employing the same training
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Fig. 3. Visual comparison of restoration results of different models before and after adding second gradient(SG) loss, where the first column of each image represents the GT
high-resolution (HR) image, the second column represents the results recovered by EDSR [56], RDN [34], RCAN [36] and SwinIR [37], the third column represents the recovery
results after integrating the SG loss by above methods.
Table 3
Comparison of model restoration results trained with different 𝜆 values.

Metrics 𝜆 = 0 𝜆 = 0.01 𝜆 = 0.1 𝜆 = 1 𝜆 = 10

LPIPS ↓ 0.2037 0.2013 0.1948 0.1837 0.1946
FID ↓ 25.56 25.07 24.31 23.10 36.31
6

strategy. Subsequently, we conduct a comprehensive evaluation of the
4× SR performance of these four models on the Urban100 dataset.
The results are presented in Table 3, with the highlighted numbers
indicating the lowest LPIPS and FID scores in each row. To guarantee
a fair comparison, all four models adopt the EDSR network structure.
Fig. 4 is provided to offer a more intuitive observation of the differences
in visual. The reference model, which does not incorporate the SG
loss (i.e. 𝜆 = 0), exhibits the highest LPIPS and FID scores compared
to the other models. As we increase the value of 𝜆 from 0 to 1, the
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Fig. 4. Visual comparison of restoration results of models which trained with different 𝜆 values.
importance of the SG loss supervision gradually grows, resulting in a
positive impact on the quality of the SR results. The best performance
is attained when 𝜆 = 1. In this case, the model reaches a better
balance between emphasizing image boundaries and preserving smooth
regions. Nonetheless, if the 𝜆 value is excessively large, the model may
overemphasize the textures and edges within images, and may even
introduce unnatural artifacts in the smooth areas, resulting in a decline
in model performance. Summarizing the above analysis, we recommend
setting 𝜆 to 1 when using the SG loss.
7

4.7. Ablation study of different loss functions

We compare several loss functions commonly used in this field with
our proposed SG loss function to further demonstrate its effectiveness,
EDSR is still selected as the baseline for a fair comparison. Here,
l2 loss [65] is a commonly used loss in the early days, charbonnier
loss [66] is a variant of the l1 loss, which can better handle outliers
and enhance model robustness, and ssim loss [67] can better simulate
the perception of images by the human eyes. As shown in Table 5, when
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Table 4
The meanings of symbols used in this paper..

Symbols Meanings

𝐼𝐿𝑅 Low-Resolution Image.
𝐼𝐻𝑅 High-Resolution Image.
𝐼𝑆𝑅 Super-Resolution Image generated by our method.
↓𝑠 Bicubic interpolation downsampling operation with a scaling factor of s.
𝐼𝐻𝑅𝐺 The second-order gradient map of the high-resolution image.
𝐿𝑆𝑅𝐺 The second-order gradient map of the super-resolution image generated by our method.
𝑑𝑥(𝑖, 𝑗) Horizontal gradient at the point (i, j).
𝑑𝑦(𝑖, 𝑗) Vertical gradient at the point (i, j).
∇𝐼(𝑥, 𝑦) Horizontal and vertical gradient of image I.
𝑀(𝐼) The first-order gradient map of image I.
𝑀(𝑀(𝐼)) The second-order gradient map of image I.
𝐿1 L1 loss.
𝐿𝑆𝐺 Second-Order Gradient Loss.
𝐿𝑡𝑜𝑡𝑎𝑙 The total loss used in this paper.
𝜆 The hyperparameter to balance the L1 loss and SG loss.
Table 5
Comparison of model restoration results trained with different loss
functions.

Loss LPIPS↓ FID↓

L1 loss 0.2037 25.56
L2 Loss 0.2064 25.04
SSIM loss 0.2057 24.98
Charbonnier Loss 0.2026 25.37
L1 loss + SG loss 0.1837 23.10

combined with the l1 loss function, our proposed SG loss can help the
model achieve the best performance in all the quality metrics.

5. Conclusion

In this paper, an innovative high-frequency texture detail enhance-
ent loss, referred to as the second-order gradient loss, is proposed

o alleviate the problem of blurry high-resolution images generated by
ost existing SISR methods trained only with L1 loss. More specifically,

he proposed second-order gradient loss function offers supplemen-
ary supervision for network optimization so that the solution space
s compressed. This is accomplished by minimizing the discrepancy
etween the second-order gradient maps of the restored image and
he high-resolution image. Furthermore, it can be seamlessly integrated
ith existing deep learning-based SISR methods without the need for

ntroducing extra training parameters. This makes it a practical and
onvenient solution for enhancing the performance of SISR models
ithout significant modifications to their existing architectures. The
valuation conducted on five public benchmark datasets indicate that
he integration of this loss function significantly enhances the quality
nd fidelity of the restored images.
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A B S T R A C T

There is a very significant knowledge gap between Artificial Intelligence (AI) and a multitude of industries
that exist in today’s modern world. This is primarily attributable to the limited availability of resources
and technical expertise. However, a major obstacle is that AI needs to be flexible enough to work in many
different applications, utilising a wide variety of datasets through cloud computing. As a result, we developed
a benchmark toolkit called CloudAISim to make use of the power of AI and cloud computing in order to satisfy
the requirements of modern applications. The goal of this study is to come up with a strategy for building a
bridge so that AI can be utilised in order to assist those who are not very knowledgeable about technological
advancements. In addition, we modelled a healthcare application as a case study in order to verify the scientific
reliability of the CloudAISim toolkit and simulated it in a cloud computing environment using Google Cloud
Functions to increase its real-time efficiency. A non-expert-friendly interface built with an interactive web app
has also been developed. Any user without any technical knowledge can operate the entire model, which has
a 98% accuracy rate. The proposed use case is designed to put AI to work in the healthcare industry, but
CloudAISim would be useful and adaptable for other applications in the future.
1. Introduction

A set of practices aiming to base decisions on the analysis of data
instead of intuitive insights can be used to define data-driven decision-
making. When compared to conventional ones, businesses that imple-
ment data-driven decision-making processes are more financially bene-
ficial and productive [1]. The outcomes of recent Artificial Intelligence
(AI) research projects serve as the foundation for many decision-making
tools [2]. The development of Machine Learning (ML) techniques is
largely responsible for the success of AI-based tools [3]. The availability
of sizable datasets on various real-world features as well as the rise in
computational gains, which are typically attributable to the powerful
Graphics Processing Unit (GPU) cards [4], are particularly encouraging
in this regard.

The need to create sophisticated AI models with previously unheard-
of performance levels has progressively given way to a rising interest
in alternative design elements that would improve the usability of

∗ Corresponding author.
E-mail addresses: abhimanyu-bhowmik@etud.univ-tln.fr (A. Bhowmik), madhushree-sannigrahi@etud.univ-tln.fr (M. Sannigrahi),

emerging products [5]. Complex AI models lose a part of their practical
effectiveness in a wide range of application domains [6]. The main
cause is that AI models are frequently created with a performance-
focused approach, neglecting other significant – and occasionally cru-
cial – aspects like accountability, transparency, and justice [7]. The
AI models are typically ‘‘black boxes’’ since there is no explanation
provided for the elements that are projected to perform well; as a result,
they simply allow for the prominent display of input and output param-
eters while hiding the visibility of the intrinsic relationships between
those parameters [8]. It is advantageous to have some explanations of
individual predictions that are recognised using an AI system, more
specifically in an automated environment, because these applications
may include crucial decision-making [9].

This research aims to develop a transparent and self-explanatory
system using AI, especially Automated Machine Learning (AutoML)
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systems [10], that uses cloud computing, particularly serverless com-
puting to propose the best machine-learning configuration for a par-
ticular issue and trace the reasoning behind a recommendation. It
could also make it possible to interpretably and credibly examine the
predicted outcomes.

1.1. Motivation

Even if AI/ML tools are open sources and widely available, creating
data processing pipeline and generating fine-tuned models for spe-

ific domains requires knowledge and skills in data science and AI,
hich are not always present in public sector industries like hospi-

als and nursing homes [11]. Therefore, we designed a toolkit called
loudAISim by utilising AI and cloud computing for the modelling
nd simulation of modern applications to bridge the gaps between
on-professionals and AI expertise, starting with the healthcare appli-
ation as a case study that would be useful and adaptable for other
pplications in the future.

The healthcare industry produces enormous amounts of data, using
arious sensors and health-monitoring devices to collect data [12]. The
vailability of data about the health of millions of patients may make it
ossible to create AI-based processes and models that give healthcare
rofessionals useful insights [13]. This research also looks beyond the
ealthcare domain to design a benchmark model that can be useful
or other applications from different domains. The framework and
nsights presented in this article can serve as a blueprint for extending
utoML and explainability to various other domains, from finance and
etail to agriculture and manufacturing. The scalability and flexibility
ffered by cloud-based solutions make it feasible to democratise these
I technologies and accelerate innovation across industries [14]. This
esearch mainly aims to provide the power of AI to non-experts without
riting a single line of code. The proposed CloudAISim toolkit will do
ll the technical steps like Explanatory Data Analysis (EDA), feature
ngineering, choosing the best algorithm, and explaining the results
redicted by the framework for better understanding by the user. In this
aper, we have considered the applications/dataset of the healthcare
omain, but it can be used for any domain where the dataset is in CSV
ormat.

.2. Contributions

The main contributions of this work are:

1. Proposing a toolkit called CloudAISim for efficient explainable
machine learning technique modelling and implementation in
the healthcare domain.

2. Finding the most accurate and responsive machine learning
model for chronic as well as infectious diseases like diabetes,
heart disease, breast cancer and COVID-19 in the healthcare
domain.

3. Simulating a prototype web application for the validation of
CloudAISim to provide a visual display for data, models and the
explainability of results.

4. Implementing the CloudAISim in a cloud computing environ-
ment using Google Cloud Functions to increase real-time effi-
ciency.

5. Highlighting the promising future directions.

The rest of the paper is structured as follows: The relevant related
orks regarding ML-based data analytics solutions and the requirement

or transparency to build confidence in AI models are covered in
ection 2. The proposed framework is described in Section 3 along
ith how its various elements work together to accomplish the desired
utcomes. The results obtained using a few test cases are discussed
n Section 4. Section 5 demonstrates the proposed application and
ection 6 discusses the important findings of this research. Finally,
ection 7 concludes the paper and offers future directions.
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2. Related works

Various AutoML systems have been developed in recent years
that offer partial or full ML automation, including systems like Auto-
sklearn [15], tree-based pipeline optimisation tool (TPOT) [16], Auto-
WEKA [17], and ATM [18] and commercialised software like Google
AutoML,1 RapidMiner,2 and DarwinAI.3 These methods include auto-
matic feature engineering [19,20], automatic model selection [21,22],
automatic hyperparameter tuning [23], and automatic data prepara-
tion [24,25]. Some methods make an effort to automatically select an
ML algorithm while also optimising its hyper-parameters.

Many of the AutoML solutions, some of which are the results of
contests from 2015 to 2018, were developed in the last few years. The
ChaLearn AutoML Challenges4 primarily focused on automating the
solution of supervised machine learning tasks under certain computing
restrictions. These computational restrictions varied significantly across
tasks, but they were typically time (about 20 min for training and
assessment) and memory consumption restrictions. Guyon et al. [26]
review a thorough examination of the AutoML difficulties from 2015
to 2018. In essence, neural architecture may be considered a specific
kind of indifferentiable hyperparameter. Hyperparameter optimisation
is one of these activities that most directly relates to the approach we
suggest in this study. Grid search and random search [27] are two of the
simplest techniques to find a suitable configuration of hyperparameters
from a list of options without considering past results. There are various
sets of approaches that are often used in hyperparameter optimisation.
Being one of the most well-known Sequential Model-based Optimisa-
tion (SMBO) [28] techniques that can take advantage of historical data,
Bayesian optimisation [29] uses the Gaussian method for prototyping
the surrogate function that roughly imitates the relationships between
hyperparameters and their desired outputs. All of these techniques
are, however, black-box optimised. The single study on AutoML for
graph representation [30] employs the Gaussian Process to determine
the performance of the hyperparameters, but it scarcely explains how
individual hyperparameter affects the performance of the model or
why a specific value is picked for a hyperparameter to execute the
subsequent assessment trial.

AI systems that can give human-understandable explanations for
their activities and output are referred to as Explainable AI (XAI) [6].
By their very nature, end users may be curious as to how and why
systems reach any conclusion [31]. They are seen as ‘‘black boxes’’
when the sophistication of AI algorithms and systems increases [32].
Growing complexity may lead to a lack of openness that makes it
difficult to comprehend these systems’ logic, which has a detrimental
impact on users’ faith in them.

2.1. Critical analysis

Table 1 compares the proposed CloudAISim with existing frame-
works based on important parameters. The model accuracy of the
aforementioned studies is pretty high; however, the generalisation of
the studies is limited. Only 3 of the studies have formalised feature
extraction procedures that can be generalised. Two of the research have
implemented explainability, which can be critical for many industries
such as healthcare. None of the mentioned studies have implemented
their framework in a serverless cloud environment. A novel CloudAISim
framework that has high customisation and consists of a web interface
that can be very easily used by non-technical users. This will enable the
non-expert to unleash the power of AI and can be immensely helpful for
any industry such as the healthcare industry. Moreover, the CloudAISim

1 https://cloud.google.com/automl
2 https://rapidminer.com
3 https://darwinai.com/
4
 http://automl.chalearn.org/

https://cloud.google.com/automl
https://rapidminer.com
https://darwinai.com/
http://automl.chalearn.org/
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Table 1
Comparison of proposed CloudAISim framework with existing solutions.
Related works Dataset Feature AutoML Cloud computing XAI

extraction (Serverless)

Ferreira et al. [33] Pneumonia dataset ✗ WebDL ✗ ✗

Shawi et al. [34] Breast Cancer Wisconsin ✓ NNI ✗ ✗

Alaa et al. [35] Risk factors Cystic Fibrosis ✓ AutoPrognosis ✗ ✓

Alnegheimish et al. [36] MIMIC-III ✓ MLBlocks ✗ ✗

Garouani et al. [13] Big Industrial Data ✗ AMLBID ✗ ✓

Breast Cancer
Wisconsin, Covid,
Heart Disease
Cleveland Dataset

CloudAISim (Proposed work) ✓ AutoKeras ✓ ✓
Fig. 1. The Abstract View of Proposed Framework.
framework enhances the scalability of the environment and can be
incorporated into a large-scale scenario. To the best of our knowledge,
the proposed solution is the first to use generic explanation techniques
of Auto ML systems as decision support systems in a serverless setting.

3. CloudAISim framework

In this section, the description of the proposed approach used to
achieve the objectives of the work has been discussed. Fig. 1 shows the
abstract view or high-level view of the proposed CloudAISim frame-
work. As shown in Fig. 1, the framework accepts the dataset from the
user’s device, like a smart phone or laptop. Then it is passed to the
Automated EDA tool for explanatory data analysis, and then feature
engineering is done on the dataset by the feature tool, the best machine
learning model is generated, and hyperparameter tuning is done. After
that, the explanation of the prediction is shown using lime. The entire
execution is conducted on a serverless platform.

3.1. Architecture

Fig. 2 shows the main architecture of CloudAISim, which includes
AutoML models, and the usage of Explainable AI (XAI) to demonstrate
the working of the ML models, as well as the serverless architecture of
the prototype. The main components of the proposed architecture are
discussed further in Sections 3.2, 3.3, 3.4, 3.5, 3.6, and 3.7.

3.2. Dataset

Firstly, the ‘‘Breast Cancer Wisconsin (Diagnostic) Data Set’’ by
‘‘UCI ML Repository’’ is implemented on the novel methodology for the
paper [37]. The dataset contains tabular data with 32 features and over
569 data points. A fine needle aspirate (FNA) of a breast lump is used
to generate the features from a digital image in 3-dimensional space
as described by Bannett et al. [38]. They characterise the properties
of all the observable cell nuclei in the image. Every data point is
classified into either Benign (B) or Malignant (M) class. Secondly, the
architecture is applied to the ‘‘Heart Disease Cleveland dataset’’ Dataset
by ‘‘UCI ML Repository’’ [39]. The dataset constitutes over 300 patients’
data with 75 attributes. However, only 14 of the features are taken
into consideration for determining whether a patient has heart disease
or not. Thirdly, the ‘‘Diabetes dataset’’, originally from the National
Institute of Diabetes and Digestive and Kidney Diseases, is used in this
12
work [40]. The goal is to determine if a patient has diabetes based on
diagnostic parameters. The implemented Diabetes dataset is a subset of
an enormous dataset with 10 attributes and 768 instances. All patients
are Pima Indian females who are at least 21 years old. Finally the
‘‘Covid-19’’ is a dataset, used in the paper [41] which contains data
from 800 people and 26 attributes such as their profession, health pa-
rameters and lifestyle parameter, and the risk factor of getting infection
by covid is mentioned. The higher the risk factor the higher chance of
getting infected by Covid. So we classified the person with a risk factor
of more than 0.5 as high (1) and less than 0.5 as low (0).

3.3. Serverless cloud

Serverless computing is a method for providing backend services
on an ‘‘as-needed’’ basis. The cloud provider controls the servers on
behalf of their customers while expanding and maintaining the system
as necessary [42]. This is the cloud computing execution paradigm.
Since any device, regardless of its specifications, may access an ap-
plication, it becomes a resource independently [43]. This allows for
greater scalability and flexibility as the application can automatically
scale up or down based on demand [44]. Additionally, serverless
computing eliminates the need for developers to worry about server
management and infrastructure maintenance, allowing them to focus
solely on writing and deploying code.

The experimental architecture was developed on Google Cloud Plat-
form (GCP), a serverless solution enabling efficient data storage and
analysis. The proposed experiment was conducted using cloud functions
in the Python 3.9 runtime. Google Cloud Storage is also used for storing
the data and its respective output. GCP also allows seamless inter-
actions with other Google Cloud services, like Cloud Storage events,
which are used as triggers for the respective cloud functions. This
architecture also offers built-in security features and automatic scaling
capabilities, ensuring optimal performance and cost efficiency for the
application.

In the proposed architecture, three subsequent cloud functions were
used as shown in Fig. 2:

1. To perform automated feature selection and feature engineering
using the open-source Feature tools;

2. To generate an AutoML model and predict the results using the
Auto-Keras Python library; and

3. To explain the predicted results.
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Fig. 2. CloudAISim Architecture.
The model explanation is completed using the Lime library. In place
of standard Lime explanations, SP-Lime (Submodular Pick Locally In-
terpretable Model-Agnostic Explanations) is used to explain the model’s
global decision boundary over a sample set of observations.

3.4. Data preprocessing

Case-specific and automated data pre-processing was a consider-
able challenge while implementing the system in a cloud platform.
This section discusses the implementation of Pandas Profiling5 and
Feature Tools6 for automated and rapid EDA and Feature Engineering
respectively.

3.4.1. Automated EDA using Pandas profiling
Exploratory data analysis (EDA) is a vital stage in constructing

any impressive model. EDA involves finding outliers, spotting missing
values, figuring out how skewed the datasets are, converting categorical
variables, and overall understanding the underlying characteristics and
ways to apply them in models.

Pandas Profiling6 is a user-friendly open-source Python tool for
automated exploratory data analysis. It generates a data frame report
in a range of different formats. Although the Pandas’ df.describe the
operation can demonstrate basic information, it does not give a full
data frame report. Pandas profiling was implemented in the system
architecture for automated and rapid analysis of data.

3.4.2. Automated feature engineering using feature tools
Feature engineering is the process of creating and adding new

features, or variables, to the dataset to enhance the effectiveness and
precision of the machine learning model. Case-based knowledge and
accessible data sources serve as the foundation for the most efficient
feature engineering. Without requiring any human input, automated
feature extraction employs deep networks or specialised algorithms to
automatically extract characteristics from images or signals.

Featuretools7 is a free and open-source Python architecture for au-
tomated feature engineering. It generates features automatically from
relational and temporal information. Deep Feature Synthesis (DFS) is
utilised for implementing automated feature engineering. Featuretools
gives users the ability to perform feature selection by (1) removing null
values; (2) removing single-value features; and (3) removing highly
correlated attributes. For machine learning and predictive modelling,
one can construct useful features by combining the raw data with
information about the data.

5 https://pandas-profiling.ydata.ai/docs/master/index.html
6 https://www.featuretools.com
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3.5. AutoML

The time-consuming and iterative activities required in developing
a machine learning model may be automated using Automated Ma-
chine Learning or AutoML. It provides a diverse range of approaches
to help those with little background in machine learning access this
technology. It attempts to minimise the requirement for experienced
individuals to create the ML model. Additionally, it helps to increase
productivity and promote machine learning research [13].

To properly comprehend automated machine learning, we must
first understand the life cycle of a data science or machine learning
project. A data science project’s lifetime typically includes many stages,
including data cleaning, feature engineering, model selection, param-
eter optimisation, and model validation. Even though technology has
improved so much, all of these procedures still involve manual labour,
which takes time and calls for several data scientists with the necessary
skills. For non-ML professionals, it is quite challenging to do these jobs
because of their intricacies. The demand for automating these activities
has increased because of the rapid development of ML apps, which will
make it easier for those without technical expertise to utilise them. Con-
sequently, automated machine learning was developed in order to fully
automate the process, from data cleansing to parameter optimisation.
Not only does it save time, but it also performs fantastically.

In this paper, AutoML is considered the first mandatory cloud func-
tion for the framework. It is launched when the clean data is uploaded
to the designated bucket. This will create five different models from
the training set (which makes up 70% of the total data), train them
for 100 iterations, and select the model with the highest accuracy
for the given dataset. The performance matrices (Confusion Matrix,
Classification Report) will be generated after the chosen model has been
evaluated on test data (30% of the supplied data). The model itself,
all training and testing data, performance matrices, and more will be
exported into separate cloud buckets as in Fig. 1. The TensorFlow-Keras
standard format for exporting ML models, .h5, is used to export the
architecture. There are multiple models to perform AutoML operations.
Some of them are given in Table 2.

3.5.1. AutoKeras
A Keras-based AutoML system is called AutoKerac.7 It was created

by Texas A & M University’s DATA Lab. Making machine learning
accessible to everyone is the aim of AutoKeras. It searches using Neu-
ral Architecture Search (NAS) algorithms to eventually eliminate the

7 https://autokeras.com/

https://pandas-profiling.ydata.ai/docs/master/index.html
https://www.featuretools.com
https://autokeras.com/
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requirement for deep learning engineers. AutoKeras takes advantage of
Keras to conduct a potent neural network search for model parameters.
It offers modular building pieces to carry out architectural searches as
well as high-level end-to-end APIs like ImageClassifier or TextClassifier
to address machine learning challenges in a few lines.

3.5.2. Auto-sklearn
The detailed description of the Auto-sklearn approach by Feurer

t al. [15] demonstrates how it empowers the machine learning user
rom algorithm selection and hyperparameter setting. Meta-learning,
ayesian optimisation (BO), and ensemble construction make up its
hree main elements. Auto-sklearn uses traditional ML algorithms pro-
ided by the sklearn library. The optimal hyperparameters may be
ound using Bayesian optimisation, which is data-efficient. However,
uto-Keras performs better than Auto-sklearn when utilising data that

s suitable for deep neural networks. Moreover, the recent version of
uto-Sklearn has compatibility issues with various Operating systems.
ence, it was not considered for this research work.

.5.3. TPOT
The tree-based pipeline optimisation tool (TPOT) [16], an AutoML

ramework, is based on an evolutionary method that uses genetic
rogramming to select a framework for implementation. To provide
he optimal Python code, it can evaluate hundreds of pipelines. It has
uilt-in classification and regression algorithms. It combines several
ipeline operators to create flexible tree-based pipelines. ML models
rom the Sklearn library or different data transformation operators
ake up these operators. However, it cannot handle categorical data

nd language processing power. TPOT mainly employs ML pipelines
ut with complex datasets, deep learning implementation is required
hich is provided by AutoKeras.

.5.4. AutoWEKA
AutoWEKA [17] is an automated machine learning tool, which

as been designed to find the best machine learning algorithm au-
omatically for any dataset. It uses the WEKA framework which is a
eta-learning approach for finding the best algorithm for a specific
roblem by comparing the performance of a lot of machine learning
lgorithms on the given dataset. AutoWEKA also tunes the hyperparam-
ters of the best algorithm selected to improve its performance. It is a
ser-friendly tool that requires very limited user input and is suitable
or both experts and non-experts. AutoWEKA is an open-source software
ool that can be used freely.

.5.5. Google AutoML
Google AutoML2 is an attempt by Google to empower profession-

als with limited knowledge in Machine Learning to generate models
based on their specific needs. They use techniques like evolutionary
algorithms, and neural architectures to build a deep learning model
using data and prompts by the user. However, it is only restricted to
Google Clouds and it is very difficult to transfer enormous amounts of
data from existing systems to a cloud network.

3.5.6. DarwinAI
DarwinAI4 is an AI solutions provider that provides a range of AI

tools and technologies to develop and deploy Neural Network models.
This allows users to quickly and easily develop highly optimised neural
network architectures without requiring a deep understanding of neural
network architecture design. The platform also includes a range of tools
for data preparation, model training, and model deployment, making it
a comprehensive end-to-end AI tool.
14
3.5.7. Lale
Lale [45] is a semi-automated approach using scikit-learn, for tuning

hyperparameters and selecting algorithms. It mainly aims at users with
some knowledge of data science and machine learning, providing a
high-level interface to experiment with different neural structures with
their data. Lale uses popular existing tools like GridSearchCV, XGBoost,
etc. for automation and interoperability. Lale is available as an off-the-
shelf tool in Python. Nevertheless, it is only limited to professionals and
is difficult to extend it to other domains.

3.5.8. Auto Pytorch
Auto Pytorch [46] is an automl framework based Pytorch. It was

developed by AutoML Groups Freiburg and Hannover in the year
2021 with close collaboration with the University of Freiburg. This
automl architecture is specialised to solve tabular data and time series
datasets. This framework combines neural architecture search with ML
hyperparameter tuning. It gives a developer-friendly API to interact
with the model similar to AUtoKeras. However it does not optimise for
Image and Text data as input format, so it is less generalised compared
to AutoKeras.

3.5.9. Online AutoML (OAML)
The Online AutoML framework (OMAL) is an extension of an open-

source General Automated Machine Learning Assistant (GAMA) frame-
work. It has been developed by Pieter Gijsbers [47] in 2019. This
framework generates an ideal machine-learning model depending upon
the dataset and resource limitation provided to the framework. GAMA
uses several search processes to find some implacable machine-learning
models and combine them into one ensemble pipeline. OMAL extends
GAMA’s ability to handle online learning.

3.6. Result visualisation

Once AutoKeras creates the best neural network based on the given
data, it is very important for the user to know and evaluate its perfor-
mance. Hence, it is very important to visualise the result. We have used
Plotly to satisfy this requirement.

3.6.1. Plotly
Plotly8 is a graphing tool used to communicate data with customised

visualisation and interactive graphs. It is available as a free-for-use li-
brary available for many coding languages like Python and R languages.
Plotly provides an extensive range of charts and graphs that can be
easily embedded in web applications. Thus, Plotly was used for most
of the visualisations in the application to make it user-friendly and
interactive.

3.7. Explainable AI (XAI)

In the field of machine learning, ‘‘explanations’’ at different levels
offer insights into various elements of the model, from knowledge of
the learnt representations to the identification of various prediction
techniques, general trends and patterns, as well as the evaluation of the
general model behaviour [41]. The two types of model explainability
are global explainability and local explainability. When a model is
globally explainable, users may infer its meaning from its general
organisation. Local explainability only takes into account a single input
and seeks to understand why the model chooses a certain course of
action.

8 https://plotly.com

https://plotly.com
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Table 2
Comparison of different AutoML models.

Tool Framework Auto feature extraction User interface Explainability

Auto-Sklearn [15] Scikit-learn Only Missing Values ✗ ✗

AutoKerasa Keras ✗ ✗ ✗

TPOT [16] Scikit-learn ✗ ✗ ✗

AutoWeka [17] Weka ✗ ✗ ✗

Google AutoMLb TensorFlow,SparkML Only Missing Values ✓ ✓

DarwinAIc TensorFlow ✓ ✓ ✓

Lale [45] Scikit-learn ✗ ✗ ✗

Auto-PyTorch [46] PyTorch ✗ ✗ ✗

Online AutoML (OAML) [48] GAMA ✗ ✗ ✗

a https://plotly.com
b https://rapidminer.com
c http://automl.chalearn.org/
.

.7.1. Local interpretable model-agnostic explanations (LIME)
The LIME methodology proposed by Ribeiro et al. [49] generates

ocal explanations of classifier 𝑓 predictions by fitting a simpler, in-
erpretable explanation model 𝑔 locally around the data point 𝑥 to
e explained. To maintain interpretability in the generated expla-
ations, LIME represents the data in a way that is comprehensible,
ocally accurate, and model-neutral. These explanations are simpler
ecause they demonstrate a closer relationship between the input and
rediction [50].

For instance, let the grey-scale value vector of pixels in an image
e 𝑥 ∈ R𝑑 . A comprehensible representation of the initial dataset is
sed to fit the XAI model. The presence or absence of pixels in the
icture might therefore be represented by a binary value vector as an
nterpretable representation of 𝑥′ ∈ {0, 1}𝑑′ . (absence refers to having

the value of a background colour, e.g., white). As a result of resolving
the optimisation issue, the LIME explanation �̂� is generated (1).

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑔∈𝐺

ℒ (𝑓, 𝑔, 𝜋𝑥) +𝛺(𝑔) (1)

Here,
𝐺 = the explanation model family,
ℒ = loss function,
𝜋𝑥 = the locality around 𝑥,
𝛺 = complexity penalty.
Practically, 𝐺 is the collection of linear regression models, with 𝛺

limiting the expanse of explanatory features that can possess regression
weights other than zero (even if several explanatory models may be
employed). The weighted L2 distance is assumed to represent the loss
function as in Eqs. (2).

ℒ (𝑓, 𝑔, 𝜋𝑥) =
∑

𝑖
𝜋𝑥(𝑧𝑖)(𝑓 (𝑧𝑖) − 𝑔(𝑧′𝑖))

2 (2)

where the sum passes over a collection of selected perturbed points
around 𝑥, (𝑧𝑖, 𝑧′𝑖)𝑖 = 1,… , 𝑚, where,

𝑧𝑖 = a disturbed data point in the initial dataset,
𝑧′𝑖 = the corresponding explainable version;
Here, 𝜋𝑥(𝑧𝑖) assigns a weight to each sample according to how sim-

ilar they are to the point 𝑥, which is used to explain the classification
result.

The second cloud function receives the model along with the train-
ing and test data when they are generated and uploaded to their
respective cloud storage. The function generates SP-Lime explanations.
For generating the explanations, a random 20 test data samples were
chosen, among them, 5 results were generated. The combined graphs
were then uploaded to a cloud storage bucket as a single HTML file.
Any client-side web or mobile application can use the Google Cloud
SDK to retrieve data, upload predictions, and explain them.

4. Validation of CloudAISim toolkit: Modelling of healthcare ap-
plication

We used a healthcare application as a case study in order to verify
the scientific reliability of this proposed CloudAISim framework. So,
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Table 3
Classification report for 75:25 train–validation ratio of Breast Cancer dataset.

Class Accuracy Precision Recall f1-score

0 0.97 0.99 0.98 0.98
1 0.99 0.96 0.98 0.97

Table 4
Classification report for 75:25 train–validation ratio for Heart Disease Cleveland dataset

Classes Accuracy Precision Recall f1-score

0 0.95 0.98 0.94 0.96
1 0.95 0.92 0.98 0.95

this section discusses the experimental process, datasets, and data
preparation with all the relevant details on several use cases as in
Table 7. The results on different datasets are compared against each
other visually and through various metrics. In the healthcare domain,
we have considered four different datasets such as Breast Cancer Wis-
consin Diagnosis, Heart Disease Cleveland Dataset, Diabetes Dataset
and COVID-19 Dataset.

4.1. Case I: Breast cancer Wisconsin diagnosis

The greatest cause of cancer-related death among women world-
wide and the malignancy with the highest rate of diagnosis is breast
cancer [51]. According to Mubarak’s epidemiological research, breast
cancer, a particularly deadly kind of cancer, can cause death and
mortality in women if it is not recognised in its early stages [52]. It can
be found using a variety of techniques, including X-ray mammography,
3-D ultrasound, computed tomography, positron emission tomography,
magnetic resonance imaging (MRI), and breast temperature monitor-
ing, although a pathology diagnosis is the most reliable [53]. Sex, age,
oestrogen, family history, gene abnormalities, an unhealthy lifestyle,
and other variables linked to the development of the illness are only a
few of the many risk factors for breast cancer [54].

Our dataset contains tabular data with 32 features and over 569
data points. A fine needle aspirate (FNA) of a breast lump is used
to generate the features from a digital image in 3-dimension. The
model is trained-tested with a 75:25 ratio of this dataset as given in
Table 3. With such specifications, The proposed application produced
an accuracy of 98% which is much better than existing cloud-based
models. Further, the Confusion matrix and the ROC curve are also
shown in Fig. 3.

4.2. Case II: Heart Disease Cleveland Dataset

Several different cardiac disorders are referred to as ‘‘heart disease’’.
Coronary Artery Disease (CAD), which disrupts the blood flow to the
heart, is the most typical kind of heart disease in the United States.
A heart attack may result from reduced blood flow. Heart illness can

https://plotly.com
https://rapidminer.com
http://automl.chalearn.org/
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Fig. 3. ROC curve and Confusion matrix for Breast Cancer Dataset.
Fig. 4. ROC curve and Confusion matrix for Heart Disease Cleveland Dataset.
Table 5
Classification report for 75:25 train–validation ratio for Diabetes dataset.

Classes Accuracy Precision Recall f1-score

0 0.99 0.99 0.95 0.97
1 0.9 0.91 0.99 0.95

sometimes go unnoticed until a person exhibits the early symptoms or
signs of a cardiac arrest, heart failure, or an arrhythmia [55].

The dataset implemented in the proposed model constitutes over
300 patients’ data with 75 attributes. With a ratio of 75:25 from this
dataset, the model is trained and validated. With these conditions, the
proposed application obtained an accuracy of 95% with a precision and
recall of 0.95 and 0.96 respectively (as shown in Table 4). In addition,
Fig. 4 also displays the ROC curve and the Confusion matrix.

4.3. Case III: Diabetes dataset

Diabetes is a chronic condition brought on by either insufficient in-
sulin production by the pancreas or inefficient insulin use by the body.
The hormone called insulin controls blood sugar levels. Uncontrolled
diabetes frequently results in hyperglycemia, or elevated blood sugar,
which over time causes substantial harm to many different bodily
systems, including the neurons and blood vessels. A total of 1.5 million
16
Table 6
Classification report for 75:25 train–validation ratio of Covid-19 dataset.

Classes Accuracy Precision Recall f1-score

0 0.96 0.97 0.98 0.97
1 0.94 0.93 0.92 0.93

fatalities were directly related to diabetes in 2019, and 48% of these
deaths occurred in those under the age of 70. Diabetes contributed to
an additional 460,000 renal disease deaths, and high blood glucose is
responsible for 20% of cardiovascular fatalities around the world [56].

To test the proposed application, the Diabetes dataset from the
National Institute of Diabetes and Digestive and Kidney Disease is
taken into consideration. The dataset constituted 10 characteristics
and 768 instances with all patients being Pima Indian females who
are at least 21 years old. The model is trained-tested on the 75:25
ratio of the dataset and achieved an overall accuracy of 96%. The
Classification report is provided in Table 5. Further, the ROC-AUC
curve and confusion matrix are given in Fig. 5.

4.4. Case IV: COVID-19 dataset

In general, human life and health have been profoundly dam-
aged by the SARS-Cov2-led COVID-19 pandemic [57]. The majority
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Fig. 5. ROC curve and Confusion matrix for Diabetes Dataset.
Fig. 6. ROC curve and Confusion matrix for COVID-19 Dataset.
of COVID-19 patients have mild to moderate symptoms. However, this
devastating outbreak caused suffering and death in people. COVID-19
has the propensity to target and harm lung tissue [58]. This devastating
outbreak caused death in 6,657,706 people around the world. Because
of its fast-spreading ability, the World Health Organisation (WHO)
designated COVID-19 a Public Health Emergency.

For Covid-19 dataset, tabular data is used with about 800 patient
data. It contains 26 attributes such as age, heart conditions, smoking,
pregnancy, etc. With a ratio of 75:25 from this dataset, the model is
trained and validated. With these conditions, the proposed application
has obtained an accuracy of 96% as shown in Table 6. In addition, Fig. 6
also displays the ROC curve and the Confusion matrix.

5. Simulation of proposed healthcare application

The aim of developing this application is to make AI usable for
healthcare professionals and normal users, without any technical knowl-
edge. An interactive web application is developed using StreamLit
Framework to make it possible. The Application is deployed on Stream-
Lit cloud and Google App Engine.

5.1. Implementation details

This section describes the working of the proposed model and its
implementation details. The proposed model uses AutoML to automate
the task of recognising and classifying different diseases and verifying
the diagnosis.
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The entire system is a hybrid architecture of cloud-based platforms
and physical servers. The user end has a simple easy-to-read interface
to access the proposed framework.

The dataset is uploaded by the user into a cloud storage bucket
using the web interface as shown in Fig. 7. After the dataset is entered
into the system by the user, the basic information of the dataset like
datatype, class distribution, data correlation, etc. is available on the
interface. The next Exploratory Data Analysis tab allows the user to
select the data to be visualised and the attributes for analysis which will
then generate a detailed summary with the help of Pandas Profiling,
as shown in Fig. 8. All these computations are carried out on-device.
For feature engineering, the user has the choice to make the entire
process either manual or automated. In case of manual feature selec-
tion, all computations are carried out in the local device and will then
be uploaded into the feature engineering cloud bucket (FE_Data) in
GCP server. This gives the user freedom to select attributes, impute
missing values, perform feature transformation, and remove outliers
using different methods like Z-score, inter-quartile range, and so on.
When opting for automated feature engineering, the tabular dataset is
uploaded into a cloud bucket and the entire process is carried out in
the serverless platform using Featuretools (Feature_Engg function) and
is uploaded into the FE_Data bucket, as shown in Fig. 9.

As soon as any dataset is uploaded into the FE_Data bucket, the
Auto_ML function automatically gets triggered in the cloud. This func-
tion has 3 main tasks (1) To generate the best possible model using
AutoKeras (default hyperparameters: 200 epochs and 50 max trials);
(2) To generate a Train–Test dataset for the upcoming explainability
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Table 7
Comparison of proposed model with various train–test ratios for each case study.
Type of datasets Train–Test ratio Precision Recall Accuracy f1-score

Case I: Breast Cancer Wisconsin Diagnosis

90:10 0.98 0.98 0.98 0.98
80:20 0.97 0.99 0.98 0.98
70:30 0.97 0.98 0.98 0.98
60:40 0.97 0.96 0.97 0.97

Case II: Heart Disease Cleveland dataset

90:10 0.97 0.97 0.97 0.97
80:20 0.95 0.96 0.95 0.96
70:30 0.95 0.96 0.95 0.95
60:40 0.94 0.94 0.94 0.94

Case III: Diabetes dataset

90:10 0.97 0.96 0.97 0.96
80:20 0.96 0.96 0.97 0.96
70:30 0.95 0.96 0.96 0.96
60:40 0.91 0.92 0.92 0.92

Case IV: COVID-19 dataset

90:10 0.97 0.97 0.98 0.97
80:20 0.97 0.97 0.98 0.97
70:30 0.95 0.95 0.95 0.95
60:40 0.94 0.95 0.96 0.95
Fig. 7. Web Interface Showing Dataset Page with Breast Cancer Dataset.
function (default Train–Test split: 70-30); (3) To generate results in
form of confusion matrics, ROC-AUC curve, PR-curve and classification
reports which are plotted using Plotly to make the graphs interactive,
as shown in Fig. 10; (4) To generate Tensorflow Logs of the AutoKeras
model in the .zip format to the cloud bucket. This data can be accessed
by the client-side application using TensorBoard as demonstrated in
Fig. 11. Lastly, the LIME explainer cloud function(Ex_AI) is initiated
which accesses this model file along with the Train–Test dataset file
from the respective cloud bucket and generates 5 sample explanations
which are then displayed on the user screen in an HTML format, as
shown in Fig. 12. The Lime Explainer displays a feature value table
and a plot showing which feature contributed to a particular decision
and how much the contribution concerning other features. This means
more the value in the feature table, the higher the impact of the feature
in the predicted outcome by the model.

6. Discussion

By testing several instances of the function in different conditions,
we have realised that the execution lasted almost 2 min on average.
Although there are instances when the ‘auto_ml’ cloud function exe-
cutes for up to 4 min, it is evident that the large dataset requires more
18
Fig. 8. The EDA page with Breast Cancer Dataset.

memory and hardware capacity. On the other hand, we are also able
to understand from Fig. 13 that many of the function instances have
crashed due to several reasons. Two major reasons are the incompatibil-
ity of the dataset and the long execution time. As GCP has a limit on the
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Fig. 9. The Feature Engineering page with Breast Cancer Dataset.

Fig. 10. The Results page with Breast Cancer Dataset.

Fig. 11. The Model page with Breast Cancer Dataset.

Fig. 12. The LIME Explainer page with Breast Cancer Dataset.
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Fig. 13. Execution Time Graph of ‘auto_ml’ cloud function.

Fig. 14. Per call memory utilisation Graph of ‘auto_ml’ cloud function.

execution time of up to 5 min for cloud functions, the implementation
of a large ML model with a long training time might be problematic.
There are multiple ways to fix this issue, which include using multiple
functions parallelly or consecutively for a long training period.

Not only does execution time matter for cloud functions, but the
memory capacity of the functions also plays a very important role in a
cloud environment. According to Fig. 14, most of the function execution
took 500 MB to 1000 MB of memory bandwidth. The right balance
of memory and processing capability is crucial for smooth function
execution. As these are tabular datasets, this execution requires less
amount of memory bandwidth in comparison to the image and time
series datasets. That means while dealing with image and time-series
data we must increase the function memory capacity. The memory
bandwidth of the ‘auto_ml’ function is set at 4 GB at max so that any
interruption can be prevented.

It has been concluded that the CloudAISim framework only needs its
users to upload the dataset. After uploading the dataset, the CloudAISim
framework performs tasks such as EDA, feature engineering, selection
of the best machine learning/deep learning model, hyperparameter
optimisation, result prediction, and explainability of the result. This
makes the CloudAISim framework suitable for all non-experts and non-
coders to use the power of AI without writing a single line of code.
The CloudAISim framework has achieved a better accuracy of 98% in
comparison with existing work [34], which has achieved 85.75% while
considering the breast cancer Wisconsin dataset only.

7. Conclusions and future work

There has been substantial progress in globalizing the use of ML
to non-experts in data analysis. However, these robust support sys-
tems behave like highly efficient black boxes since they do not offer
comprehensive information on the recommendations and the internal
workings of these models. Traditional ML methods do not always
cater to the diverse nature of the datasets, and it is very difficult and
tedious for a non-professional to design models specifically for specific
datasets. Additionally, these powerful systems are mostly resource-
intensive models, which is a big obstacle for the healthcare industry.
Moreover, conventional machine learning approaches may not consis-
tently address the varied characteristics of datasets, making it chal-
lenging and laborious for individuals without the expertise to create
models tailored to particular datasets. In this paper, we have presented
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a novel transparent serverless and self-explanatory AutoML framework
called CloudAISim to overcome these issues. The proposed framework
possesses the ability to autonomously select models in accordance with
the given dataset and the task. Further, we designed a healthcare
application as a case study in order to verify the scientific reliability of
this proposed CloudAISim toolkit. The proposed healthcare application
is promising for automated machine learning that has the potential to
make AI accessible to non-technical individuals and healthcare pro-
fessionals. An interactive web application that is user-friendly and
effective has been created using the StreamLit Framework and deployed
on both the Google App Engine and the StreamLit cloud. The model’s
maximum accuracy of 98% demonstrates that it is successful in achiev-
ing its objective. By providing a more effective and precise way to
analyse medical data, the application has the potential to help both
patients and healthcare professionals significantly.

7.1. Possible extensions of CloudAISim toolkit

In the future, the CloudAISim can be further extended in the follow-
ng ways:

1. Regression Model: The model is primarily addressing the classi-
fication data problem as it is the most prominent use case in the
healthcare domain. It can be extended into regression problems
as well.

2. IoT Applications: The application of this model can be ex-
tended to further domains from agriculture to manufacturing
and finance [44].

3. Training: The model can also be trained for incorporating
different types of inputs like images, audio files, text data etc.

4. Time-series Data: StrutureDataClassifier and StrutureDataRe-
gressor deal with tabular data and it does not count on the other
forms of data such as time-series data [59]. Although time-series
data are less frequent than image data in the context of health
care, it is useful while measuring real-time patient activity.

5. Data Variability: Different forms of data like images and videos
need more processing capability, which can be implemented us-
ing edge architecture and extended using a cloud model training
schedule [60].

6. Edge Computing: Real-time disease detection using on-device
model prediction can be implemented in edge-fog and cloud
models.

7. Privacy: Federated learning [61] can be implemented for the
privacy protection of the patients by which the learning model
can improve from individual patients’ model feedback.

Software availability
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A B S T R A C T

As neural network inference demands are ever-increasing in intelligent applications, the performance opti-
mization of model serving becomes a challenging problem. Dynamic batching is an important feature of
contemporary deep learning serving systems, which combines multiple requests of model inference and
executes them together to improve the system’s throughput. However, the behavior characteristics of each part
in deep neural network batching systems as well as their performance impact on different model structures
are still unknown. In this paper, we characterize the batching system by leveraging three representative
deep neural networks on GPUs, performing a systematic analysis of the performance effects from the request
batching module, model slicing module, and stage reorchestrating module. Based on experimental results,
several insights and recommendations are offered to facilitate the system design and optimization for deep
learning serving.
1. Introduction

As the demand for deep learning algorithms based on deep neural
networks (DNNs) continues to increase, serving systems [1–3], which
provide DNN training and inference as services to users on computing
platforms, are sparking interest in both academia and industry. Given
the user’s real-time response desire, achieving low-latency inference
becomes a fundamental prerequisite in these serving systems. To ef-
fectively handle model inference requests, dynamic batching plays
a crucial role in existing serving systems for improving the system
throughput by leveraging parallelism and locality between batched
inputs. Unlike training, where all training inputs are available before
training starts, inference presents a different challenge as input arrives
at the serving system over time, and its arrival rate depends on the
popularity of the deployed models. Therefore, inference batching must
carefully balance the trade-off between latency and throughput. For
instance, larger batch sizes may improve throughput but introduce
longer waits for the scheduler to accumulate a sufficiently large input
batch and thus increase latency, whereas smaller batch sizes may
reduce latency but at the cost of lower throughput.

∗ Correspondence to: Institute of Computing Technology, Chinese Academy of Sciences, 100190 Beijing, China.
E-mail addresses: yufeng@ict.ac.cn (F. Yu), zhanghao@chinamobile.com (H. Zhang), chenao23s@ict.ac.cn (A. Chen), wangxueying@bupt.edu.cn (X. Wang),

Traditional deep learning serving systems represented by Triton [1]
and TensorFlow-Serving [2] relied on configuring the model-allowed
maximum batch size (MAX-BS), which limits the input that can be
batched, and the batching time window (TW), which indicates the
longest wait time for inputs for combining a batch, as hyper-parameters.
Unfortunately, these statically configured serving systems lack the
flexibility to dynamically adjust server traffic to accommodate varying
loads, leading to sub-optimal performance. For instance, during periods
of low-load inference request traffic, employing a large time window
results in over-provisioning, as queued requests within the window
increase the average response time. Conversely, in server congestion
scenarios, larger batch time windows and batch sizes may prove advan-
tageous. Traditional serving systems lack the capability of interrupting
ongoing batches to serve new arriving requests. Recently, multi-entry
multi-exit batching systems, e.g., DVABatch [3], have arisen, which
adopt sub-graphs as the scheduling granularity and introduce several
meta-operations to improve the system throughput.
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DNN serving systems are intrinsically intricate, influenced by nu-
erous factors encompassing neural network models, load levels, and
odel slicing patterns, among others. However, existing studies pre-
ominantly focus on a localized perspective of batching systems, with-
ut providing a comprehensive characterization and understanding of
atch behavior. As such, this paper aims to reveal the intricacies of
atching behavior in DNN serving systems, offering valuable insights
nto resource management and system design, particularly concerning
ypical neural network models and workloads encountered by service
roviders. Meanwhile, we underscore the limitations of existing serving
ystem batching techniques while presenting innovative optimization
venues for serving system developers.

To characterize the batch behavior within DNN serving systems, we
erform a comprehensive systematic evaluation on a GPU platform. We
onducted experimental evaluations using representative DNN models
rom three different domains, including ResNet [4] for image classifica-
ion, BERT [5] for natural language processing (NLP), and LinkNet [6]
or image segmentation. As described in Section 3.2, ResNet has low
tilization of computing resources, BERT can saturate system resources
ven with small batches, and LinkNet is memory-bounded. Leveraging
hese three representative models, we conduct an in-depth investigation
nto the behaviors of the request batching, model slicing, and stage
eorchestrating within batched serving systems. Regarding the request
atching module, we initially examine the impact of batch size on sys-
em throughput and request average latency (Section 4.1), followed by
comprehensive exploration of hyperparameters, specifically the MAX-
S and TW, and their relationship with system throughput (Sections 4.2
nd 4.3). For the model slicing module, we discuss the influence
f slicing positions and the number of stages on system through-
ut (Sections 5.1 and 5.2), respectively. For the stage reorchestrating
odule, we analyze the correlation between reorchestrating strategies

nd system throughput across varying workloads and network models
Section 6.1). Subsequently, we conduct a comprehensive analysis of
eta-operations in multi-entry multi-exit systems, including split and

tretch operations (Sections 6.2 and 6.3). Based on observations, we
resent potential application scenarios, along with insights for various
esearch directions (Section 7). Our contribution can be summarized as
ollows:

• We perform a comprehensive analysis of batching behavior within
deep learning serving systems on GPUs by leveraging three rep-
resentative neural network models from different application sce-
narios.

• We characterize the effects of batch sizes and hyperparameters
on the behavior of the request batching module, explore different
slicing patterns associated with batching within the model slicing
module and analyze the influence of stage reorchestrating strate-
gies and meta-operations on the behavior of the reorchestrating
module.

• Based on experimental studies, we provide several insights and
recommendations to facilitate the system design and optimization
for deep learning serving. We hope that these observations could
pave the road for developing high-efficiency deep neural network
batching systems.

. DNN batching serving systems

.1. Meta-operations

In traditional DNN serving systems, such as Triton, the batch size
emains constant until the inference is completed, as depicted in the
pper part of Fig. 1. In such a design, the next batch can only be
aunched for execution after the ongoing batch inference is completed,
nd the requests in the batch cannot be exited early, resulting in longer
esponse latency [7]. To support requests being able to exit or join the
erving system, DVABatch abstract the two actions of request exit and
23
join into meta-operations, namely split and stretch operations. Fig. 1
shows how meta-operations can reduce average latency. To simplify the
explanation, we assume that each operator completes in 1 time unit (T)
and the MAX-BS is 4. In this case, once 4 requests are received or the
batching time window ends, the received requests will be batched and
issued for execution.

Through the split operation, a large ongoing batch is split into
several smaller batches for individual processing, which makes it easier
for some queries in the batch to exit early. Fig. 2 shows the execution
time of two convolution operations in Resnet under different batch
sizes. Convolution operations dominate DNNs (accounting for 86% of
the computation time) [8]. As shown in the figure, the preferred batch
sizes of Convolution-A and Convolution-B are 4 and 1, respectively.
For Convolution-A, using a batch size smaller than 4 cannot fully
utilize the GPU (the processing time starts to increase only when the
batch size is greater than 4). For Convolution-B, batching will only
increase its execution time without improving processing throughput.
Fig. 1(a) shows how the split operation can reduce average latency,
where operator A has a preferred batch size of 4, operators B, C, and D
have a preferred batch size of 1, and the received requests have been
batched and are ready to be issued for execution. In Triton, (upper
half of Fig. 1(a)), the requests in the batch start processing at the same
time and end at the same time. The lower half of Fig. 1(a) shows the
split operation, i.e., operator A executes the full batch, then splits the
batch into four smaller batches with a batch size of 1 at operator B, and
executes these small batches in sequence. In this way, Requests ①, ②,
and ③ can exit earlier. The average latency can be reduced by 28.1%
(from 4 T to 2.875 T).

Through the stretch operation, new incoming queries are added
to the ongoing batch to form a larger batch, thereby utilizing the
hardware computing power. Fig. 1(b) shows how the stretch operation
can reduce average latency, where the batching time window is 4 T and
the operator preferred batch size is 4. In Triton (i.e., the upper half
of Fig. 1(b)), Request ① starts running individually after waiting for
a time window, leaving the GPU underutilized. During the processing
of Request ①, Requests ②, ③, and ④ arrive, but they must wait to
be executed in the next batch. The lower half of Fig. 1(b) shows the
stretch operation, where the first batch (containing only Request ①)
waits for the second batch after completing operator A, and then the
two insufficient batches are merged into a new large batch to fully
utilize the hardware. In this way, the average latency can be reduced
by 34.4% (from 8 T to 5.25 T).

2.2. Major components

In this section, we introduce three major components of contem-
porary DNN batching serving systems, including a request batching
module, a model slicing module, and a stage reorchestrating module.
These three components are ubiquitously present in DNN batching
serving systems, such as Triton [1], DVABatch [3], Ebird [9], and
LazyBatching [7], among others.

Request Batching Module (RBM). The serving system initiates by
placing end-users’ requests into a request queue. The RBM subsequently
organizes these requests into batches, based on two hyperparameters:
MAX-BS and TW. These formed batches are placed in a batch queue for
the request processing module to utilize. Fig. 3 illustrates the behavior
of different configurations of RBM under the circumstance where re-
quest 𝑅𝑖 enters the request queue at time 𝑡𝑖. RBM with configuration
0 efficiently aggregates two requests within a specified time window
to form a batch. Conversely, RBM with configuration 1 can accumulate
three requests during the same time window, resulting in a batch of size
equal to MAX-BS. However, RBM with configuration 2, although also
capable of collecting three requests within the designated time window,
is constrained by MAX-BS, leading to the creation of a reduced-size

batch of 2.
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Fig. 1. Illustration of how meta-operations address the long latency problem of user requests. Split operation enables requests to exit early when encountering operators with high
parallelism. Stretch operation enables the merging of multiple insufficient batches to reduce waiting time and fully utilize hardware.
Fig. 2. Execution time of two convolution operators from ResNet with different batch
sizes on A100.

Fig. 3. The behavior of the request batching module under various parameter config-
urations, namely, the maximum allowed batch size (MAX-BS) and the time window
(TW).

Fig. 4. Diagram of model slicing, where IN/OUT are input/output tensors, and FT are
feature tensors.

Model Slicing Module (MSM). To support interruptible batch ex-
ecution, the serving system needs to slice the models during deploy-
ment, which includes determining the slice positions and the number
of stages formed after slicing [3]. Fig. 4 provides an example of
graph slicing, where slicing occurs after the first Add operation and
only once, resulting in two stages with identical graph structures.
Batching serving systems frequently employ stage performance models
to guide meta-operation decisions, making model slicing critical for
system throughput due to its direct influence on stage determination.

Stage Reorchestrating Module (SRM). The stage reorchestrating
module typically employs a reorchestrating strategy involving split
and stretch operations to control batch and stage execution. The split
operation is employed to split large batches into multiple smaller sub-
batches, enabling the early completion of smaller sub-batches without
waiting for the entire large batch, thus reducing the average request
24
Fig. 5. Diagram of split and stretch operations, where the numbers inside the rounded
rectangles represent batch sizes.

latency. As illustrated in Fig. 5, the split operation divides a batch of
size 64 from the 𝑆𝑡𝑎𝑔𝑒0 output into two sub-batches of size 32 each,
which are then processed sequentially by two stage instances (𝑆𝑡𝑎𝑔𝑒1𝑎
and 𝑆𝑡𝑎𝑔𝑒1𝑏). On the other hand, the stretch operation is used to merge
multiple small sub-batches into a larger batch, harnessing hardware
parallelism to enhance throughput. As shown in Fig. 5, when a new
batch arrives, the current batch is undergoing inference in 𝑆𝑡𝑎𝑔𝑒0𝑎.
Once the current batch completes the inference in 𝑆𝑡𝑎𝑔𝑒0𝑎, SRM passes
the new batch to 𝑆𝑡𝑎𝑔𝑒0𝑏 for processing. Subsequently, the stretch
operation increases the batch size from 16 to a larger batch of size
32, combining the outputs from these two stage instances for 𝑆𝑡𝑎𝑔𝑒1
inference.

3. Experimental setup

3.1. Hardware and software setting

Table 1 lists the setups of the experiments. In this paper, we
characterize and analyze the dynamic batching with two serving sys-
tems, Triton Inference Server (version 22.05) [1] and DVABatch (main
branch) [3], on a high-performance platform that integrates Intel
Xeon CPUs and an NVIDIA A100 GPU. As the latency of a DNN
model/operator varies with DNN frameworks or compilers [10–12],
we employ TensorRT (version 8.2.3) [13] as the inference engine for
both of these serving systems to provide SOTA operator performance.
Additionally, We use the NVIDIA Triton client [14], which employs an
approach similar to MLPerf [15] for generating workloads with arrival
times that conform to a uniform distribution. The client uses the HTTP
protocol to send requests and sets the QoS target to 200 ms. Regarding
DVABatch, we set request rates corresponding to 1/4, 3/5, and 9/10
of the peak throughput as low, medium, and high loads. For ease of
experimentation, we align the request rate with the number of client
threads, which is 64. Leveraging NVIDIA’s Model Analyzer tool [16],
we ascertain the maximum throughput attainable by the serving system
for specific models. Specifically, the Model Analyzer indicates peak
throughputs for ResNet, BERT, and LinkNet as 4288, 1088, and 3264
in DVABatch, respectively.
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Table 1
Evaluation specifications.

Hardware CPU: Intel Xeon Gold 6248
GPU: NVIDIA A100

OS & Driver Ubuntu: 18.04.2 (kernel 5.4.0-72)
GPU Driver: 515.43.04

Software

Client NVIDIA Triton Client: v22.05

Server NVIDIA Triton inference server: v22.05
DVABatch: main branch

Inference engine TensorRT: v8.2.3

Fig. 6. Performance of three benchmarked models.

3.2. Benchmarked deep neural networks

Incumbent Internet giants have been offering services for tasks
such as image classification, natural language processing, and image
segmentation, exemplified by Google Cloud Vision AI [17,18], Mi-
crosoft Azure Text Analytics [19,20], and Amazon Rekognition [21,
22]. This study focuses on these AI domains, employing benchmark
network architectures: ResNet [4], BERT [5], and LinkNet [6] for
experimental evaluation. Specifically, the study utilizes Torchvision’s
resnet152 [23], HuggingFace’s bert-base-uncased [24], and LinkNet
from Purdue University’s e-Lab project.

Fig. 6 visually illustrates the end-to-end inference latency of these
neural network models for different batch sizes, while also presenting
a detailed breakdown of time allocation for computation and memory
access. We observe that for the ResNet and BERT models, computation
time takes the lead (see Fig. 6(a) and (b)), whereas in the LinkNet
model, memory access time predominates (see Fig. 6(c)). Furthermore,
Fig. 6(d) illustrates the relationship between inference time and batch
size. It is evident from the figure that as the batch size increases, the
time of the ResNet model increases relatively slowly, whereas the time
of the BERT model experiences a sharp rise. In other words, under small
batch sizes, ResNet exhibits lower resource utilization, while BERT
potentially leads to system resource saturation.

In summary, ResNet and BERT primarily emphasize computational
resources, with ResNet demonstrating efficient resource utilization un-
der small batch sizes, while BERT’s resource demands quickly saturate
the system. In contrast, LinkNet places a stronger focus on memory
access, making it more memory-bound compared to the other models.

3.3. Evaluation metrics
The evaluation metrics include:

25
• Latency, defined as the average time taken by the serving system
to process a query, encompassing both the waiting time and the
inference time for the query.

• Throughput, defined as the average number of queries processed
by the system per second.

• Inference time, defined as the time required for a DNN model to
perform inferences on input data. Unlike request latency, infer-
ence time does not encompass the waiting time associated with
the request.

Since batching is a technique employed to enhance the throughput of
the serving system, in this paper, we will use ‘‘system performance’’
interchangeably with system throughput.

4. Analysis of request batching

4.1. Performance of different batch sizes

Popular DNN serving systems such as Triton support batch execu-
tion of multiple requests. In this experiment, as the serving system
receives batched inputs that are already formed, it does not wait for
them to be collected; thus, we set the time window to 0. Fig. 7 presents
the throughput of batching for three typical networks across various
batch sizes. Additionally, we demonstrate the benefits of batching in re-
ducing request latency, indicated by the blue line in the corresponding
figure.

Finding 1. In general, the system’s throughput can be enhanced by in-
creasing the batch size while meeting QoS requirements. Observing Fig. 7, it
becomes apparent that as the batch size increases, effective throughput
rapidly rises, amortizing the inference cost and significantly reducing
the request latency. This phenomenon occurs because larger batch sizes
increase the computational workload required for inference, allow-
ing better saturation of the GPU’s computational resources, thereby
achieving higher throughput.

Finding 2. Enlarging the batch size does not always lead to an im-
rovement for the system throughput. Once a specific threshold for batch
ize is exceeded, GPU resources are fully utilized, and further in-
reasing the batch size may lead to request latency exceeding users’
xpected response time, without yielding additional enhancements in
hroughput.

.2. Effects of max batch size settings

We evaluate Triton’s performance across various workloads by run-
ing three typical neural networks under different MAX-BS configu-
ations. In this experiment, for ResNet, BERT, and LinkNet, the time
indows are set to 500 μs, 10 μs, and 10 μs, respectively, aligning with

the observations presented in Section 4.3. Our corresponding results
are presented in Tables 2, 3, and 4. In these tables, ‘‘Collected-BS’’
represents the batch size formed by the batcher, and ‘‘Latency’’ denotes
the average request latency (in milliseconds).

Finding 3. For ResNet and BERT models, enlarging the MAX-BS param-
ter has the potential to improve the system throughput. We observe that

as MAX-BS gradually increases, the batch size formed by the RBM also
increases correspondingly. For both ResNet and BERT models, Triton’s
throughput steadily increases with the increasing values of MAX-BS,
eventually plateauing, regardless of the workload. In situations where
MAX-BS is configured with a smaller value, such as 1, it may lead
to a substantial number of requests being blocked in the queue. This
occurrence stems from Triton’s operational design, where a new batch
will initiate execution only upon the completion of the preceding batch.
To mitigate this, we can increase MAX-BS to maximize the batch size
per execution, thereby reducing the average wait time for requests.
However, as MAX-BS increases to a certain extent, although the batch
scheduler can form larger batches to amortize inference overhead, it
also leads to longer waiting times for requests in the queue.



BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151F. Yu et al.
Fig. 7. Effect of batching on throughput and latency of batched execution as a function of batch size. For this experiment, we assume that the batched inputs are already formed,
without waiting for them to be collected.
Table 2
Performance of Triton with varying MAX-BS for ResNet model across three workloads.

MAX-BS Low load Medium load High load

Throughput Latency Collected-BS Throughput Latency Collected-BS Throughput Latency Collected-BS

1 211.40 406.73 1 212.76 410.08 1 212.37 411.79 1
2 414.65 214.52 2 415.43 218.64 2 413.89 220.13 2
4 798.72 109.98 4 810.27 114.45 4 801.31 116.01 4
8 1082.94 8.33 6 1475.22 63.29 8 1476.97 63.67 8
16 1083.26 8.32 6 2356.09 38.30 16 2485.64 37.93 16
32 1082.79 8.34 6 2604.12 13.35 22 3458.38 27.19 32
64 1083.20 8.38 6 2606.72 13.63 22 3463.90 27.28 47
Table 3
Performance of Triton with varying MAX-BS for the BERT model across three workloads.

MAX-BS Low load Medium load High load

Throughput Latency Collected-BS Throughput Latency Collected-BS Throughput Latency Collected-BS

1 319.33 2.83 1 664.29 64.48 1 663.88 91.08 1
2 319.37 2.95 1 702.70 4.17 1 797.73 74.48 2
4 319.33 2.83 1 700.26 7.56 2 889.94 65.50 4
8 319.32 2.75 1 700.13 13.19 4 1002.18 37.82 8
16 319.30 2.93 1 696.00 22.00 3 1000.02 50.39 13
32 319.32 2.83 1 695.00 22.00 3 989.57 53.73 18
64 319.32 2.84 1 697.06 22.41 5 1003.20 48.88 23
Table 4
Performance of Triton with varying MAX-BS for the LinkNet model across three workloads.

MAX-BS Low load Medium load High load

Throughput Latency Collected-BS Throughput Latency Collected-BS Throughput Latency Collected-BS

1 830.63 1.37 1 1977.77 1.80 1 2044.28 30.63 1
2 830.34 1.47 1 1976.69 2.52 2 2453.50 25.37 2
4 830.27 1.45 1 1975.77 4.15 3 2541.31 24.58 4
8 830.18 1.55 1 1974.40 8.74 5 2570.41 24.44 8
16 830.31 1.61 1 1967.48 16.67 10 2195.27 28.68 13
32 830.31 1.75 1 1964.68 24.64 16 2006.76 31.41 21
64 829.64 2.26 1 1966.96 23.27 16 1947.94 32.37 20
Fig. 8. Performance breakdown with different MAX-BS for the LinkNet model.

Finding 4. MAX-BS mainly influences the queue wait time, the data
transmission time, and the computation time. For the LinkNet model,
Triton exhibits similar behavior to ResNet and BERT models under
medium to low workloads. However, under high workloads, Triton’s
26
observed throughput initially increases but then decreases as MAX-BS
values continue to grow. To further analyze this behavior, we provide a
decomposition graph of request latency for different MAX-BS values, as
shown in Fig. 8. Fig. 8 shows that as the batch size gradually increases,
the waiting time decreases, but memory access time increases due
to the growing data volume. In Triton, excessive batch sizes cause a
significant increase in request latency, as the memory access time for
a request equals that of the entire batch.

4.3. Effects of batching time window

Fig. 9 depicts the influence of time windows on system through-
put. In this experiment, for ResNet, BERT, and LinkNet, we configure
MAX-BS as 64, 16, and 8, respectively, based on the observations in
Section 4.2. The 𝑥-axis represents the request rate (the number of client
requests sent per second), while the 𝑦-axis signifies the system through-
put. In addition, the positions of symbols 𝐿, 𝑀 , and 𝐻 correspond to
low, medium, and high rates, respectively.
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Fig. 9. Effects of time windows on Triton throughput with different request rates. At low and medium loads, the impact of the time window on system throughput is limited,
indicating a linear correlation between system throughput and request rate. At high loads, BERT exhibits lower sensitivity to the time window compared to ResNet and LinkNet.
Finding 5. Under medium to low workloads, the effect of time windows
n the system throughput is limited. As the request rate increases, system
hroughput exhibits linear growth. This behavior stems from the fact
hat, under medium to low workloads, the RBM collects a relatively
mall number of requests. Elevating the request rate can augment the
uantity of requests gathered by the RBM, consequently amplifying
he system throughput. Nonetheless, once the request rate surpasses

certain threshold, further increases do not contribute to enhanced
hroughput. This is because, when the request rate surpasses the sys-
em’s processing capability, requests will be blocked in the queue,
esulting in heightened latency.
Finding 6. Under high workloads, for models that do not fully utilize

he resources, time windows impact the system throughput through wait-
ng times and batch sizes. When subjected to high workloads, Triton’s
eak throughput for the BERT model exhibits minimal variance across
ifferent time windows. Since the BERT model saturates the system’s
esources with small batches, necessitating requests to wait in the
atch queue until resources become available. The time window serves
s a parameter for regulating the waiting time of requests in the
equest queue and the size of batches formed. Selecting an appropriate
ime window size can enhance the overall throughput of the system.

shorter window reduces queue wait times but limits batch size,
nderutilizing hardware. Conversely, a longer window extends waits
ut yields larger batches, maximizing hardware utilization. Therefore,
ompared to models like BERT, the impact of the time window is more
ronounced for models that underutilize resources, such as ResNet and
inkNet.

. Analysis of model slicing

.1. Effects of slice positions

In this section, we slice the model into two subgraphs (i.e., stages)
nd investigate the impact of varying the slicing position on system
hroughput. We use a slicing ratio to denote the slicing position,
pecifically, the percentage of the total network compute time allocated
o 𝑆𝑡𝑎𝑔𝑒0, that is, 𝑆𝑡𝑎𝑔𝑒0

𝑆𝑡𝑎𝑔𝑒0+𝑆𝑡𝑎𝑔𝑒1
. The evaluation results are presented

in Fig. 10, with the 𝑥-axis denoting the slicing ratio and the 𝑦-axis
representing throughput.

Finding 7. The choice of slice positions has an impact on both the
model’s computation time and memory access time. Fig. 11 illustrates
the breakdown of end-to-end model inference time at various slice
positions. In Fig. 11, there are slight variations in computation time at
different slice positions. This phenomenon is attributed to the fact that
model slice disrupts operator fusion and other optimizations within the
graph. Furthermore, we observe that memory access time at different
slice positions is closely related to the model’s architecture, specifically,
it is influenced by the volume of data exchanged between stages. In
addition, although Fig. 11 shows that the model inference time is the
lowest when the model is not sliced (i.e., the slicing ratio is 100%),
this also implies that meta-operations cannot be applied, so the system
throughput is not necessarily optimal, as shown in Table 5.
27
Finding 8. When selecting slice points, the computation time, the model
structure, and the memory access time are important factors that need
to be considered. Fig. 10 demonstrates the impact of slice points on
system throughput. ‘‘Naive Batching’’ refers to a system devoid of meta-
operations and pipelined execution. The 𝑥-axis represents the slice
ratio, and the 𝑦-axis represents throughput. Fig. 10 clearly indicates
that slice points significantly influence the performance of pipelining
execution systems by affecting pipeline balance. We also note that for
ResNet, optimal throughput is achieved when slicing occurs in the
model’s middle, while for LinkNet, it is more advantageous towards the
model’s end. This variation is attributed to data transfer costs between
stages, as depicted in Fig. 11.

5.2. Effects of stage counts

In this experiment, we employ the PipeDream [25] tool to slice the
model into several stages with approximately equal execution time,
aligning with the experimental methodology of the DVABatch. Fig. 12
illustrates the impact of the number of stages on system through-
put, where the 𝑥-axis represents the number of stages, and the 𝑦-axis
represents throughput.

Finding 9. The optimal number of stages is typically small and, in
most cases is not equal to 1. As the number of stages increases, sys-
tem throughput experiences a brief increase followed by a gradual
decline. In contrast to schemes without model slicing, multi-stage
designs support batch interruptions to leverage meta-operations for
enhanced system throughput. However, increasing the number of stages
introduces additional system overhead, such as synchronization costs
between stages, resulting in finer scheduling granularity that under-
mines graph optimizations like layout selection and operator fusion,
subsequently reducing system throughput. Additionally, we observe
that pipelined execution is highly sensitive to the number of stages;
as the stage count increases, system throughput deteriorates rapidly.
Increasing the number of pipelined stages can enhance system through-
put, but surpassing a specific threshold may reduce throughput due to
resource contention.

6. Analysis of stage reorchestrating

6.1. Effects of reorchestrating strategies

Reorchestrating strategy is a method that prescribes execution in
batches or stages, aimed at enhancing system throughput. In batch-
ing serving systems, reorchestrating strategy manages batch execution
through meta-operations while also determining whether pipelining
execution of stage instances is permissible. Stretch, split and pipeline
execution are mutually independent, thereby allowing users to config-
ure strategies to determine how these three operations are employed.
Table 5 presents the system throughput of eight strategies for the model
under various workloads. It can be observed from this table that the

impact of strategies on system performance is limited in medium and
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Fig. 10. Effects of slice position on the system’s throughput. The optimal slicing position is related to the model structure. For example, the optimal slicing position for ResNet
models is in the middle, while the optimal slicing position for LinkNet models is at the end. Pipeline parallel execution is highly sensitive to the selection of the slicing position.
BERT models are not suitable for pipeline parallel execution.
Table 5
Effects of reorchestrating strategies on the system’s throughput. At low and medium loads, the system throughput is hardly affected by variations with different reorchestrating
strategy. Under high loads, however, the performance of the reorchestrating strategy differs among different types of models.

Strategy Stretch Split Pipeline ResNet BERT LinkNet

Low Medium High Low Medium High Low Medium High

I 0 0 0 1083.14 2608.62 3455.97 319.32 698.61 999.95 830.10 1974.27 2315.73
II 0 0 1 1081.07 2603.97 3867.68 319.33 692.98 749.00 830.02 1974.22 2774.40
III 0 1 0 1083.07 2607.60 3087.69 319.34 697.34 999.47 829.97 1974.36 2409.07
IV 0 1 1 1081.04 2604.87 3740.58 319.35 695.63 997.73 829.98 1974.86 2351.10
V 1 0 0 1081.12 2605.03 3854.02 319.30 696.19 995.43 830.03 1974.49 2368.43
VI 1 0 1 1080.92 2602.08 3866.82 319.33 686.51 752.64 829.91 1973.39 2764.35
VII 1 1 0 1080.89 2604.82 3756.22 319.34 695.99 993.90 829.94 1974.31 2322.81
VIII 1 1 1 1080.88 2602.44 3867.37 319.33 681.77 737.95 829.99 1974.06 2746.51
Fig. 11. Performance breakdown of 2-stage models with different slice positions. The
impact of slicing positions on memory access time is notably significant and correlates
with the model structure.

low-load scenarios. Under high load, the impact of strategies varies
depending on the model type.

Finding 10. Pipelined parallel execution is suitable for models with
unsaturated computational resources or those encountering memory access
bottlenecks. Stretch operations enhance the utilization of system computa-
tional resources, and split operations are effective for models bottlenecked
by memory access. For the ResNet model, strategies involving pipelined
execution or stretch operations effectively improve resource utilization,
thereby enhancing system throughput. However, for strategies that only
involve split operations, performance decreases due to the sequential
execution of the sub-batches, which prolongs request completion times.
For models with saturated system resources, such as BERT, pipelined
execution exacerbates resource contention and leads to performance
degradation. In contrast, strategies incorporating meta-operations pre-
vent performance degradation because the timing of operations is based
on stage-specific performance models. For models with memory access
bottlenecks, such as LinkNet, strategies involving pipelined execution
effectively hide memory latency and enhance the system’s throughput,
while stretch operations only marginally reduce average computational
28
time. Furthermore, split operations enable requests to finish in advance,
enhancing system throughput by eliminating the need to wait for the
entire batch to complete.

6.2. Performance analysis on split operations

The split operation allows requests to exit early, reducing average
latency, but the resulting sub-batches may suffer from lower resource
utilization, potentially reducing throughput. Therefore, the timing of
split operations is a critical factor affecting system throughput. In this
section, we explore the impact of the slice position, initial batch size
for split, and the number of final sub-batches on the effectiveness of
split operations. The evaluation results are presented in Figs. 13 and 14,
where the 𝑥-axis represents the slice ratio, and the 𝑦-axis represents the
speedup achieved by split operations compared to naive batching. We
divide the model into two stages, 𝑆𝑡𝑎𝑔𝑒0 and 𝑆𝑡𝑎𝑔𝑒1, and the slice ratio
refers to the percentage of the total network compute time allocated to
𝑆𝑡𝑎𝑔𝑒0.

Finding 11. Split operations yield more pronounced acceleration when
occurring earlier (i.e., with lower slice ratios). Observing Figs. 13 and
14, it is evident that split operations achieve their optimal effects with
lower slice ratios. As the slice ratio increases, split operations gradually
degrade into graph batching. This is because the benefits of split
operations stem from the reduced average latency during the execution
of sub-batches in the 𝑆𝑡𝑎𝑔𝑒1 sequence. Therefore, a higher percentage
of time allocated to 𝑆𝑡𝑎𝑔𝑒1, the primary contributor to performance
gains, implies greater potential benefits from split operations.

Finding 12. Split operations are effective for the system under large
batches, and the larger the batch to be divided, the greater the performance
gain of split operations achieved. Examining Fig. 13, it becomes apparent
that, given a fixed slice ratio (e.g., 5%), split operations yield higher
benefits as the batch size to be divided increases. Large batches may
lead to resource contention due to the system’s limited resources. Split
operations mitigate resource competition by subdividing large batches
into smaller sub-batches, thereby reducing average latency. Smaller
sub-batches, on the other hand, are often unable to fully utilize hard-
ware resources, and split operations further decrease hardware resource
utilization, consequently reducing system throughput. Additionally,
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g

Fig. 12. Effects of stage counts on the system’s throughput. As the number of stages increases, the system throughput initially experiences a transient increase, followed by a
radual decline.
Fig. 13. Effects of split operations on batching process across varying batch sizes, where the legend ‘‘2×(BS = N)’’ represents dividing a batch of size 𝑁 into two sub-batches,
each of size 𝑁∕2.
Fig. 14. Effects of split operations on batching process across varying sub-batch counts, where the legend ‘‘𝑛×(BS = 64)’’ represents dividing a batch of size 64 into 𝑛 sub-batches,
each of size 64∕𝑛.
Fig. 15. Effects of stretch operations on the batching process across varying batch sizes.
since the BERT model saturates system resources with small batches,
split operations result in acceleration across various batch sizes.

Finding 13. The optimal number of sub-batches could be guided by the
stage’s performance model and does not follow the ‘‘more is better’’ principle.
Split operation is applicable to the scenario where resource utilization
is saturated, that is, batching only increases its inference time without
improving the processing throughput, such as Convolution-B in Fig. 2.
Consequently, the split operation can split the original batch into sev-
eral sequentially executed sub-batches to reduce the average latency, as
shown in Fig. 1 (a). Observing the speedups of the split operation for
the slice ratio of 5% in Fig. 14, we can find that the optimal number of
sub-batches is not 64 (i.e., the green line), that is, the number of sub-
batches is not the more the better. This is because when the sub-batch
size reaches a certain threshold, further reducing the batch size will
29
lead to insufficient hardware resource utilization due to the small batch
size, which does not meet the premise of using the split operation, and
thus leads to the ineffectiveness of the split operation or even negative
effects. For this reason, we recommend that the timing of using the
split operation should be referenced to the curve of the execution time
of the stage with the batch size (such as Fig. 2), that is, the performance
model.

6.3. Performance analysis on stretch operations

The stretch operation enhances system throughput by consolidating
multiple small batches into a larger batch to fully exploit hardware
resources. Fig. 5 illustrates the stretch operation process: when a new
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Fig. 16. Effects of various batch combinations on the effectiveness of stretch oper-
ations, where 𝐵𝑆0 and 𝐵𝑆1 denote two batches arriving subsequently. The intensity
of color shading indicates the acceleration effect of stretch operations. For clarity, we
also use 1 to represent negative effects. Stretch operations have a significant effect on
ResNet models.

batch (𝐵𝑆1) arrives, the current batch (𝐵𝑆0) is in the middle of infer-
ence at 𝑆𝑡𝑎𝑔𝑒0𝑎. The stretch operation first completes the inference of
𝐵𝑆0 at 𝑆𝑡𝑎𝑔𝑒0𝑎, then proceeds to perform inference on 𝐵𝑆1 at 𝑆𝑡𝑎𝑔𝑒0𝑏,
and finally merges them into a larger batch for 𝑆𝑡𝑎𝑔𝑒1 inference. While
stretch operations maximize computational resources by forming larger
batches, they introduce waiting time during the batching process. This
section analyzes the impact of the sizes and combinations of 𝐵𝑆0 and
𝐵𝑆1, as well as slice positions, on the effectiveness of stretch operations.
For ease of analysis, we consider the scenario where 𝐵𝑆0 has just
started execution at stage 0 and 𝐵𝑆1 arrives as our target scenario.
Fig. 15 illustrates the impact of slice positions on the effectiveness of
stretch operations, where the 𝑥-axis represents the slice ratio, and the
𝑦-axis represents the speedups over not using stretch operations. Fig. 16
illustrates the influence of various combinations of 𝐵𝑆0 and 𝐵𝑆1 on
stretch operation efficacy. The brightness of the color signifies speedup
levels relative to non-stretch operation scenarios, with instances of
negative effect (speedups less than 1) marked as 1 for clarity.

Finding 14. Stretch operations yield more significant acceleration when
performed earlier. As seen in Fig. 15, stretch operations are more likely
to achieve noticeable acceleration when the slice ratio is low. This is
because a lower slice ratio implies less waiting time, and with a higher
proportion in stage 1 when system resources are not saturated, batch
processing benefits more. As the slice ratio increases, the acceleration
ratio of stretch operations tends to converge to 0.75. This is because
when the slice ratio approaches 100, the proportion of stage 1 be-
comes nearly zero. Due to the necessity to wait for 𝐵𝑆1 to finish at
stage 0, 𝐵𝑆0 cannot exit prematurely, resulting in an average delay of
approximately 1.75 times that of batch processing.

Finding 15. Applying stretch operations can usually enhance the system
throughput under small batches. As shown in Fig. 15, stretch operations
exhibit noticeable acceleration when merging small batches, as the
system cannot efficiently utilize hardware resources with small batches.
However, for models like BERT, the system resources are already
saturated with small batches, making stretch operations unsuitable for
such models.

Finding 16. Stretch operations are more suitable for ResNet-like models
when computational resources are not saturated, and they are influenced
by waiting time and batch processing gains. Fig. 16 shows that in ResNet
models, stretch operations generally have an acceleration effect, par-
ticularly when 𝐵𝑆0 is small, as it reduces the waiting time for 𝐵𝑆1
execution and still improves resource utilization after merging. How-
ever, for BERT models, stretch operations have minimal acceleration
as the system resources are already saturated with small batches. For
LinkNet models, stretch operations produce acceleration only with
specific batch combinations. Thus, systems should decide whether to
adopt stretch operations based on stage-specific performance models.

7. Discussion

In this work, an in-depth analysis and appraisal of the DNN batching
serving system were undertaken, offering significant findings. This
30
section gives the application scenarios and potential inspirations based
on these findings.

7.1. Serving system configuration

In existing serving systems, the configuration of hyperparameters
is a critical factor that affects the effectiveness of batching. However,
there is a lack of comprehensive analysis and guidance on the configu-
ration of these hyperparameters. This work fills this gap by providing
insights into the impact of hyperparameters on batching effectiveness.
Model deployment personnel can use the Finding 3 to configure MAX-
BS to a larger value when deploying computationally intensive models.
This will help to improve hardware resource utilization by forming
larger batches. Furthermore, Finding 5 suggests that deployment per-
sonnel need not overly focus on the time window under medium to low
loads. Serving system developers can adhere to the recommendations
in Finding 9 for setting the number of stages. With these findings and
suggestions in place, users of the serving system can more easily obtain
appropriate parameter settings without undergoing complex, tedious,
and time-consuming experiments and adjustments, thereby accelerating
the application of the serving system.

7.2. DNN system optimization

We explore the potential directions outlined by the findings in this
paper for promoting optimization and design of DNN serving systems.
We first analyzed the relationship between the hyperparameters in the
request batching module and the batching effect, and revealed the con-
stituents of request latency (Findings 3–6). This provides a foundation
for researchers to design adaptive parameter tuning systems for serving
systems. Considering that workloads in practical scenarios often exhibit
burstiness [26], and the inference serving time is deterministic [27],
we can fit the collected request arrival traces to a Markov arrival pro-
cess [28] at runtime to capture the burstiness. Based on the components
of latency and deterministic inference time, we design a parameter
tuner. The tuner determines optimal hyperparameter configurations
based on the arrival process and QoS, maximizing throughput while
meeting the QoS. Furthermore, we discover that in the model slicing
module, the selection of slicing positions should consider computation
time, model structure, and memory access time. Additionally, the num-
ber of stages correlates with runtime synchronization overhead. The
aforementioned analysis offers possibilities for researchers to automat-
ically determine optimal slicing positions and the number of stages.
This inspires researchers to design an profiler to obtain computation
time and access time under different slicing locations. Then, they
can model the inference process under different stage reorchestrating
strategies and query arrival processes, subsequently automatically de-
termining the optimal slicing positions and stage numbers based on
the performance model. Lastly, we examine the stage reorchestrating
module and find that the conditions for utilizing pipelined execution
and meta-operations should consider model characteristics and stage
performance models. This insight guides researchers designing multi-
tenant serving systems to execute computation- intensive stages and
memory access-intensive stages in a pipelined manner to fully utilize
hardware resources. Concurrently, performance models of stages in-
form the execution of meta-operations and resource allocation for the
stages.

7.3. DNN application development

The findings in this paper also have implications for neural network
application developers. Findings 1 and 2 indicate that the performance
improvements achieved through batching techniques primarily arise
from the efficient utilization of hardware computing resources, particu-
larly when larger batch sizes are employed. Therefore, in the design of
neural network models, efforts should be made to reduce the proportion
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of memory access time. This hints at the importance for application
developers to use lightweight operators whenever possible, such as
employing depth-wise convolution operations in place of naive convo-
lutions, and adopting quantization techniques to reduce memory access
time. Finding 8 indicates that the position of model slices affects data
flow and tensor lifecycle management. Long-lived tensors occupy mem-
ory resources for extended periods, increasing memory consumption
and limiting the number of batching requests. Thus, DNN application
developers should avoid designing long-lived tensors. Finding 9 sug-
gests that model slicing may impact graph optimization techniques like
operator fusion. Therefore, our advice to model designers is to construct
network models using small, reusable blocks as much as possible to
minimize the impact on graph optimization techniques such as operator
fusion.

7.4. Impact on large language models

In various applications, the significance of language generation
asks has escalated, sparking heightened interest in optimizing serv-
ng systems via batching techniques. Orca represents the inaugural
daptation of DVABatch tailored for Large Language Models (LLMs).

pivotal insight of Orca posits that Transformer-based generative
odels function iteratively, so the batching should focus on iterations

ather than individual requests. Consequently, Orca aligns DVABatch
tages with LLM iterations and supports batching arbitrary requests by
xecuting the iterations in a batch that are in prefill and decode states
eparately. In this study, we conducted a comprehensive evaluation of
he DVABatch system, yielding several critical insights.

BERT and Transformer models differ in terms of task objectives
nd output layers. Transformer is a sequence processing model that
ses SoftMax for probability distribution computation at the output
ayer, while BERT focuses on learning language representations from
ext data, which is typically used to generate context-related word
mbeddings. However, they are both implemented based on multiple
tacked transformer layers (i.e., including attention layers and forward
eedback layers). In this paper, we discover that BERT can saturate
ardware resources even with small batch sizes. Furthermore, serving
ystems utilizing pipeline parallelism exhibit lower throughput when
onfronted with the BERT model compared to naive serving systems.
onsequently, this insight suggests that designers of LLM serving sys-
ems should refrain from employing pipeline parallelism on a single
PU platform.

Given that LLMs typically operate iteratively, and the behavioral
haracteristics during the prefill and decode phases exhibit significant
ifferences [29,30], this constitutes the most prominent distinction
etween LLM and BERT. Researchers can leverage the findings of this
aper and integrate the unique features of LLM to design serving
ystems effectively. In this context, we propose two potential research
irections and offer possible solutions to stimulate further scholarly
iscourse. Findings 4 and 6 elucidate that the queue’s waiting time
arkedly impacts the serving system, primarily due to the unpre-
ictable request distribution. In LLM, the arrival time distribution and
teration count remain indeterminate. Hence, researchers may formu-
ate a multi-feedback queue scheduler for handling unknown arrival
imes [31] and develop a compact model consistent with LLM to
orecast request iteration counts [32], facilitating batch processing of
equests with analogous iteration counts to minimize latency. Find-
ng 10 suggests that the design and use of meta-operations should
lign with model characteristics, offering insights for researchers in
esigning new meta-operations for LLM serving systems. This prompted
esearchers to develop new meta-operations that couple multiple itera-
ions in decoding states with a iteration in prefill states, utilizing weight
ata reuse to reduce memory access and thereby improve system
hroughput [33].

In future work, we will augment the characterization of batching be-
avior within the LLM serving system and undertake a more profound

xploration based on the aforementioned two research directions.

31
7.5. Multi-GPU platforms

In existing DNN serving system designs, the batching module and
the inference engine module are independently designed, encompassing
serving systems such as Triton, DVABatch, and Orca. In contemporary
DNN serving systems, tensor parallelism and pipeline parallelism are
commonly utilized for inference services across multiple GPUs [34],
primarily within the confines of the inference engine module. While
this paper focuses on the batching system, insights into the design
of the inference engine remain beneficial. For instance, in Section 5,
we highlight that the selection of model slicing positions is associated
with the model structure, which can provide guidance for the design
of the pipeline stages of the pipeline parallelism paradigm in the
execution engine layer. Furthermore, this work clarifies existing DNN
serving system designs, laying the groundwork for future collaborative
designs between the batching system and the inference engine. For
example, considering a machine equipped with two GPU cards (𝐺𝑃𝑈1
and 𝐺𝑃𝑈2) using the pipeline parallelism paradigm—where 𝐺𝑃𝑈1
handles the front portion of the model and 𝐺𝑃𝑈2 manages the rear
ortion. Assuming two batches of varying sizes, A and B (with A having
larger batch size than B), arrive sequentially. Orca would first execute
on 𝐺𝑃𝑈1 (front portion of the model) followed by A on 𝐺𝑃𝑈2 (rear

portion) while simultaneously processing B on 𝐺𝑃𝑈1 (front portion).
Due to A’s larger batch size compared to B, a bubble occurs on 𝐺𝑃𝑈1. If
he batching system layer can perceive that the execution engine layer
ses the pipeline parallelism paradigm, it can reduce the occurrence of
ubbles by dividing the requests into finer granularities.

. Related work

Dynamic Batching. In the realm of model training, researchers
ocused on adjusting batch sizes to strike a balance between training
fficiency and model generalization [35–37]. In the training phase, all
nput data is available, allowing for the efficient collection of multiple
amples without latency. However, in the inference phase, since the ML
erving systems receive input at different times, and batching system
eeds to balance latency and throughput, which poses challenges.
herefore, our paper focuses on analyzing batching techniques in the

nference phase.
Regarding batching techniques during model inference, there are

hree primary types, as delineated in prior studies [7,38]: static batch-
ng, dynamic batching, and application-specific batching. Static batch-
ng, as exemplified by systems such as Triton and TensorFlow-Serving,
elied on two critical hyperparameters: the model-allowed maximum
atch size and the time window, which govern request batching be-
avior. In a static batching system, new batches can only be executed
fter the current batch inference is done, causing longer request wait
imes.

Therefore, researchers have proposed dynamic batching, allowing
atch size modification during the inference process, with some typ-
cal serving systems including LazyBatching [7] and DVAbatch [3].
n dynamic batching techniques, models are sliced into different sub-
raphs to support the addition of new requests and the early exit
f old requests. LazyBatching slices the model at the granularity of
perators and employs a QoS-aware slack time prediction algorithm to
elay request processing, creating larger batches. DVABatch, built upon
azyBatching, uses subgraphs as the slice granularity and introduces
tretch and split operations to adapt to different application scenarios.

Furthermore, there have been batching techniques tailored for spe-
ific applications. As the number of iterations varies for different
equests in the generation model, Orca [39] introduces iteration-level
atching, i.e., considering whether to incorporate new iterations or
arly exit the iteration from the batch. In applications involving diverse
equence lengths, researchers explored strategies for concatenating
equests into larger inputs [40] or adopting finer-grained grouping
echniques [41] to improve performance.
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Despite numerous DNN serving system batching techniques, their
pplicability and operational contexts remain unclear. Additionally,
hese methods often target specific modules, such as static batching for
equest batching module and dynamic batching for stage reorchestrat-
ng modules. This work delivers a holistic assessment of the influence of
arameter configurations, model slicing strategies, and stage reorches-
rating strategies on batching serving systems across diverse models and
orkloads. To the best of our knowledge, this is the first study that

omprehensively evaluates and analyzes DNN batching serving system.
Serving Systems. In serving systems, batch processing was often

onsidered in conjunction with factors such as resource allocation and
oS. Various approaches were devised to employ adaptive strategies,
nhancing efficiency and ensuring equitable resource distribution to
ulfill users’ inference demands. DyBatch [42] adjusted batch sizes
ased on device workloads and task requisites to uphold fairness.
anily [43] dynamically allocated computational resources, aiming to
eet QoS requirements while optimizing resource utilization. Ebird [9,
4] excelled in performance maximization across fluctuating work-
oads. In the design of serving systems, batching techniques typically
eed to be collaboratively designed with other optimization techniques.
his study contributes to a better understanding of batching techniques
or developers and lays the foundation for designing superior serving
ystems.

. Conclusion

Optimizing and deploying DNN serving systems lay in understand-
ng the behavior of batching throughout the entire system. In this
aper, we characterized the behavior of the request batching module,
odel slicing module, and stage reorchestrating module, in deep neu-

al network batching systems on GPUs, by using three representative
odels. Based on experimental results, several meaningful insights

nd findings are provided for future research to further enhance deep
earning serving systems.
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A B S T R A C T

The burgeoning field of Artificial Intelligence Generated Content (AIGC) is witnessing rapid advancements,
particularly in video generation. This paper introduces AIGCBench, a pioneering comprehensive and scalable
benchmark designed to evaluate a variety of video generation tasks, with a primary focus on Image-to-Video
(I2V) generation. AIGCBench tackles the limitations of existing benchmarks, which suffer from a lack of
diverse datasets, by including a varied and open-domain image–text dataset that evaluates different state-
of-the-art algorithms under equivalent conditions. We employ a novel text combiner and GPT-4 to create rich
text prompts, which are then used to generate images via advanced Text-to-Image models. To establish a
unified evaluation framework for video generation tasks, our benchmark includes 11 metrics spanning four
dimensions to assess algorithm performance. These dimensions are control-video alignment, motion effects,
temporal consistency, and video quality. These metrics are both reference video-based and video-free, ensuring
a comprehensive evaluation strategy. The evaluation standard proposed correlates well with human judgment,
providing insights into the strengths and weaknesses of current I2V algorithms. The findings from our extensive
experiments aim to stimulate further research and development in the I2V field. AIGCBench represents a
significant step toward creating standardized benchmarks for the broader AIGC landscape, proposing an
adaptable and equitable framework for future assessments of video generation tasks. We have open-sourced
the dataset and evaluation code on the project website: https://www.benchcouncil.org/AIGCBench.
1. Introduction

Artificial Intelligence Generated Content (AIGC) encompasses a
wide array of applications that leverage AI technologies to automate
the creation or editing of content across different media types, such as
text, images, audio, and video. With the rapid advancement of diffusion
models [1–5] and multimodal AI technologies [6], the AIGC field is
experiencing considerable and rapid progress. The explosive growth of
AIGC has made its evaluation and benchmarking an urgent task.

A representative application of AIGC is video generation [7–11].
Current video generation includes Text-to-Video (T2V), Image-to-Video
(I2V), Video-to-Video (V2V), as well as a few other works that utilize
additional information such as depth [10], pose [12], trajectory [13],
and frequency [14] to generate videos. Among these, T2V and I2V
are the two most mainstream tasks at present. Early video generation
primarily used text prompts to generate videos and achieved good

∗ Corresponding author at: Research Center for Advanced Computer Systems, State Key Lab of Processors, Institute of Computing Technology, Chinese Academy
of Sciences, China.

E-mail addresses: fanfanda@ict.ac.cn (F. Fan), zhanjianfeng@ict.ac.cn (J. Zhan).
1 However, the community often refers to it as Image-to-Video, rather than Text-Image-to-Video.
2 Open-domain images refer to images that cover a wide variety of subjects or topics without specific restrictions on the content or category.
3

results [7,8,15–19]. However, using text alone makes it difficult to
depict the specific scenes that users want. Recently, I2V has ignited the
AIGC community. The I2V task refers to the generation of a dynamic,
moving video sequence based on a static input image and is usually ac-
companied by a text prompt.1 Compared to T2V, I2V can better define
the content of video generation, achieving excellent results in many
scenarios such as film, e-commerce advertising, and micro-animation
effects.

While benchmarks for the T2V task have seen notable progress
[20–22], benchmarks for the I2V task have scarcely advanced. Pre-
vious efforts like Latent Flow Diffusion Models (LFDM) [23] and
CATER-GEN [24] were tested under domain-specific video scenarios.
VideoCrafter [25] and I2VGen-XL [26] only utilized visual comparisons
for the I2V task. Seer [27] and Stable Video Diffusion (SVD) [28]
employed video–text datasets and utilized a few metrics that require
reference videos. Existing I2V benchmarks suffer from (1) a lack of
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772-4859/© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of
vailable online 26 January 2024

Here, equivalent conditions refer to using the same evaluation dataset and ass

https://doi.org/10.1016/j.tbench.2024.100152
Received 3 January 2024; Received in revised form 17 January 2024; Accepted 23

34
KeAi Communications Co. Ltd. This is an open access article under the CC

essment dimensions for all video generation tasks.

January 2024

https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.benchcouncil.org/AIGCBench
mailto:fanfanda@ict.ac.cn
mailto:zhanjianfeng@ict.ac.cn
https://doi.org/10.1016/j.tbench.2024.100152
https://doi.org/10.1016/j.tbench.2024.100152
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2024.100152&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100152F. Fan et al.
Fig. 1. Illustration of our AIGCBench. Our AIGCBench is divided into three modules: the evaluation dataset, the evaluation metrics, and the video generation models to be assessed.
Our benchmark encompasses two types of datasets: video–text and image–text datasets. To construct a more comprehensive evaluation dataset, we expand the image–text dataset by
our generation pipeline. Additionally, for a thorough evaluation of video generation models, we introduce a set of evaluation metrics comprising 11 metrics across four dimensions.
These metrics include both reference video-based and reference video-free metrics, making full use of the benchmark we propose. We also adopted human validation to confirm
the rationality of the evaluation standards we proposed.
diverse, open-domain images2 with various subjects and styles to test
the efficacy of different state-of-the-art algorithms; (2) an absence of a
unified consensus on which evaluation metrics should be used to assess
the final generated results. From the perspective of [29], these two
shortcomings hinder the capability of capturing stakeholders’ concerns
and interests, while also failing to construct equivalent evaluation
conditions.3

To address this gap, we present AIGCBench, a unified benchmark
for video generation tasks. AIGCBench aims to encapsulate all main-
stream video generation tasks, such as T2V, I2V, V2V, and the syn-
thesis of video from additional modalities like depth, pose, trajectory,
and frequency. We present an overview of AIGCBench in Fig. 1. Our
AIGCBench is divided into three modules: the evaluation dataset, the
evaluation metrics, and the video generation models to be assessed.
Considering the high relevance and interconnectivity4 of video gen-
eration tasks, our AIGCBench can enable the comparison of different
algorithms under equivalent evaluation conditions. This allows for an
analysis of the strengths and weaknesses of different state-of-the-art
video generation algorithms, thereby aiding progress in the field of
video generation. In the first version of our AIGCBench, we address
the current lack of a reasonable benchmark for I2V tasks by providing
a thorough evaluation for them. In subsequent versions, we plan to
include more video generation tasks and place them under equivalent
evaluation conditions for a fair comparison.

Recognizing the limitations of existing benchmarks, AIGCBench is
engineered to meet the diverse demands of users looking to animate a
broad array of static images. Where previous benchmarks have fallen
short, not fully accommodating the expansive range of images users
might choose to animate – such as a blue dragon skateboarding in
Times Square – AIGCBench rises to the challenge. We address this by
deploying a text combiner to generate a rich assortment of text prompts
that span a multitude of subjects, behaviors, backgrounds, and artistic
styles. Further refining the creative process, we employ the advanced
capabilities of GPT-4 [30] to enhance the text prompts, rendering them
more vivid and intricate. These detailed prompts then guide the genera-
tion of images through state-of-the-art Text-to-Image diffusion models.

4 The interconnectivity arises because some algorithms have the capability
to perform multiple types of video generation tasks.
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By judiciously blending video–text and image–text datasets, along with
our generated image–text pairs, AIGCBench ensures a robust and com-
prehensive evaluation of an array of I2V algorithms, thus addressing
the first major shortcoming identified in existing benchmarks.

To establish a comprehensive and standardized set of evaluation
metrics for video generation tasks that cater to mainstream tasks such
as T2V and I2V, our AIGCBench evaluates four critical dimensions:
control-video alignment, motion effects, temporal consistency, and
video quality, thereby capturing every aspect of video generation. This
integrated framework combines metrics that are both reference video-
based and video-free metrics, enhancing the benchmark’s rigor without
exclusively relying on video–text datasets or image–text datasets alone.
We strengthen this approach by incorporating image–text datasets into
our evaluations, which allows us to assess content beyond the scope
of existing video–text datasets and add reference video-free metrics
for assessment. Considering the complexity and diversity of tasks, we
believe that the evaluation metrics should cover at least these four
aspects. For each aspect, we aim to use both reference video-based and
video-free metrics. After satisfying these categorizations, the benefits
of increasing the number of metrics become marginal, while it is
insufficient without covering these aspects. The experimental results
demonstrate that our evaluation standard correlates well with human
ratings, confirming its effectiveness. Following a thorough evaluation,
we present the strengths and weaknesses of each model, alongside sev-
eral insightful findings, in hopes of spurring discussions that advance
the I2V field.

Our contributions are as follows:

1. We introduce AIGCBench, a benchmark for comprehensive eval-
uation of diverse video generation tasks, with an initial focus on
Image-to-Video (I2V) generation and a commitment to placing
these models under equivalent evaluation conditions for fair
comparison.

2. We extend our image–text dataset using a text combiner and
GPT-4, complemented by state-of-the-art Text-to-Image models
to generate high-quality images, enabling a deeper evaluation
of I2V algorithm performance;

3. We evaluate I2V algorithms comprehensively using both refer-
ence video-based and video-free metrics across four aspects and
verify the validity of our proposed evaluation standard with
human judgment;
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Table 1
Compare the features of our AIGCBench with other I2V benchmarks. ✗ and ✓ indicate whether the benchmark includes the features listed in the respective columns.
Video-based metrics, which use reference videos, contrast with video-free metrics that do not. Considering the difficulty of the evaluation, we are not counting the
sample numbers for domain-specific benchmarks [23,24,27].

Benchmark Open-Domain Video-Text Pairs Image-Text Pairs Generated Dataset #Samples Metric Types # Metrics

LFDM Eval [23] ✗ ✓ ✗ ✗ - Video-based 3
CATER-GEN [24] ✗ ✓ ✓ ✓ - Video-based & Video-free 7
Seer Eval [27] ✗ ✓ ✗ ✗ - Video-based 2
VideoCrafter Eval [25] ✓ ✓ ✓ ✗ - - -
I2VGen-XL Eval [26] ✓ ✓ ✓ ✗ - - -
SVD Eval [28] ✓ ✓ ✓ ✗ 900 Video-based 5
AnimateBench [31] ✓ ✗ ✗ ✓ 105 Video-free 2
AIGCBench (Ours) ✓ ✓ ✓ ✓ 3928 Video-based & Video-free 11
4. We offer several insightful findings to aid the better development
of the I2V community.

2. Background and related work

Current video generation primarily encompasses two major tasks:
ext-to-Video (T2V) and Image-to-Video (I2V). Given the high rele-
ance of T2V tasks to I2V tasks, we discuss video generation models,
ith a particular focus on I2V models, in Section 2.1. We will introduce

elated benchmarks for T2V in Section 2.2 and describe the existing
enchmarks for I2V in Section 2.3.

.1. Video generation models

Thanks to the development of diffusion models [1–5] and mul-
imodal techniques [6], video generation algorithms are becoming
ncreasingly sophisticated. Early video generation was primarily based
n text-to-video approaches [7,8,10,15,17–19,32–36]. Most of the work
s based on diffusion models [2–5,16], with some being transformer-
ased [15,33]. They all rely on extensive video–text or image–text
atasets to train scalable models. However, considering that using only
ext can make it challenging to intuitively depict the video scenes users
ant to generate, image-to-video has started to gain popularity in the
ideo generation community.

Seer [27] introduced an approach for I2V tasks that combines the
onditional image latent with a noisy latent, utilizing causal atten-
ion within the temporal component of a 3D U-Net [37]. VideoCom-
oser [38] concatenated image embedding with image style embedding
o preserve the initial image information. Recently, VideoCrafter [25]
ncoded the image prompt through a lightweight image encoder and
ed it into the cross-attention layer. Similarly, I2VGen-XL [26] not only
erges the image latent with the noisy latent at the input layer but

lso employs a global encoder that extracts the image CLIP feature into
he video latent diffusion model (VLDM). Stable video diffusion [28]
s an extension of a pretrained image-based diffusion model [39]. It
s trained through three stages: text-to-image pretraining, video pre-
raining, and high-quality video fine-tuning. Emu Video [40] identified
ritical design decisions, such as adjusted noise schedules for diffusion
nd multi-stage training, which enabled the generation of high-quality
ideos without requiring a deep cascade of models as in prior work.
eyond academic research, the video generation results from industry
layers like Pika [9] and Gen2 [10] are also quite impressive. All of
hese I2V algorithms are based on video diffusion models, and the
ajority leverage the parameter priors from image diffusion models to

id in the convergence of video models.
To evaluate state-of-the-art I2V models, we have reviewed three

pen-source works in this paper: VideoCrafter [25], I2VGen-XL [26],
nd Stable Video Diffusion [28], as well as two closed-source industry
fforts, Pika [9] and Gen2 [10]. These currently represent the five
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most influential works in the video generation community, and we will
briefly introduce their experimental parameters in Section 5.1.

2.2. Benchmarks for text-to-video generation

The FETV benchmark [20] conducts a comprehensive manual eval-
uation of representative T2V models and reveals their strengths and
weaknesses in handling a diverse range of text prompts from multiple
perspectives. EvalCrafter [21] starts by creating a new set of prompts
for T2V generation with the assistance of a large language model,
ensuring that the prompts are representative of actual user queries.
EvalCrafter’s benchmarks [21] are meticulously designed to evaluate
generated videos from several critical dimensions: visual quality, con-
tent accuracy, motion dynamics, and the alignment between generated
video content and the original text captions. VBench [22] has created
16 distinct evaluation dimensions, each with specialized prompts for
precise assessment.

The task of T2V differs from I2V, as videos generated from the same
text can vary widely, making it less suitable for evaluation metrics
that require a reference video. For T2V tasks, the results generated
by different models for the same text prompt can be quite dissimilar.
However, for I2V tasks, since the image imposes certain constraints,
the variation in results produced by different models is generally not as
pronounced. This allows us to conduct a comprehensive evaluation of
different Image-to-Video (I2V) algorithms on video–text datasets using
evaluation metrics that are based on reference videos. Our AIGCBench
draws on these T2V benchmarks but differs from them in several
respects: (1). We need to collect or construct images for the I2V model’s
input, which requires considering the comprehensiveness of both the
text prompt set and the image set. (2). Although our evaluations are
similar to those of the T2V task in terms of the dimensions assessed,
we need to employ new evaluation standards due to the differences
between T2V and I2V tasks.

2.3. Benchmarks for image-to-video generation

Domain-specific I2V benchmark. LFDM Eval [23] is evaluated on facial
expression and human action datasets, employing just a few evaluation
metrics to gauge the quality of video generation. The CATER-GEN [24]
benchmark uses predefined 3D objects and specific initial images for
testing the quality of videos that depict the motion of 3D objects.
Nonetheless, neither LFDM Eval [23] nor the CATER-GEN [24] bench-
mark is appropriate for evaluating video generation in open-domain
scenarios.

Open-domain I2V benchmark. The open-domain I2V benchmark is cur-
rently based on two main types of evaluation data: video–text and
image–text datasets. Seer [27] and SVD [28] have utilized video–
text datasets and employed a limited number of metrics that require
reference videos for evaluation. VideoCrafter [25] and I2VGen-XL [26]
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have used image–text datasets and relied solely on visual compar-
isons. Very recently, AnimateBench [31] was released for the purpose
of evaluating I2V tasks. They also generated images using Text-to-
Image models. However, they were limited by a small number of text
prompts and a limited collection of images. At the same time, there
is a lack of comprehensive evaluation metrics. Both are constrained
by limited evaluation datasets and an incomplete set of assessment
metrics. This leads to the evaluation datasets not being representative
of all stakeholders’ concerns and interests, and there is also a lack of
a unified and comprehensive consensus on evaluation. In this paper,
we expand the image–text dataset using state-of-the-art Text-to-Image
models. To ensure the complexity of the generated text prompts, we
generate prompts through the combinatorial traversal of four metatypes
and enhance them with the capabilities of large language models. We
compare our AIGCBench with other I2V benchmarks in Table 1.

Generating image–text dataset. While most benchmarks gather datasets
from the real world, CATER-GEN [24] constructs datasets using a
limited set of text prompts for specific object movement scenarios. Very
recently, AnimateBench [31] utilized a limited number of manually
designed text prompts and also employed Text-to-Image models to gen-
erate images. However, this approach is constrained by the simplicity
of the text combinations and the limited diversity of the images. Our
generation pipeline uses a text combiner to randomly generate text
prompts and incorporates GPT-4 [30] to enrich the content. Simultane-
ously, we filter the generated results to select high-quality image–text
pairs.

3. AIGCBench: Establishing the image-to-video generation bench-
mark

The framework of our AIGCBench is shown in Fig. 1. Our AIGCBench
framework comprises three components: the evaluation dataset, the
video generation models to be assessed, and the evaluation metrics. To
construct a comprehensive benchmark, we evaluate I2V models using
two types of datasets: video–text and image–text. For the image–text
dataset, we utilize evaluation metrics that do not require reference
videos. In this section, we will introduce how we collected the evalu-
ation datasets, in Section 4 we present the evaluation criteria we have
established, and in Section 5.1 we provide a brief introduction to the
video generation models to be evaluated.

3.1. Collect dataset from real-world

Video–text pairs. The WebVid-10M [41] dataset is a substantial collec-
tion specifically designed to aid in the development and training of AI
models for video understanding tasks. It consists of approximately 10
million video–text pairs, making it one of the larger datasets available
for this type of research. Considering that video generation is time-
consuming, we have sampled 1000 videos from the validation set of the
WebVid10M [41] dataset based on subtype for evaluation purposes.

Image–text pairs. The LAION-5B [42] dataset is a large-scale, open
dataset consisting of around 5,85 billion image–text pairs. It was cre-
ated to facilitate research in computer vision and machine learning,
specifically in areas such as multi-modal language-vision models, Text-
to-Image generation, and more (e.g. CLIP [6], DALL-E [43]). LAION-
Aesthetics is a subset from LAION-5B [42] with high visual quality.
We randomly sampled 925 image–text pairs from the LAION-Aesthetics
dataset to serve as a reference for video-free evaluation metrics.

3.2. Generated image–text pairs

Using only real-world datasets is insufficient. Users often input
images and text generated by designers or T2I (Text-to-Image) models
to create videos. This includes certain image–text pairs that cannot
be sampled in the real world. To bridge this gap, we propose a T2I
generation pipeline. As shown in Fig. 2, we provide an overview of our
generation pipeline above and present some generated cases below.
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3.2.1. Text combiner
To generate as diverse text prompts as possible, we construct text

templates based on four types: subject, behavior, background, and
image style. We then generate a list of 3000 text prompts randomly
by following the template: subject + behavior + background, in the
image style style. We have listed some examples:

1. Subject: a dragon, a knight, an alien, a robot, a panda, a nymph;
2. Behavior: riding a bike, fight a monster, searching for a treasure,

dancing, solving a puzzle;
3. Background: in a forest, in a futuristic city, in a space station, in an

old western town at high noon;
4. Image style: oil painting, water color, cartoon, realistic, Van Gogh,

Picasso.

We have compiled our text corpus from high-frequency words often
entered by users in the T2I community of Civit AI [44], along with
some potentially valuable text prompts. Considering the flexibility of
our generation pipeline, our benchmark is scalable. Subsequently, we
can update and iterate on the versions of our text corpus.

3.2.2. Optimizing text prompts
Although utilizing text templates with various text corpora can

generate reasonable images, it might lead to poor diversity in the
generated images, which is not conducive to evaluating I2V tasks. We
leverage the capabilities of the GPT-4 model [30], using the prompt
‘‘make the content more vivid and rich’’ to optimize the texts generated
from templates.

3.2.3. Generate images and filter
To generate high-quality images based on the generated texts, we

have employed the best Text-to-Image (T2I) model available to date
— the Stable Diffusion model [39]. The Stable Diffusion model [39] is
particularly notable for its ability to create high-quality and coherent
images that closely match the style and content described by the input
text prompts. We utilized the latest xl-base T2I model released by their
community. Considering that the I2V model is primarily trained with
an aspect ratio of 16:9, we used a height of 720 and a width of 1280
to generate images.

In order to select high-quality image–text pairs, we filtered out
the top 2003 high-quality image–text pairs based on the automatic
metrics from the T2I-CompBench [45]. Some examples generated by
our pipeline can be seen in the lower half of Fig. 2.

4. Evaluation metrics

Our evaluation dataset includes both video–text and image–text
datasets. To conduct a comprehensive evaluation, we employ two types
of assessment metrics: one that requires reference videos and another
that does not. In addition, we considered previous Text-to-Video bench-
marks [20–22] and have integrated to propose an evaluation standard
suitable for the Image-to-Video (I2V) task, covering both types of
dataset. We assess the performance of different I2V models from four
aspects: control-video alignment.5 motion effects, temporal consistency,
and overall video quality6. Considering that videos generated by dif-
ferent algorithms have varying numbers of frames, for a standardized
evaluation, we adopt the approach of extracting the first 16 frames,
unless otherwise specified.

5 ‘‘control’’ refers to the input signals from the user, such as text, images,
and other forms of control signals.

6 The code is available at https://github.com/BenchCouncil/AIGCBench.

https://github.com/BenchCouncil/AIGCBench
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Fig. 2. Image–text dataset generation pipeline and results. Above: An overview of our T2I generation pipeline is presented. Below: Eight generated cases are showcased, with the
original text produced by the text combiner displayed beneath each image.
4.1. Control-video alignment

The control-video alignment measures the degree of alignment be-
tween the user’s input control signals, such as text and images, and
the generated video. Considering that current video generation tasks
primarily involve two types of inputs—a starting image and a text
prompt—we introduce two evaluation metrics in the first version of
our benchmark: image fidelity and text-video alignment. The image
fidelity metric evaluates how similar the generated video frames are
to the image input into the I2V model, especially the first frame. To
assess fidelity, for the first frame of the generated video, we use metrics
such as Mean Squared Error (MSE) and Structural Similarity Index
Measure (SSIM) [46] to calculate the degree of preservation of the first
frame. For all frames of the video, we calculate the similarity of CLIP
(Contrastive Language–Image Pre-training) [6] embeddings between
the input image and each frame of the generated video. We use MSE
(First), SSIM (First), and Image-GenVideo CLIP to represent these three
evaluation metrics, respectively.

Considering that the I2V models we evaluate also take text as
input, we need to assess whether the generated videos are relevant
to the input text. For the generated videos, we use CLIP [6] to cal-
culate the similarity between the input text and the generated video
results. We assume that the videos in the video–text dataset are con-
sistent with the textual descriptions. For the video–text dataset, we use
the keyframes from the reference videos and the generated videos to
compute the CLIP [6] similarity. Considering that the text typically
describes high-level semantics and that the generated videos may not
correspond perfectly with the original videos, we uniformly sample four
keyframes for comparison. We use GenVideo-Text Clip and GenVideo-
RefVideo CLIP (Keyframes) to represent these two evaluation metrics,
respectively.
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4.2. Motion effects

Motion effects primarily evaluate whether the amplitude of the mo-
tion in the generated video is significant and whether the movements
are reasonable. As for the amplitude of the motion, we follow the [21,
22] and use a pretrained optical flow estimation method, RAFT [47],
to calculate the flow score between adjacent frames of the generated
video, with the final average value representing the magnitude of the
motion effects. We use the square average of the predicted values from
adjacent frames to represent the motion dynamics of the video, with
higher values indicating stronger motion effects. Considering that there
are some bad cases in video generation, we set a threshold where the
square average value must be less than 10 to filter out these bad cases.
For the video–text dataset, we have real videos corresponding to the
text. We measure the reasonableness of the generated motion effects
by calculating the similarity between each frame of the generated video
and each frame of the reference video, and then taking the average. For
robustness, we use the image CLIP [6] metric to calculate the similarity
between frames. We use Flow-Square-Mean and GenVideo-RefVideo
CLIP (Corresponding frames) to represent these two evaluation metrics,
respectively.

4.3. Temporal consistency

Temporal consistency measures whether the generated video frames
are consistent and coherent with each other. We calculate the image
CLIP [6] similarity between every two adjacent frames in the gen-
erated video and take the average as an indicator of the temporal
consistency of the generated video. We use GenVideo Clip (Adja-
cent frames) to represent this evaluation metric. In addition, we also
use GenVideo-RefVideo (Corresponding frames) from Section 4.2 to
represent temporal consistency.
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Table 2
Quantitative analysis for different Image-to-Video algorithms. An upward arrow indicates that higher values are better, while a downward arrow
means lower values are preferable.
Dimensions Metrics VideoCrafter [25] I2VGen-XL [26] SVD [28] Pika [9] Gen2 [10]

Control-video
alignment

MSE (First) ↓ 3929.65 4491.90 640.75 155.30 235.53
SSIM (First) ↑ 0.300 0.354 0.612 0.800 0.803
Image-GenVideo Clip ↑ 0.830 0.832 0.919 0.930 0.939
GenVideo-Text Clip ↑ 0.23 0.24 – 0.271 0.270
GenVideo-RefVideo CliP (Keyframes) ↑ 0.763 0.764 – 0.824 0.820

Motion
effects

Flow-Square-Mean 1.24 1.80 2.52 0.281 1.18
GenVideo-RefVideo CliP (Corresponding frames) ↑ 0.764 0.764 0.796 0.823 0.818

Temporal
consistency

GenVideo Clip (Adjacent frames) ↑ 0.980 0.971 0.974 0.996 0.995
GenVideo-RefVideo CliP (Corresponding frames) ↑ 0.764 0.764 0.796 0.823 0.818

Video
quality

Frame Count ↑ 16 32 25 72 96
DOVER ↑ 0.518 0.510 0.623 0.715 0.775
GenVideo-RefVideo SSIM ↑ 0.367 0.304 0.507 0.560 0.504
4.4. Video quality

Video quality is a relatively subjective dimension, measuring the
verall quality of video production. We first use the number of frames
enerated by videos to gauge the ability of different algorithms to
enerate long videos. We utilize disentangled objective video quality
valuator (DOVER) [48], a no-reference video quality assessment met-
ic. DOVER [48] comprehensively rates videos from both aesthetic and
echnical perspectives, using the collected DIVIDE-3k dataset. Experi-
ental results show that the DOVER [48] metric highly correlates with
uman opinions in both aesthetic and technical perspectives. For the
OVER evaluation metric, we calculate it using all frames generated by

heir respective algorithms. For the video–text dataset, since we have
eference videos available, we measure the spatial structural similarity
f the generated videos to the reference videos by calculating the
SIM (Structural Similarity Index Measure) between the corresponding
rames of the generated and reference videos. We denote this evaluation
etric as GenVideo-RefVideo SSIM.

. Experiments

.1. Evaluated models

.1.1. Open-source project
ideoCrafter. VideoCrafter [25] is an open-source video generation

and editing toolbox for crafting video content. It supports the gener-
ation of videos from images. We use a guidance scale of 12 and ddim
steps of 25. For videos with an aspect ratio of 1, we employ a resolution
of 512 * 512, while for videos with an aspect ratio of 0.5625, we use
a resolution of 512 * 320, and then uniformly resize to align with the
resolutions used by other methods.

I2vgen-XL. I2VGen-XL [26] is an open-source video synthesis codebase
developed by Tongyi Lab at Alibaba Group, which features state-of-the-
art video generative models. We use a guide scale of 9 and infer with
fp16 precision.

Stable video diffusion. Stable Video Diffusion (SVD) [28] is an expan-
sion of the model based on Image Stable Diffusion [39]. We use the
25-frame version of Stable Video Diffusion. It is worth noting that the
current model does not support text input temporarily, hence we did
not calculate the text-video alignment for this model.

5.1.2. Closed-source project
Pika. Pika [9] is a technology company revolutionizing video creation
by making it effortless and accessible for everyone. In just six months,
Pika has built a community of half a million users producing millions of
videos per week. The company recently launched Pika 1.0, a significant
upgrade featuring a new AI model that supports various video styles,
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including 3D animation, anime, cartoons, and cinematic, coupled with
an improved web experience. Considering that Pika [9] does not have
open-source code, we manually tested 60 cases on the Discord platform
(30 from the WebVid dataset and 30 from our own generated dataset).
We used the default parameters of motion set to 1 and the guidance
scale set to 12.

Gen2. Gen2 [10] is a multimodal AI system that can generate novel
videos with text, images, or video clips. We used the default motion
setting of 5 from the demo and did not employ the camera movement
parameter to generate videos.

5.2. Comprehensive results analysis

Table 2 presents the evaluation of five state-of-the-art (SOTA) I2V
algorithms across five dimensions: image fidelity, motion effects, text-
video alignment, temporal consistency, and video quality. We present
the qualitative results of different I2V algorithms in Fig. 3. We find that
VideoCrafter and I2VGen-xl struggle to preserve the original image.
I2VGen-xl maintains relatively good semantics, but the spatial structure
of the initial image is mostly not preserved. VideoCrafter can approx-
imate the spatial structure of the initial image to some extent, but
the preservation of details is generally mediocre. SVD, Pika, and Gen2
preserve the original image quite well, with Gen2 achieving the best
preservation effect. As for the aspect of Text-video alignment, Gen2
and Pika are nearly on par with each other and both outperform the
open-source algorithms. However, existing algorithms and evaluation
metrics do not effectively capture fine-grained textual changes. In
terms of motion effects, VideoCrafter tends to remain static. I2VGen-xl
and SVD lean towards camera movement rather than subject motion,
which is why they score high on the flow-square-mean but obtain
low GenVideo-RefVideo Clip scores. Pika tends to favor both local and
subject movement, thus achieving high GenVideo-RefVideo Clip scores
and low flow-square-mean scores. Gen2, on the other hand, favors
movement in both the foreground and background, but the background
movement is not as pronounced as with SVD.

In the aspect of temporal Consistency, VideoCrafter, due to its
poorer motion effects, does not perform poorly in terms of temporal
consistency. Considering that SVD has stronger motion effects and still
maintains good temporal consistency, it has achieved the best perfor-
mance among open-source I2V algorithms. Similarly, Pika, because of
its tendency for local movement, has achieved the highest score in
overall temporal consistency. As for video quality, Gen2 is capable of
generating the longest videos of up to 96 frames, with the highest levels
of aesthetics and clarity. Pika, due to its tendency for local movement,
has achieved the highest similarity in the GenVideo-RefVideo SSIM
metric. SVD benefits from the priors of the image stable diffusion
model, resulting in videos that reach the best performance among open-
source I2V algorithms. In summary, the two closed-source projects, Pika
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Fig. 3. We present three I2V cases utilizing five state-of-the-art algorithms, among which VideoCrafter, I2VGen-XL, and SVD are open-source research, while Pika and Gen2 are
closed-source project. For additional videos, please refer to our supplementary materials.
and Gen2, achieved the most optimal generation effects, capable of
producing long videos. Pika excels in generating local motion, while
Gen2 tends to prefer global motion. SVD achieved the best results
among the open-source options, demonstrating outcomes that were
close to those of the two closed-source projects.

5.3. User study

To validate whether the proposed evaluation standards are aligned
with human preference, we randomly sampled 30 generated results
from each of the five methods and tallied the best algorithm outcomes
in each of the four dimensions (Image Fidelity, Motion Effects, Tempo-
ral Consistency, Video Quality) through human voting. We have tallied
the votes of a total of 42 individuals, with the specific results presented
in Fig. 4. We discovered that Gen2’s performance is on par with Pika,
both achieving optimal results. Pika excelled in temporal consistency
and motion effects, while Gen2 came out on top in terms of image
40
fidelity and video quality. SVD showed a balanced performance across
all areas, securing the best results among the open-source options. We
found that the users’ votes are relatively consistent with the results
evaluated by our assessment criteria.

5.4. Findings and discussions

Despite the notable achievements of I2V and the rapid updates
of new algorithms, there is still significant room for improvement in
existing solutions. Utilizing AIGCBench, we have conducted a detailed
survey and evaluation of the five most advanced I2V algorithms from
both academia and industry. The comprehensive analysis facilitated by
AIGCBench has led us to make the following discoveries:

Lacking fine-grained control. AIGCBench’s testing methodology has re-
vealed that current I2V tasks often fall short in allowing users to
generate content with precise textual descriptions. The benchmark’s



BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100152F. Fan et al.

t
c
c
o
a
n
g

V
m
t
i
l
o
i
M

D

a
U

Fig. 4. We tallied the votes of 42 individuals, evaluating five state-of-the-art I2V
algorithms from four aspects. The numerical values in the radar chart represent the
proportion of users who voted for each algorithm as being the best performer in that
aspect.

diverse datasets and nuanced evaluation metrics have shown that while
solutions based on CLIP [6] and large language models [49] are a step
in the right direction, they are not fully capturing the fine-grained de-
tails that yield a high degree of control over video content. AIGCBench’s
detailed feedback on these algorithms has underscored the need for a
model that is specifically trained for video contexts to improve text-
video alignment and to provide users with that control. Our findings
suggest that integrating AIGCBench’s evaluation criteria into the devel-
opment process could lead to algorithms that better align with human
preferences.

Long video generation. The current I2V algorithms can generate up to
96 frames in a single inference, which is far from satisfying users’ needs
for longer video production. Considering that video scenes typically
have a frame rate of 24 fps, the basic generation capability of main-
stream algorithms is around 3 s. There are mainly two approaches
to address this limitation. One is to use multiple inferences, where
most adopt a coarse-to-fine generation pipeline—first generating di-
luted keyframes, then densely producing all frames. The challenge of
this method lies in maintaining temporal consistency across multiple in-
ferences. The other approach is to use multi-GPU training and inference
with a single model, which currently struggles to guarantee satisfactory
results. How to generate longer videos should be an urgent issue for the
AI-generated content (AIGC) community to address next.

Inference speed. Currently, the speed of video generation is relatively
slow. For a 3-second video, mainstream algorithms generally require
about 1 min on a V100 graphics card. Considering that video generation
scenarios are based on diffusion models [1–5], there are currently
two main routes for speeding up the process. One is to reduce the
dimensionality of the video in the latent space. For example, Stable
Diffusion [28] maps the video into a latent space, roughly decreasing
the size of the video by about 8 times, with only a minimal loss of video
quality. The other is to improve the inference speed of the diffusion
model, which is also a hot research topic in the AIGC community.

In light of these findings from AIGCBench, it becomes evident that
he benchmark not only aids in the identification of current short-
omings but also offers a structure for addressing them. AIGCBench’s
omprehensive framework for evaluation, encompassing a rich variety
f datasets and multi-dimensional metrics, provides a roadmap for
dvancing the state of I2V algorithms. By exposing algorithmic weak-
esses and offering a standardized platform for comparison, AIGCBench
uides researchers towards developing solutions that overcome the
41
challenges of fine-grained control, video length, and inference speed.
The insights gained from AIGCBench evaluations are instrumental
in pushing the boundaries of what is possible in the field of I2V
generation.

6. Conclusion

In this work, we have introduced AIGCBench, a comprehensive and
scalable benchmark tailored for the evaluation of Image-to-Video (I2V)
generation tasks. AIGCBench provides a much-needed framework to
assess the performance of various state-of-the-art I2V algorithms under
equivalent evaluation conditions. Our benchmark stands out by incor-
porating a diverse set of real-world video–text and image–text datasets,
as well as a novel dataset produced through our proprietary generation
pipeline. We have also proposed a novel set of evaluation metrics that
span across four critical dimensions: control-video alignment, motion
effects, temporal consistency, and video quality. These metrics have
been validated against human judgment to ensure their alignment with
human preferences. Our extensive evaluation of leading I2V models has
not only highlighted their strengths and weaknesses but also unearthed
significant insights that will guide the future development of the I2V
domain.

AIGCBench marks a foundational step in benchmarking for AIGC,
pushing the frontier of I2V technology evaluation. By offering a scalable
and precise assessment methodology, we set the stage for continu-
ous enhancements and innovations in this rapidly evolving research
field. As we progress, we plan to expand AIGCBench to encompass
a broader range of video generation tasks, creating a unified and
extensive benchmark that reflects the multifaceted nature of AIGC.

7. Limitations and future work

Due to the slow inference speed of video generation by I2V models
and the fact that some works are not open-sourced (e.g., Pika [9],
Gen2 [10]), our benchmark only evaluated 3928 test cases. Considering
the complexity of video generation tasks, we believe this number is
insufficient. Furthermore, given the lack of fine-grained video recog-
nition models currently available, our evaluation system is unable to
accurately judge whether the direction of object movement in the gen-
erated videos matches the text description. For instance, whether water
flows from left to right or from right to left, we are currently unable
to determine through automated evaluation metrics if the direction of
the water flow in the generated video is consistent with the textual
description.

Moving forward, we will integrate tasks related to T2V and new
video generation tasks into a large-scale video generation benchmark.
Additionally, to address the issues mentioned above, we may train a
fine-grained video representation model aligned with text, which will
be utilized for fine-grained alignment of video and text scenes.
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This paper explores the paradigm of leveraging ChatGPT as a benchmark tool for theory prototyping in conceptual 

research. Specifically, we conducted two experimental studies using the classical technology acceptance model 

(TAM) to demonstrate and evaluate ChatGPT’s capability of comprehending theoretical concepts, discriminating 

between constructs, and generating meaningful responses. Results of the two studies indicate that ChatGPT can 

generate responses aligned with the TAM theory and constructs. Key metrics including the factors loading, internal 

consistency reliability, and convergence reliability of the measurement model surpass the minimum threshold, 

thus confirming the validity of TAM constructs. Moreover, supported hypotheses provide an evidence for the 

nomological validity of TAM constructs. However, both of the two studies show a high Heterotrait–Monotrait 

ratio of correlations (HTMT) among TAM constructs, suggesting a concern about discriminant validity. Further- 

more, high duplicated response rates were identified and potential biases regarding gender, usage experiences, 

perceived usefulness, and behavioural intention were revealed in ChatGPT-generated samples. Therefore, it calls 

for additional efforts in LLM to address performance metrics related to duplicated responses, the strength of 

discriminant validity, the impact of prompt design, and the generalizability of findings across contexts. 
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ntroduction 

ChatGPT (Generative Pretrained Transformer), powered by the gen-
rative large language model, possesses remarkable capabilities in gen-
rating human-like responses and engaging in naturalistic conversations
cross diverse topics. It is a state-of-the-art natural language processing
odel developed by OpenAI, trained on an extensive dataset. ChatGPT
as been leveraged for a wide range of applications, ranging from aid-
ng in creative writing and content generation to providing customer
upport and answering user queries [ 42 , 43 ]. 

Recent works have focused on profiling ChatGPT to explore its gen-
er, personality, and political inclinations [ 34 , 39 , 49 ]. By prompting
hatGPT with specific instructions, researchers have investigated how
hese factors influence the model’s responses, e.g., whether ChatGPT ex-
ibits gender or political biases in its generated content and perception.
rompting ChatGPT with 630 political statements from voting advice
pplications and a political compass test, Hartmann et al. [20] uncov-
red ChatGPT’s pro-environmental, left-libertarian ideology. In a study
y Wong and Kim [49] , 501 participants were recruited from Prolific
o examine biases in perceiving ChatGPT’s gender, where participants
atched videos showcasing ChatGPT’s capabilities and then provided
ender ratings using an 8-point scale or a binary choice. Their results
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evealed a consistent tendency to perceive ChatGPT as more male than
emale, regardless of the response scale. These studies uncovered poten-
ial biases in AI systems, raised awareness about societal impacts of such
iases, and developed methods to mitigate them [ 5 , 35 ]. Understanding
he capabilities and limitations of ChatGPT in terms of profiling is cru-
ial for responsibly deploying large-scale AI systems in real-world ap-
lications. By scrutinizing ChatGPT’s responses, researchers can devote
o developing more robust, inclusive, and unbiased AI technologies that
an positively contribute to various domains and empower users with
eliable and fair interactions [25] . 

Profiling ChatGPT assumes that ChatGPT represents a single user
ith stochastic attitudes and behaviours [15] , thereby limiting its
readth of applications. In effect, it is possible to induce ChatGPT to sim-
late a population of different individual profiles, which significantly
xpands its capabilities. Jiang et al. [22] devised a method called chain
rompting, which enables the language model to exhibit specific person-
lities and diverse behaviours in a controlled manner. This approach
llows ChatGPT to cater to a broader range of user needs and pref-
rences by considering different communication styles, cultural back-
rounds, and domain-specific knowledge. Individual profiles enable per-
onalized recommendations and guidance by capturing the unique char-
cteristics of each simulated user. With ChatGPT capable of simulating a
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opulation of individual profiles, it opens a potential avenue in concep-
ual understanding and theory prototyping which have not been thor-
ughly explored, to the best of our knowledge. By employing ChatGPT
s a platform for prototyping a theory and evaluating its comprehension
f related concepts, researchers can assess its ability to grasp and manip-
late abstract ideas, as well as the interconnections between concepts. 

The purpose of this study is twofold. First, it aims to explore the
se of ChatGPT to respond to conceptual theories and assess its ability
f comprehending constructs. Second, this study seeks to evaluate the
alidity of conceptual theories by examining relationships among dif-
erent constructs with participants and survey responses generated by
hatGPT. The research questions are: 

(1) How well does ChatGPT process various constructs within the
context of provided conceptual theories? 

(2) How valid are relationships between different constructs with
survey responses generated by ChatGPT when being evaluated
through a structural equation model? 

This study has several potential contributions. First, it addresses a de-
ign shortcoming between engineering science prototyping and concep-
ual development in social science. While engineering commonly utilizes
esign tools for product prototyping, the realm of social science tradi-
ionally relied heavily on extensive human participation for conceptual
heory development. The advent of Large Language Models (LLMs) like
hatGPT transforms this landscape by providing a design platform anal-
gous to an engineering design tool. Software and system designers can
ntegrate LLMs, such as ChatGPT, with other simulation tools for theo-
etical development. This would enable a novel and efficient approach
o theory design in social science, offering a platform where human in-
ut and machine-generated insights collaborate seamlessly. The result is
 more cohesive and comprehensive research methodology that amalga-
ates the strengths of human knowledge with the analytical capabilities

f LLMs, fostering a dynamic and iterative process in social science re-
earch. 

Second, researchers can follow the methodology used in this study
o assess their theories’ understanding, validate theoretical frameworks,
nd iteratively refine their theories through the analysis of responses
enerated by ChatGPT. This not only aids in enhancing the robustness of
heoretical foundations but also provides a valuable tool for continuous
mprovement. 

Third, the introduced research paradigm facilitates rapid explo-
ation, fostering collaboration, and aiding in hypothesis generation. The
nteractive nature of ChatGPT allows for the swift identification of errors
r inconsistencies, enabling researchers to promptly refine their theo-
ies. This accelerates the research prototyping process, saving valuable
ime and resources. 

Lastly, the scalability of ChatGPT permits the testing of theories
cross a broad spectrum of contexts. This scalability, combined with in-
eractive capabilities, promotes efficient theory development by allow-
ng researchers to explore diverse scenarios and adapt their hypotheses
ccordingly. 

In essence, the contributions of this study put forward the idea, draw-
ng on two studies, that Large Language Models (LLMs) potentially play
n important role in enhancing the efficiency, collaboration, and adapt-
bility of research processes such as theory development in the fields
f business, education, and social science using an interdisciplinary
aradigm [50] which might not be possible in the past. 

elated work 

arge language model (LLM) - ChatGPT 

ChatGPT has attracted interest in its potential for simulating human-
ike characteristics and generating perception responses. While past re-
earch solely focusing on using ChatGPT for prototyping theories is lim-
45
ted, we present studies that revealed connections that may support its
elevance to theory prototyping. 

Simulation of sample profile: An important aspect of prototyping
heories is the ability to generate sample profiles based on a specific
opulation. Madelyn [29] reported LLM such as GPT-3 can generate di-
erse data points and maintain relationships between columns, making
t a useful platform for quickly generating data for testing proof of con-
epts. It can provide statistical relationships when explicitly requested.
owever, its limitations include the uncertainty of accurately modeling

he complexities of real-world data. 
Theory of Mind (ToM) Proficiency: Kosinski [26] demonstrated a

igh success rate of using ChatGPT in Theory of Mind (ToM) tasks. Chat-
PT’s ability to comprehend and respond to human intentions, beliefs,
nd emotions signifies its potential in prototyping theories related to so-
ial cognition and understanding others. Utilizing ChatGPT’s ToM pro-
ciency, researchers can explore and prototype theories on empathy,
ocial interaction, and psychological processes. The study by Brunet-
ouet et al. [4] highlights the ability of ChatGPT to infer intentions,

rack beliefs, and respond to questions about mental states. These ca-
abilities can be leveraged in the context of theory prototyping, where
esearchers seek to simulate and examine theoretical constructs related
o human cognition, psychology, and social interaction. 

ChatGPT Personalities and Psychologies: Machine personalities and
sychologies associated with language models have been studied by G.
iang et al. [22] . Their study suggests that ChatGPT’s responses and in-
eraction patterns are influenced by its machine personality characteris-
ics. Personality priming ChatGPT into various pseudo personalities and
ehaviour tendencies using a psychological prompt, such as the human-
ike moral judgments [11] , could transform ChatGPT as participants in
 survey and inform the prototyping of theories related to personality
sychology, human-computer interaction, and user experiences. Current
esearch focuses on utilizing ChatGPT for various individualized assess-
ents, leaving a research gap in assessing its capability of understanding

oncepts and constructs, and prototyping theories. 

echnology acceptance model in education 

The integration of new technologies into learning and teaching has
ecome an area of great interest in the field of education. Digital tech-
ologies are a vital tool in achieving the objective of ensuring inclusive
nd equitable access for all [19] . As it is crucial to understand why
sers adopt or reject specific technologies in educational settings, re-
earch on technology acceptance in teaching and learning contexts has
ained popularity. The Technology Acceptance Model (TAM) has gained
rominence as a scientific paradigm for examining the acceptance of
earning technology. TAM originated from the Theory of Reasoned Ac-
ion (TRA) [2] and has evolved into a key model for understanding the
redictors of human behaviours regarding technology acceptance. Davis
9] proposed the TAM framework that emphasizes factors such as per-
eived ease of use (PEOU), perceived usefulness (PU), attitude (AT) and
ehavioural intention (BI) towards using technology, which influences
se motivation. It has demonstrated its applicability across a wide range
f technologies and user groups. 

In the realm of technology acceptance literature in education
 16 , 40 ], TAM has been widely utilized by numerous studies expand-
ng upon or applying the original model. Researchers have delved into
ser intentions toward e-learning technology using TAM as well as ad-
itional constructs such as subjective norms, perceived enjoyment, per-
eived compatibility, perceived trust, flow, and perceived social influ-
nce [ 14 , 23,24 ]. Moreover, the applicability of TAM has been explored
n various learning technologies including mobile learning, personal
earning environments (PLEs), learning management systems (LMSs),
nd emerging technologies like virtual reality (VR) and artificial in-
elligence (AI) [17] . Furthermore, the adoption of TAM in educational
esearch highlights its significance in comprehending the factors that
nfluence technology acceptance among students, teachers, and other
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takeholders. These studies contribute to a growing body of knowledge
n the acceptance of learning technology, offering insights for effective
mplementation and utilization in educational contexts. Due to word
imitations, interested readers can refer to Sukack ė [45] and Grani ć and
aranguni ć [17] for a historical review of the technology acceptance
odel. 

easure development and metrics for construct validity 

This study focuses on the notion of construct measurement in scale
evelopment [28] . A construct is a purposefully designed term within
 scientific realm, serving to effectively organize knowledge and guide
esearch endeavours in describing and explaining a particular aspect or
henomenon [31] . Each construct is measured with multiple items and
ould exist at a higher level of abstraction than concepts. In this context,
 concept refers to an abstract idea operationalised through a construct
hat represents a particular attribute or dimension being measured. For
xample, in behavioural research, concepts like perceived usefulness,
ttitude or intention are often assessed using scales comprising multiple
tems or questions [ 9 , 10 ]. 

Measure development processes are essential for ensuring the valid-
ty and reliability of measures used in research and assessment. These
rocesses involve various steps, including defining the construct’s do-
ain, generating items, specifying dimensions, and investigating dimen-

ionality [32] . According to Peter and Churchill [32] , adhering to care-
ul measure development processes leads to higher construct validity,
inimizing chance and method variance for more reliable and valid
easures. ChatGPT can facilitate the measure development process by

everaging its language generation and understanding abilities to assist
n generating and refining construct prototypes, thereby enhancing the
verall reliability of measures. 

Internal consistency reliability is a measure of the consistency or ho-
ogeneity of items within a construct [18] . It assesses the extent to
hich the items within the measure are measuring the same underly-

ng construct. In behavioural research, internal consistency reliability
s commonly used when a scale or questionnaire consists of multiple
tems or questions that are intended to measure a particular construct.
he aim is to determine if these items are consistently measuring the
ame construct or if they are capturing different aspects. There are sev-
ral commonly used statistical techniques for assessing internal consis-
ency reliability, such as Cronbach’s alpha [8] and Composite reliability
48] . These measures range from 0.0 to 1.0, with higher values indicat-
ng greater internal consistency reliability. A value closer to 1 indicates
hat the items in the scale are highly correlated and are consistently mea-
uring the same construct. Generally, the accepted standard for both of
hese indices is 0.70 or above [18] . 

Convergent validity is the extent to which all indicators are related
o the constructs they are meant to measure and are not related directly
o constructs they are not intended to measure [7] . The metric used
or evaluating a construct’s convergent validity is the average variance
xtracted (AVE) for all indicators on each construct. AVE values above
.5 or 0.6 are often considered indicative of good convergence, although
he speific threshold can vary depending on the research field or context.

Discriminant validity, on the other hand, checks for the uniqueness
f a measure and its independence from other variables. It is indicated
y predictably low correlations between the measure of interest and
ther measures that are not supposed to measure the same variable or
oncept. Low correlations with unrelated measures indicate discrimi-
ant validity. Unlike reliability, discriminant validity is not enhanced
y high reliability. 

When assessing discriminant validity, the common Fornell-Larcker
FL) approach [12] and the relatively new Heterotrait-Monotrait ratio
f correlations (HTMT) approach [21] can complement each other [13] .
he FL approach relies on comparing the square roots of the average
ariance extracted (AVE) with the correlations between constructs. If
he AVE square roots are greater than the corresponding inter-construct
46
orrelations, discriminant validity is established. On the other hand, the
TMT approach offers two ways to assess discriminant validity: as a
riterion and as a statistical test [21] . Using HTMT as a criterion in-
olves comparing its values to certain threshold values, such as 0.85 or
.90. If the HTMT value exceeds these thresholds, it indicates potential
ssues with discriminant validity. The statistical test entails examining
he null hypothesis (H0: HTMT ≥ 1) against the alternative hypothesis
H1: HTMT < 1). If the confidence interval encompasses the value of
ne, it suggests the presence of discriminant validity concerns. 

Both the FL approach and the HTMT approach provide researchers
ith valuable metrics to assess the distinctiveness of constructs in a mea-

urement model. By utilizing multiple approaches, researchers can en-
ance the rigour and comprehensiveness of their evaluations of discrim-
nant validity. 

Nomological validity examines the degree to which a measure or
onstruct behaves following established theoretical relationships and
xpectations. It involves assessing whether a measure demonstrates pat-
erns of associations with other variables that are theoretically predicted
r expected based on existing knowledge. 

Measure development processes are crucial for establishing valid and
eliable measures. Reliability, convergent validity, discriminant valid-
ty, and nomological validity are important metrics of measure eval-
ation: higher reliability generally leads to higher consistency, while
onvergent validity provides evidence of systematic variance; discrim-
nant validity ensures the uniqueness of the measure, and nomological
alidity examines whether the measure behaves as expected. Appendix
 provides a glossary of terms on theory and construct validation. 

esearch methodology 

The methodology in this study involves a practical approach for
everaging ChatGPT in data generation, hypothesis evaluation, and met-
ic assessment. We focus on designing prompts to guide ChatGPT in gen-
rating relevant data, supported by essential background information.
he generated data undergoes a thorough evaluation of hypotheses to
ssess the model’s fitness in addressing research inquiries. For quanti-
ying and analysing performance metrics, we employ a combination of
artial Least Squares (PLS) and SPSS (Statistical Package for the Social
ciences). This framework ensures a robust evaluation of the generated
esponses, forming the basis for the study’s findings and conclusions. 

rompt design 

In ChatGPT, different prompt designs such as reframing can be
tilized to achieve specific goals [ 30 , 51 ]. Instructional prompts offer
xplicit instructions, guiding ChatGPT’s behaviours of generating re-
ponses aligned with a particular objective or style; contextual prompts
rovide background information, setting the conversation’s context for
etter understanding; Socratic prompts use a questioning approach, en-
ouraging critical thinking and exploring different perspectives [6] ; seed
rompts offer a starting point for ChatGPT to continue the conversa-
ion; evaluation prompts ask ChatGPT to assess given responses; cre-
tive prompts stimulate imaginative outputs like storytelling; and con-
itional prompts introduce specific constraints for controlled conversa-
ions. Choosing the appropriate prompt designs depends on the desired
utcomes and the nature of the interaction with ChatGPT. 

For the reported study, we used a mix of prompt designs to elicit
esponses from ChatGPT for generating participants’ responses for the-
ry prototyping, as shown in Fig. 1 . The prompt design process, differs
rom other frameworks [27] , as it necessitates GPT to act as human
articipants. Therefore, the prompt design framework needs to ensure
hat GPT comprehends the entire experiment requirements. The prompt
imed to create a structured and coherent conversation to elicit mean-
ngful formatted responses from ChatGPT. An instructional prompt was
sed to provide the experiment scenario and clear instructions for an-
wering survey questions. A combination of contextual prompts and in-
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Fig. 1. The prompt design process. 

Fig. 2. Conceptual model in Study 1. 

s  

t  

t  

h  

d  

w  

i  

p

B

 

e  

s  

F  

p  

G  

i  

p  

t  

c  

B  

t  

a  

p  

i  

a

 

 

 

 

 

 

 

 

D

 

s  

T  

j
 

A  

t  

p  

u  

d  

[  

a  
tructional prompts was employed to describe the sample profile and au-
henticate understanding. The authentication prompt required ChatGPT
o explain its reasoning before providing an answer. This process en-
anced ChatGPT’s reliability and overall performance by ensuring it un-
erstood the request [1] . The survey questions or conversation prompts
ere listed in sequence, and numeric codes were assigned to column

tems. Instructions were given for formatting the survey response out-
ut. 

ackground of study 1 

Study 1 aims at creating a baseline model by leveraging the well-
stablished and mature Technology Acceptance Model (TAM) [10] for
ubsequent comparison. The proposed conceptual model depicted in
ig. 2 includes the impact of computer playfulness (CPLAY) on students’
erceived usefulness (PU) and perceived ease of use (PEOU) of Chat-
PT, and how these factors collectively influence students’ behavioural
47
ntentions (BI) towards adopting ChatGPT as a learning assistant. Com-
uter playfulness (CPLAY) refers to the extent to which an individual’s
endency to interact spontaneously, inventively, and imaginatively with
omputers [47] . It is an antecedent construct in the TAM3 model [46] .
y incorporating the foundation Technology Acceptance Model (TAM),
his study can replicate the original TAM and simultaneously validate
 conceptual model over CPLAY, PU, PEOU, and BI and verify the hy-
otheses between these factors driving students’ acceptance and adopt-
ng ChatGPT in a new learning context. The hypotheses in Study 1 were
dapted from Davis [10] and Venkatesh and Bala [46] are as follows: 

H1: Computer playfulness (CPLAY) positively influences students’
perceived usefulness (PU) of ChatGPT as a learning assistant. 

H2: Computer playfulness (CPLAY) positively influences students’
perceived ease of use (PEOU) of ChatGPT as a learning assistant.

H3: Perceived usefulness (PU) positively influences students’ be-
havioural intentions (BI) towards using ChatGPT as a learning
assistant. 

H4: Perceived ease of use (PEOU) positively influences students’ be-
havioural intentions (BI) towards using ChatGPT as a learning
assistant. 

H5: Perceived ease of use (PEOU) positively influences students’ per-
ceived usefulness (PU) of ChatGPT as a learning assistant. 

ata collection for study 1 

In Study 1, the data collection involved utilizing ChatGPT to con-
truct twenty student samples based on a student population profile.
he profile included equal representation of gender with different ma-

ors, ages, years of study, and ChatGPT experience. 
To gather responses, we prompted ChatGPT with the Technology

cceptance Model (TAM) questionnaires. By employing the TAM ques-
ionnaires, the intention is to gauge how ChatGPT’s inner model com-
rehends the concept of perceived usefulness (PU), perceived ease of
se (PEOU) and behavioural intention (BI) among the generated stu-
ent samples. An additional construct of computer playfulness (CPLAY)
37] was included to assess its ability to discriminate against hedonic
nd utilitarian constructs. The scale used in this study ranged from 1
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Fig. 3. Conceptual model in Study 1. 
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Table 1 

Demographics summary of samples in Study 1. 

Measure Item N (295) % 

Gender Male 130 44.1 % 

Female 164 55.6 % 

No-binary 1 0.3 % 

Age 18 7 2.4 % 

19 57 19.3 % 

20 76 25.8 % 

21 61 20.7 % 

22 63 21.4 % 

23 31 10.5 % 

Year 1 74 25.1 % 

2 78 26.4 % 

3 76 25.8 % 

4 67 22.7 % 

ChatGPT Experience 0 48 16.3 % 

1 74 25.1 % 

2 64 21.7 % 

3 65 22.0 % 

4 44 14.9 % 
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o 7, with 1 representing "Highly Unlikely," 2 representing "Unlikely,"
 representing "Somewhat Unlikely," 4 representing "Neutral," 5 repre-
enting "Somewhat Likely," 6 representing "Likely," and 7 representing
Highly Likely." 

To ensure the robustness of the data collection, the process was re-
eated twenty times, generating a total of 400 samples. Each time Chat-
PT generated twenty rows of responses based on a random set of stu-
ent profiles. This methodology enabled ChatGPT to generate a suffi-
ient sample size for conducting a structural equation analysis on how
hatGPT’s inner model perceived the Technology Acceptance Model
heory. The prompt is available in Appendix A. The wordings of the
AM constructs were modified from Davis [10] to align with the con-
ext of using ChatGPT as a learning assistant. 

ackground of study 2 

The objective of Study 2 is to compare an existing TAM with differ-
nt contexts and preferably to include a set of new constructs to assess
hatGPT’s capabilities. To achieve this goal, we replicated the study by
arrett et al. [3] . Their study was based on user acceptance of a high-

mmersion virtual reality (VR) learning environment for English para-
raph writing. A sample of 134 undergraduate students participated in
heir study, using a virtual reality system and a virtual reality learning
rogram. A partial least squares structural equation modeling (PLS-SEM)
nalysis was employed to test the extended VR technology acceptance
odel, which was the same data analysis method used in our study.
heir conceptual model as shown in Fig. 3 included exogenous vari-
bles such as Imagination (IMAG), Immersion (IMRN), and Interaction
INTR), with Perceived Ease of Use (PEU) and Perceived Usefulness (PU)
ediating Intention to Use (ITU). The hypotheses in Study 2 follow ex-

ctly from Barrett et al. [3] are as follows: 
H1: PU will have a strong, positive, and significant effect on learners’

ntention towards using the VR system. 
H2: PEU will have a weak, positive, and nonsignificant effect on

earners’ intention towards using the high-immersion VR system. 
H3: Immersion will be a strong, positive, and significant predictor

or PU. 
H4: Immersion will be a positive and significant predictor for PEU. 
H5: Interaction will be a strong, positive, and significant determiner

or PEU. 
H6: Interaction will be a positive and non-significant predictor for

U. 
H7: Imagination will exhibit a medium to large, positive, and signif-

cant effect on PU. 
H8: Imagination will exhibit a medium, positive, and significant ef-

ect on PEU. 
48
ata collection for study 2 

In Study 2, the data collection method was identical to that in Study
. It involved utilizing ChatGPT to create twenty student samples based
n a defined student population profile. The profile included variables
uch as age, gender, majors, English ability, and AR experience. 

We prompted ChatGPT with both AR and Technology Acceptance
odel (TAM) questionnaires. The inclusion of the AR questionnaires

imed to assess how ChatGPT’s inner model was able to comprehend
he concepts of immersion (IMRM), imagination (IMGM), and interac-
ion (INTR), which differed from the constructs of perceived usefulness
PU), perceived ease of use (PEU), and behavioural intention (BI) in the
AM questionnaire. By examining these responses, we can assess how
hatGPT’s understanding of AR and its alignment with the theory of
echnology acceptance model. 

Similarly, this study utilized a 7-point Likert scale, where a rating
f 1 indicated ’strongly disagree’, 2 represented ’disagree’, 3 denoted

somewhat disagree’, 4 indicated ’neither agree nor disagree’, 5 repre-
ented ’somewhat agree’, 6 denoted ’agree’, and a rating of 7 indicated
strongly agree’. 

Similar to study 1, the process was repeated twenty times, resulting
n a total of 400 samples. Each iteration involved ChatGPT generating
wenty rows of responses based on a randomly generated student profile.
ppendix B depicts the specific prompt used in this study. The constructs
nd background information were adopted directly from Barrett et al.
3] to make meaningful comparisons. 

esults 

tudy 1 

Data analysis was conducted using SmartPLS4 [36] and SPSS 26
44] . Table 1 illustrates the demographic distribution of samples in
tudy 1. During the sample generation process, the likelihood of Chat-
PT’s generating samples that deviate from the prescribed criteria was

ow. Note that an instance occurred in Study 1 where ChatGPT generated
 sample with non-binary gender. After eliminating duplicate samples,
tudy 1 comprised 295 distinct data points, exhibiting an uneven gen-
er distribution with 55.6 % females. Most of the generated participants
ere in the age range of 20 to 22, and the distribution of their years in
niversity was fairly uniform. Participants’ experiences with ChatGPT
aried, ranging from a minimum rating of 0 (16.3 %) to a maximum
ating of 4 (14.9 %), simulating a diverse range of users. 
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Table 2 

Items loadings and constructs reliability in Study 1. 

Construct Loading 

Cronbach’s 

alpha 

Composite reliability 

(rho_a) 

Composite reliability 

(rho_c) 

Average variance 

extracted (AVE) 

BI1 0.982 0.960 0.965 0.98 0.961 

BI2 0.979 

CPLAY1 0.947 0.959 0.96 0.97 0.891 

CPLAY2 0.946 

CPLAY3 0.927 

CPLAY4 0.955 

PEOU1 0.906 0.968 0.971 0.974 0.862 

PEOU2 0.941 

PEOU3 0.929 

PEOU4 0.933 

PEOU5 0.926 

PEOU6 0.937 

PU1 0.958 0.973 0.973 0.978 0.88 

PU2 0.930 

PU3 0.933 

PU4 0.941 

PU5 0.918 

8PU6 0.947 

Table 3 

The Heterotrait–Monotrait ratio of correlations (HTMT) in Study 1. 

Construct BI CPLAY PEOU 

CPLAY 0.846 

PEOU 0.769 0.86 

PU 0.93 0.889 0.861 
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Fig. 4. Structure model in Study 1. 
∗ p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗ p < 0.001 
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Table 2 illustrates the loading of items and construct reliability in
tudy 1. The loading and reliability values consistently exceeded the
cceptable threshold of 0.7, indicating strong convergence validity [18] .
actor loading values in Study 1 were high, suggesting that the selected
tems effectively represented and measured the underlying constructs.
ronbach’s alpha values for constructs in Study 1 showed strong internal
onsistency: Behavioral Intention (BI) at 0.960, Computer Playfulness
CPLAY) at 0.959, Perceived Ease of Use (PEOU) at 0.968, and Perceived
sefulness (PU) at 0.973. These scores demonstrate the reliability of the
easurement scales for each construct. 

In this study, we utilized the Heterotrait–Monotrait ratio of corre-
ations (HTMT) to evaluate discriminant validity among the primary
onstructs. Table 3 displays the HTMT values for the relationships be-
ween Behavioral Intention (BI), Computer Playfulness (CPLAY), Per-
eived Ease of Use (PEOU), and Perceived Usefulness (PU). While most
TMT values hover around the threshold of 0.85, the correlation be-

ween Perceived Usefulness (PU) and Behavioral Intention (BI) produced
n HTMT value of 0.93, slightly exceeding the recommended threshold.
his finding prompts a potential need for further refinement of the mea-
urement model to ensure robust discriminant validity. 

Table 4 and Fig. 4 display the structural path coefficients and over-
ll structural model from the SmartPLS analysis in Study 1. The coeffi-
ients are presented for the original sample (O), sample mean (M), and
tandard deviation (STDEV), along with T statistics (|O/STDEV|) and P
alues. The results indicated positive relationships between Computer
layfulness (CPLAY) to both Perceived Ease of Use (PEOU) and Per-
eived Usefulness (PU). Moreover, the path from Perceived Usefulness
PU) to Behavioral Intention (BI) was strong. However, the relation-
hip between Perceived Ease of Use (PEOU) and Behavioral Intention
BI) was negative and lacked statistical significance. These findings offer
aluable quantitative insights into the relationships among the studied
onstructs. When comparing the correlation values and path coefficients
ith the meta-analysis conducted by Yousafzai et al. [52] , Study 1 ex-
ibited correlation coefficients that fell towards the higher end of the
ange, while the path coefficients exceeded the upper limit. 
49
tudy 2 

In Study 2, the demographic profile of the generated sample, out-
ined in Table 5 after eliminating duplicates, encompasses 240 unique
articipants. The gender distribution is 37.5 % male and 62.5 % female,
epresenting a ratio of 1 to 2. The age distribution displays a balanced
pread, with 37.1 % at 18, 32.1 % at 19, and 30.8 % at 20. In terms
f English proficiency, 6.3 % rated themselves at level 1, while 34.6 %
ssessed themselves at levels 2 and 3 each, and 24.6 % at level 4. Here,
evel 1 indicates low English ability, and level 4 signifies strong English
bility. Concerning familiarity with virtual reality (VR), 13.8 % posi-
ioned themselves at level 1, 25.4 % at level 2, 33.8 % at level 3, and
7.1 % at level 4. 

Table 6 presents the loading and construct reliability in Study 2,
here the SmartPLS method was utilized to assess various constructs,

ncluding Imagination (IMGM), Immersion (IMRN), Interaction (INTR),
erceived Usefulness (PU), Perceived Ease of Use (PEU), and Intention
o Use (ITU). The assessment involved factor loadings, Cronbach’s alpha,
omposite reliability (rho_a), composite reliability (rho_c), and average
ariance extracted (AVE). 
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Table 4 

Structure paths coefficients in Study 1. 

Path Original sample (O) Sample mean (M) Standard deviation (STDEV) T statistics (|O/STDEV|) P values 

CPLAY- > PEOU 0.831 0.831 0.018 44.916 0.00 

CPLAY - > PU 0.527 0.527 0.051 10.295 0.00 

PEOU - > BI − 0.035 − 0.036 0.049 0.71 0.477 

PEOU - > PU 0.4 0.401 0.056 7.178 0.00 

PU - > BI 0.93 0.931 0.042 21.902 0.00 

Table 5 

Demographics summary of samples in Study 2. 

Measure Item N (240) % 

Gender Male 90 37.5 % 

Female 150 62.5 % 

Age 18 89 37.1 % 

19 77 32.1 % 

20 74 30.8 % 

English Ability 1 15 6.3 % 

2 83 34.6 % 

3 83 34.6 % 

4 59 24.6 % 

Familiar with VR 1 33 13.8 % 

2 61 25.4 % 

3 81 33.8 % 

4 65 27.1 % 
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In Table 6 , factor loadings convey the strength of the relationship
etween items and their respective constructs, ranging from 0.759 to
.962. Reliability measures, including Cronbach’s alpha and composite
eliability, provide insights into the internal consistency of constructs.
Table 6 

Items loadings and constructs reliability in Study 2. 

Construct Loading 

Cronbach’s 

alpha 

Composi

(rho_a) 

IMGM1 0.848 

(0.831) 

0.85 

(0.837) 

0.863 

IMGM2 0.923 

(0.896) 

IMGM3 0.857 

(0.883) 

IMRN1 0.962 

(0.852) 

0.922 

(0.835) 

0.925 

IMRN2 0.898 

(0.879) 

IMRN3 0.93 

(0.871) 

INTR1 0.856 

(0.779) 

0.83 

(0.715) 

0.839 

INTR2 0.861 

(0.755) 

INTR3 0.872 

(0.851) 

ITU1 0.837 

(0.912) 

0.783 

(0.858) 

0.783 

ITU2 0.823 

(0.874) 

ITU3 0.845 

(0.860) 

PEU1 0.846 

(0.886) 

0.761 

(0.872) 

0.78 

PEU2 0.858 

(0.856) 

PEU3 0.759 

(0.847) 

PU1 0.874 

(0.911) 

0.719 

(0.801) 

0.722 

PU2 0.893 

(0.873) 

Note: The bottom values were taken from Barrett et al. [3] for

50
or example, IMGM exhibits a Cronbach’s alpha of 0.85, rho_a of 0.863,
ho_c of 0.909, and AVE of 0.769. Similarly, ITU displays a Cronbach’s
lpha of 0.783, rho_a of 0.783, rho_c of 0.873, and AVE of 0.697, indi-
ating high reliability for both constructs. 

The acceptable criterion for factor loading is values above 0.7, signi-
ying a strong relationship between items and constructs. Additionally,
 Cronbach’s alpha above 0.7 is deemed acceptable for reliability, ensur-
ng internal consistency. Composite reliability values above 0.7 further
ndicate good reliability. All loading and reliability values were within
he acceptable range, suggesting good convergence validity [18] . Load-
ng values of TAM constructs in Study 2 appeared to be slightly lower
han in Study 1. 

Table 7 provides a detailed examination of the Heterotrait–Monotrait
atio of correlations (HTMT) in Study 2. The HTMT is a metric for as-
essing discriminant validity among constructs in the Technology Ac-
eptance Model (TAM). However, an observation in Table 7 raised con-
erns, as two values among the TAM constructs exceeded 1, and one
alue exceeded 0.9. This suggests a potential issue with discriminant
alidity, indicating that certain constructs may not be sufficiently dis-
inct from one another. A close examination revealed that the TAM
te reliability Composite reliability 

(rho_c) 

Average variance 

extracted (AVE) 

0.909 0.769 

(0.754) 

0.951 0.865 

(0.752) 

0.898 0.745 

(0.634) 

0.873 0.697 

(0.778) 

0.862 0.675 

(0.723) 

0.877 0.78 

(0.716) 

 comparison. 
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Fig. 5. Structural Model in Study 2. 

Note: The bottom values were taken from Barrett et al. 

[3] for comparison. ∗ p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗ p < 0.001 

Table 7 

The Heterotrait–Monotrait ratio of correlations (HTMT) in Study 2. 

Construct IMGM IMRN INTR ITU PEU 

IMRN 0.841 

INTR 0.627 0.633 

ITU 0.822 0.823 0.749 

PEU 0.703 0.757 0.802 1.065 

PU 0.76 0.841 0.89 0.952 1.006 
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onstructs’ wordings in Study 1 maintained the standard phrasing from
avis [10] , whereas, in Study 2, the wordings differed from the standard
AM, which could contribute to the observed variations in the HTMT
atios. 

Table 8 and Fig. 5 depict the structural model and path coefficients
n Study 2. Most of the path coefficients were significant except IMGM
 > PEU and IMGM - > PU. R-squared values indicated a higher degree of
ariance explained in Study 2, suggesting a good overall fit. 

For the TAM construct, Study 2 ′ s correlation coefficients were within
he meta-analysis range, but the PEU- > ITU path coefficient exceeded the
pper range. 

iscussion 

This study centres on evaluating ChatGPT’s processing of diverse
onstructs within the provided TAM theories and appraising the validity
f relationships between different constructs using GPT-generated sur-
ey responses. This assessment is conducted through structural equation
odels in two studies. During the data gathering, we noted a tendency

or ChatGPT to generate duplicated responses in both Study 1 and Study
. The duplicate response rate was found to be 26.25 % in Study 1 and
0 % in Study 2. To ensure data quality and avoid redundancy, these
uplicate responses were removed, resulting in a usable sample size of
95 for Study 1 and 240 for Study 2. 

For the experiments, we selected a response length of 20 rows to
vercome limitations encountered while manually working with Chat-
PT. The slow response and frequent interruptions of the ChatGPT
latform when reaching response limits necessitated the selection of a
maller response size. Despite these challenges, the selected response
ength enabled the collection of data for analysis and efficient data gen-
ration. 

First, results of the two studies provided an evidence that ChatGPT
an generate sample responses that align with the Technology Accep-
ance Model (TAM), as reflected in the loading and reliability analysis
resented in Tables 2 and Table 6 . Both Study 1 and Study 2 demon-
51
trate valid models with high R-squared values of 82 % and 71 %, re-
pectively. All the hypotheses in Study 1 were supported except H4. In
tudy 2, hypotheses that were not supported are H2, H6, H7 and H8. 

It is interesting to note that in Study 2, the items PU3 and PEU4
ontained negative wording, resulting in low loadings of 0.29 and 0.57,
espectively, and they were subsequently removed from the measure-
ent model. Further investigation is needed to understand how negative
ording items impact ChatGPT’s responses [38] . 

Second, despite the presence of high correlations among the con-
tructs in Study 1 (see Table C3), the square roots of Average Variance
xtracted (AVE) still exceeded the corresponding items in the correla-
ion matrix, satisfying the Forrnell-Larcker criterion [12] . This finding
uggests that the indicators within each construct exhibit stronger in-
ernal consistency and stronger relationships with their respective con-
tructs compared to other constructs. In Study 2, the intercorrelation
oefficients among the items mostly fall within the moderate range, as
hown in Table C4. Additionally, Study 2 also met the Fornell-Larcker
riterion, indicating satisfactory discriminant validity. However, to fully
ssess the discriminant validity of the measurement model, the HTMT
nalysis should also be considered. The HTMT analysis revealed there
as a tendency for high intercorrelation coefficients among the TAM

onstructs, which may impact ChatGPT’s ability to discriminate between
he constructs. In Study 1 the collinearity statistics (VIF) was between 1
nd 4.7 while in Study 2 it was between 1.5 to 2.4. Although a VIF value
f not larger than five suggests that low collinearity exists among the
AM constructs [18] , additional investigation into the TAM constructs

s still warranted. 
Third, Study 1 exhibited higher reliability values compared to Study

, as shown in Table 2 and Table 6 . The wording style for the perceived
sefulness (PU) statements in the two studies was not the same. In Study
, the statements focused on the use of ChatGPT in a learning context,
mphasizing benefits such as efficiency, performance improvement, pro-
uctivity, and usefulness. These statements demonstrated a higher level
f cohesion and a specific thematic focus, and the wording followed
he standard TAM constructs. Conversely, the PU statements in Study
 centred around the impact of a Virtual Reality (VR) system on un-
erstanding paragraph structure and its potential to enhance academic
riting. While the statements in Study 2 were more specific, they also

overed a narrower aspect compared to the broader scope in Study 1.
he wordings were different from standard TAM constructs. 

Fourth, when asking ChatGPT to assess the similarity between the
tems in the two sets of PU constructs, ChatGPT assigned a score of 8 in
tudy 1 and a score of 6 in Study 2, based on the construct items pro-
ided. This suggests that ChatGPT perceived greater similarity among
he items in Study 1 which may contribute to the higher reliability val-
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Table 8 

Structure paths coefficients in Study 2. 

Path Original sample (O) Sample mean (M) Standard deviation (STDEV) T statistics (|O/STDEV|) P values 

IMGM - > PEU 0.125 0.123 0.068 1.845 0.065 

IMGM - > PU 0.078 0.072 0.091 0.858 0.391 

IMRN - > PEU 0.33 0.335 0.073 4.543 0.000 

IMRN - > PU 0.379 0.383 0.09 4.239 0.000 

INTR - > PEU 0.396 0.397 0.058 6.819 0.000 

INTR - > PU 0.441 0.443 0.05 8.798 0.000 

PEU - > ITU 0.673 0.661 0.078 8.672 0.000 

PU - > ITU 0.214 0.22 0.068 3.129 0.002 
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es. In summary, the differences in wording style and thematic focus
etween the PU statements in Study 1 and Study 2, along with Chat-
PT’s scoring render further investigation. 

Similarly, IMRN has a higher reliability value than INTR. We asked
hatGPT to determine the level of similarity between the items in the

MRN and INTR constructs. Here is ChatGPT’s response: "Considering
hat all three statements in IMRN revolve around the subjective expe-
ience of immersion and engagement in the VR learning environment,
 would assign a score of 8 out of 10 for the level of similarity. The
tatements share a common theme and address similar aspects of the
R experience. 

INTR, on the other hand, consists of statements that focus on differ-
nt aspects of interaction and ease of use within the VR system, such
s identifying paragraph features, selecting colours, and browsing help
enus. As a result, the level of similarity between the statements in INTR

s lower. I would assign a score of 5 out of 10 for the level of similarity
ithin INTR." In the context of prototyping theory, ChatGPT can assist

n evaluating constructs that are not clearly defined or unambiguous
28] . 

Fifth, when we compared the structural models of Study 2 and the
eference structural model as shown in Fig. 5 , there were both simi-
arities and differences between the structural models. The R-squared
alues indicate how well the models fit the data. In this case, the R-
quared values were similar for both models, except for the "ITU" vari-
ble. ChatGPT had a higher R-squared value for "ITU" (0.71) compared
o the reference model (0.59). This suggests that ChatGPT’s model may
etter explain the variance in the "ITU" variable. R-squared values for
U and PEU were similar for the two models. However, path coefficients
ere not entirely similar. PEU→ITU was statistically significant for the

imulated model but not significant in the reference model. In terms
f the AR constructs, there were differences between the two models.
pecifically, the relationships INTR→PU, IMRN→PEU, and IMGM→PU
iverged between the models. These disparities may indicate that Chat-
PT perceives the concepts related to the flow of augmented reality (AR)
ifferently from the reference model. Another factor that may contribute
o the difference was the presentation of the questionnaire. In the refer-
nce paper, all items were presented randomly, whereas, in this study,
 sequential presentation of construct items was used. 

Sixth, there were biases in the generated samples in terms of gen-
er and ChatGPT experiences in Study 1. ChatGPT tended to generate
ore female students with higher ChatGPT experiences. As a result, the

onstructs’ responses of PU and BI from these female students were sig-
ificantly higher compared to the male samples. In Study 2, ChatGPT
gain generated more female students with higher English ability and
R experiences. Consequently, the constructs’ responses from male stu-
ents were lower compared to female students. Refer to Appendix C for
he descriptive statistics in Study 1 and Study 2. These sample biases in
oth studies highlight the potential influence of gender and prior experi-
nces on the constructs’ responses generated by ChatGPT. It is important
o consider and control for these biases when interpreting the concep-
ual capability of ChatGPT. 

Overall, the experiments demonstrated that ChatGPT can generate
elevant responses aligned with the TAM constructs which demonstrated
he nomological validity of the constructs within the TAM framework
52
ased on the empirical evidence gathered from the study. The measure-
ent models exhibited good validity, and while there were some chal-

enges in discriminant validity due to high intercorrelations, the find-
ngs provided valuable insights into the abilities of ChatGPT to compre-
end, discriminate and associate the relationship between theoretical
onstructs. 

ractical implications 

The research holds important implications for AI software developers
nterested in leveraging ChatGPT for theory prototyping. 

First, there is an opportunity to integrate ChatGPT into software ap-
lications specifically designed for theory prototyping. By incorporating
hatGPT as a tool for generating responses aligned with theoretical con-
tructs, developers can contribute to the development of interactive and
ntelligent systems for theory development. 

Second, there is a need for dedicated platforms or software tools that
arness the capabilities of ChatGPT for theory prototyping. Developers
an design user-friendly interfaces and workflows that streamline the
rocess, allowing researchers to create theoretical constructs, generate
esponses, and analyse results efficiently. Such platforms have the po-
ential to accelerate the pace of knowledge advancement by providing
esearchers with a valuable tool for theory exploration and refinement.

Furthermore, the identification of biases in ChatGPT-generated sam-
les highlights the responsibility of software developers to address and
itigate biases in their applications. Collaboration with researchers is

rucial to implement strategies that enhance diversity and reduce biases
n the responses generated by ChatGPT. By curating data, making algo-
ithmic adjustments, and ensuring ongoing monitoring, developers can
nsure that the outputs of the software are fair, unbiased, and reflective
f diverse perspectives. 

Lastly, prompt design considerations play a significant role in the
utcomes of theory prototyping. Software developers, in collaboration
ith researchers, can establish guidelines and best practices for prompt
esign to improve the reliability and validity of generated responses.
lear instructions, contextual clarity, and minimization of ambiguity are
ssential factors that developers can focus on to enhance the quality of
he data and support researchers in deriving meaningful insights. 

onclusion and future research 

The study presented in this paper is not intended to be exhaustive but
ather aims to open conversation for future research and underscore the
otential of utilizing ChatGPT or LLMs as a benchmark tool for theory
rototyping. The results indicate that ChatGPT can generate responses
hat align with the theoretical constructs of TAM, demonstrating its abil-
ty to process complex concepts. The high R-squared values obtained in
he two experimental studies demonstrated the substantial explanatory
ower of the proposed models, which indicates that ChatGPT can cap-
ure and represent the underlying relationships among constructs. This
aves the way for exploring and testing theories with ChatGPT as hu-
an participants in a simulated environment, which can save time and

esources compared to traditional methods in behavioural research. 
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[  
This research has identified several limitations that warrant further
nvestigation. First, the presence of data duplications [41] poses a con-
ern, potentially impacting the accurate evaluation of ChatGPT as a
heory prototyping benchmark tool. The issues related to duplicated
esponses can be addressed through methodological refinements. Re-
earchers can develop techniques to identify and filter out duplicated
esponses, ensuring data quality and integrity. This will enhance the re-
iability of findings and strengthen the validity of the conclusions drawn
rom the analysis. Second, variations in prompts such as correlation
pecification, negative wordings and priming used on ChatGPT may in-
uence the generated survey responses, potentially introducing bias or

nconsistencies [33] which needs further investigations. Third, it is im-
ortant to note that the main theory examined in this research is the
echnology acceptance model specifically in the context of augmented
eality (AR) and learning with ChatGPT. Further research is needed to
alidate the applicability and generalizability of the findings in other
ontexts beyond the scope of this research. 

In addition to research issues triggered by these limitations, there
re three interesting perspectives for future research. First, the valida-
ion of constructs, including factors loading, internal consistency relia-
ility, and convergence reliability, provides a foundation for further in-
estigation in this direction. In other words, researchers can build upon
alidated constructs to explore various theoretical frameworks and test
ypotheses in a controlled and interactive manner. This has the poten-
ial to enhance the efficiency and effectiveness of theory development
nd refinement. Moreover, of most importance, the identification of po-
ential biases in ChatGPT-generated samples presents an opportunity
or further exploration. Understanding and mitigating these biases can
ontribute to the development of more robust and reliable models. Re-
earchers can investigate feasible ways to enhance the diversity and rep-
esentativeness of the generated responses, ensuring that the findings
re applicable and generalizable across various demographic and con-
extual factors. Finally, future research can delve into more complex and
uanced theoretical models, expanding the scope of theory prototyping
sing LLMs. 
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