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A B S T R A C T

The mixed relational algebra (RA) and linear algebra (LA) pipelines have become increasingly common in
recent years. However, contemporary widely used frameworks struggle to support both RA and LA operators
effectively, failing to ensure optimal end-to-end performance due to the cost of LA operators and data
conversion. This underscores the demand for a system capable of seamlessly integrating RA and LA while
delivering robust end-to-end performance. This paper proposes TensorTable, a tensor system that extends
PyTorch to enable mixed RA and LA pipelines. We propose TensorTable as the unified data representation,
storing data in a tensor format to prioritize the performance of LA operators and reduce data conversion costs.
Relational tables from RA, as well as vectors, matrices, and tensors from LA, can be seamlessly converted
into TensorTables. Additionally, we provide TensorTable-based implementations for RA operators and build a
system that supports mixed LA and RA pipelines. We implement TensorTable on top of PyTorch, achieving
comparable performance for both RA and LA operators, particularly on small datasets. TensorTable achieves
a 1.15x-5.63x speedup for mixed pipelines, compared with state-of-the-art frameworks—AIDA and RMA.
1. Introduction

In recent years, mixed pipelines that integrate both relational alge-
bra (RA) and linear algebra (LA) operators have become increasingly
prevalent in fields like data science, artificial intelligence, and real-time
analysis. For instance, analytical queries [1–4], which heavily rely on
RA operators, leverage LA operators such as matrix multiplication for
statistical computations. Meanwhile, machine learning pipelines [5–7],
primarily built upon LA operators, utilize RA operators such as join
for preprocessing. Real-time tasks [8–10] frequently switch between
RA and LA operators to facilitate swift data processing and analysis.
However, as shown in Fig. 2, currently widely-used frameworks are
unable to support both RA and LA operators while ensuring optimal
performance. RA systems [11–13] lack the optimizations for LA oper-
ators while LA systems [14–16] do not offer adequate support for RA
operators. Cross-framework implementations [17–20] bring extra costs
due to data copying and transformations between frameworks and limit
optimizations.

The need arises for a system capable of seamlessly integrating RA
and LA while delivering robust performance. Many previous works [17,
18,21–30] attempt to address this issue. However, most of them prior-
itize the performance of RA operators but have high execution costs
on LA operators and data conversion, thus leading to poor end-to-end
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performance. Our experiments shown in Fig. 3 corroborate this point.
To tackle this problem, we aim to develop a system that seamlessly
integrates mixed pipelines and provides a good end-to-end perfor-
mance. We prioritize ensuring the performance of LA operators while
supporting RA operators with comparable performance and reducing
frequent data conversion.

Unfortunately, it is not a trivial task due to the inherent dispar-
ities between RA and LA. Specifically, RA and LA reflect distinct
characteristics from the perspectives of data abstraction, data types,
and implementation. In terms of data abstraction, RA operates on
relational tables, whereas LA deals with vectors, matrices, and tensors.
Regarding data types, RA accommodates both numerical and non-
numerical data, whereas LA exclusively handles numerical data. From
the perspective of implementation, to ensure the optimal performance
of LA operators, frameworks should make full use of parallelism, keep
good temporal and spatial locality, and utilize extended instructions
properly. However, whether relational tables used in RA systems or
DataFrames and RDDs used in general-purpose systems often fall short
in guaranteeing optimal locality and instruction utility. Consequently,
these frameworks tend to exhibit suboptimal performance when dealing
with LA operators.
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Fig. 1. A public bicycle sharing system leveraging mixed relational algebra (RA) and linear algebra (LA) pipelines to forecast user ride duration.
To prioritize ensuring the performance of LA operators, support RA
operators with comparable performance, and reduce data conversion
costs, we propose TensorTable as the unified abstraction for both RA
and LA, which stores data in a tensor format. For LA, we directly
encapsulate vectors, matrices, and tensors within TensorTable. For
relational tables used in RA, we convert those non-numerical data
into numerical data and use auxiliary dictionaries to preserve the
mapping relations, subsequently storing the data in a tensor format. We
provide TensorTable-based implementations for RA operators, covering
selection, projection, join, group by, and aggregation. We establish a
system capable of supporting the mixed pipelines of RA and LA, built
on top of a typical LA system—PyTorch. Our work supports both RA
and LA operators and achieves comparable performance.

This paper makes the following three contributions:

• We propose an abstraction—TensorTable, to represent both rela-
tional and linear algebra.

• We present TensorTable-based implementations for relational al-
gebra operators and achieve comparable performance, especially
for small datasets.

• We build a system for combining relational and linear algebra
and achieve a 1.15x-5.63x speedup on mixed pipelines, compared
with state-of-the-art frameworks—AIDA and RMA.

The remainder of the paper is organized as follows. Section 2
shows the background, motivation, and challenges. Section 3 shows the
system overview. Section 4 introduces the design and implementation.
Section 5 presents our evaluation. Section 6 illustrates the related work.
Finally, we draw a conclusion in Section 7.

2. Background, motivation, and challenges

2.1. Background

Mixed relational algebra (RA) and linear algebra (LA) pipelines
are becoming more and more common in recent years. Analytical
queries [1–4], which heavily rely on RA operators, leverage LA oper-
ators such as matrix multiplication for statistical computations. Mean-
while, machine learning pipelines [5–7], primarily built upon LA op-
erators, utilize RA operators such as join for preprocessing. Real-time
tasks [8–10] frequently switch between RA and LA operators to fa-
cilitate swift data processing and analysis. Fig. 1 illustrates a typical
real-time system—public bicycle sharing system [31] as an example.
It leverages mixed LA and RA pipelines to forecast user ride duration
and is a latency-sensitive task that requires optimal end-to-end per-
formance. 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 stores station information and 𝑇 𝑟𝑖𝑝 stores user trip
history. The system uses RA operators such as select and join to process
𝑆𝑡𝑎𝑡𝑖𝑜𝑛 and 𝑇 𝑟𝑖𝑝, then uses LA operators such as calculate Euclidean
distance and linear regression to train the predicting model. When
users query the system, it uses RA operators such as select and LA
operators such as linear regression to forest ride duration. Finally, new
trip records are stored in 𝑇 𝑟𝑖𝑝. This system integrates both RA and LA

operators and requires optimal end-to-end performance.

2

2.2. Motivation

Despite the popularity of mixed pipelines, contemporary widely-
used frameworks cannot support those pipelines and guarantee per-
formance. As demonstrated in Fig. 2, our experiments encompass four
typical relational operators – selection, projection, inner join, and group
by, and two typical linear operators – matrix covariance and linear
regression. Our findings reveal that LA systems like PyTorch cannot
support many RA operators such as join and group by. Meanwhile, RA
systems like MonetDB exhibit limited support for LA operators with
subpar performance. General-purpose systems like Spark and pandas
can handle both RA and LA operators, but their performance falls short
of the ideal. Cross-framework implementations bring extra costs due
to data copying and transformations between frameworks and limit
optimizations. The last two columns in Fig. 2 display the conversion
time from Spark DataFrame to Matrix and from pandas DataFrame
to Tensor, respectively. This process incurs a substantial cost, even
6.7x-18.9x larger than that of RA operators over the same data sizes.

Additionally, we analyze the mixed pipeline introduced in Sec-
tion 2.1, Fig. 3 shows the performance breakdown. We find that many
previous works prioritize the performance of RA operators but have
high execution costs on LA operators and data conversion, thus leading
to poor end-to-end performance. Hence, there is a pressing need for
a system capable of supporting mixed RA and LA pipelines, ensuring
the performance of LA and RA operators and reducing data conversion
costs, finally delivering optimal end-to-end performance.

2.3. Challenges

There are several challenges to overcome.
(1) Data abstraction. Data abstraction should fit the memory access

patterns of its computation. RA computations are primarily based on
column-based access, and some computations also rely on row-based
access. LA computations are more complex, involving row-based access,
column-based access, block-based access, and stride-based access. New
data abstraction needs to be compatible with the different memory
access patterns mentioned above. RA operators handle both numerical
and non-numerical data, whereas LA operators exclusively consist of
numerical data. New data abstraction should be able to handle both
numerical and non-numerical data. The question that arises is: What
constitutes the appropriate data abstraction for such mixed pipelines?

(2) Expressiveness. Mixed pipelines contain RA operators including
selection, projection, join, group by, and aggregation as well as LA
operators such as matrix multiplication. Existing algorithms may not
be suitable for the new data abstraction. In this scenario, it is essential
to propose new algorithms tailored to effectively express RA and LA
operators.

(3) Performance. Many mixed pipelines are latency-sensitive tasks,
which have high-performance requirements. A proper data abstraction
that can fit the memory access patterns of its computation is necessary
but not sufficient for achieving optimal performance. We should also
consider hardware-related and dataflow graph optimizations, as well

as data conversion costs.
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Fig. 2. The performance of popular frameworks on LA operators, RA operators, and data conversion. MatCov and LinearReg are short for matrix covariance and linear regression,
respectively. ‘‘x’’ means unsupported. Currently widely-used frameworks are unable to support both RA and LA operators while ensuring optimal performance. Cross-framework
implementations face large data conversion costs.
Fig. 3. The performance breakdown of the mixed pipeline in the bicycle sharing
system. Many previous works have high execution costs on LA operators and data
conversion, thus leading to poor end-to-end performance.

3. The system overview

This section shows the overview of our system.

3.1. Design choices

First, we analyze our design choices.
(1) The core objective is to ensure end-to-end performance for

mixed pipelines. As analyzed in Section 2.2, many previous works
have high execution costs on LA operators and data conversion, thus
leading to poor end-to-end performance. Thus we prioritize ensuring
the performance of LA operators, then support RA operators with
comparable performance and reduce data conversion costs.

(2) Store all data in tensor formats. Tensors, with their data stored
contiguously in the same memory block, enable access to data by
computing offsets within the continuous memory block. This char-
acteristic makes tensors suitable for accommodating all memory ac-
cess patterns used in RA and LA computations, including row-based,
column-based, block-based, and stride-based access. Besides, LA oper-
ators benefit significantly from key factors such as good parallelism,
good temporal and spatial locality, and proper utilization of extended
instructions—all of which are inherently tied to tensor abstractions. As
a solution, we introduce a tensor-based abstraction called TensorTable,
designed to represent both tensors and relational tables, while encoding
non-numeric data into numeric representations.

(3) Utilize existing implementations and optimizations for LA op-
erators and propose compatible algorithms and implementations for
RA operators. We encapsulate LA operators without modifying their
3

core functionality and supplement them with auxiliary functions to
enable their seamless integration within mixed pipelines, not influenc-
ing existing hardware-related and dataflow graph optimizations. To
support mixed pipelines, we offer TensorTable-based algorithms and
implementations for RA operators, successfully achieving comparable
performance without compromising the performance of LA operators.

(4) Perform data conversion during initialization instead of run-
time to reduce data conversion costs. Frequent data conversion during
runtime markedly impacts performance and should be minimized. The
only necessary data conversion occurs during initialization, where we
transform the original data into TensorTables. No additional data con-
versions are needed throughout the execution phase. To ensure optimal
performance, each operator within mixed pipelines takes TensorTables
as input and produces them as output without the need for extra data
conversion.

3.2. System architecture

Fig. 4 illustrates the architecture of our system. We utilize Ten-
sorTable as the unified abstraction, as defined in Section 4.1. We
convert the origin data to TensorTable during initialization and store
them in memory. We propose Directed Acyclic Graph (DAG) Interme-
diate Representation(IR) to represent mixed pipelines, as detailed in
Section 4.3.1. The Parser is responsible for translating mixed pipelines
into DAG IRs, as elaborated in Section 4.3.2. The Optimizer makes
graph-level optimizations, as discussed in Section 4.3.3. The Code
Generator generates TensorTable-based operators, as shown in Sec-
tion 4.3.4. For LA operators, we call PyTorch operators, while for RA
operators, we provide TensorTable-based implementations, as defined
in Section 4.2. Finally, those operators are executed on top of PyTorch
Runtime, as described in Section 4.3.5.

4. The system design and implementation

4.1. The data abstraction: TensorTable

This section introduces our proposed abstraction—TensorTable.
TensorTable represents relational tables in a tensor format, allowing for
seamless processing. By taking TensorTables as both input and output,
all RA and LA operators can be efficiently implemented on tensors.
There are two notable benefits to storing data in a tensor format: Firstly,
tensors exhibit better data locality compared to row-oriented and
column-oriented tables, particularly benefiting LA operators. Secondly,
tensors can leverage hardware features and compilation optimiza-
tions more effectively. TensorTable seamlessly encapsulates vectors,
matrices, and tensors for LA operations, eliminating the need for
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Fig. 4. The TensorTable Framework.

additional data conversions. As for RA operators, we convert rela-
tional tables to TensorTables and furnish them with TensorTable-based
implementations.

TensorTable comprises four essential elements: 𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒𝑠,
𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑦𝑝𝑒𝑠, 𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟, and 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡_𝑙𝑖𝑠𝑡. Among these, 𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒𝑠
and 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑦𝑝𝑒𝑠 are string lists used for storing column names and
data types, respectively. All data, whether numeric or non-numeric,
is stored within the tensor 𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟. Numeric data from relational
tables can be directly stored in 𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟. For non-numeric data,
TensorTable encodes them into numeric representations and then stores
them in the same tensor. Non-numeric data in relational tables fall
into four categories: 𝑑𝑎𝑡𝑒, 𝑏𝑜𝑜𝑙𝑒𝑎𝑛, 𝑠𝑡𝑟𝑖𝑛𝑔, and 𝑡𝑒𝑥𝑡. For 𝑑𝑎𝑡𝑒 data, we
convert them into timestamps, represented as integers. 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 data
is converted into 0 or 1. For 𝑠𝑡𝑟𝑖𝑛𝑔 and 𝑡𝑒𝑥𝑡 data, we encode them as
integers and maintain mapping relationships in dictionaries referred to
as 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡𝑠.

𝑆𝑡𝑟𝑖𝑛𝑔 is usually used to represent categories, and RA operators
such as join can operate on them. For 𝑠𝑡𝑟𝑖𝑛𝑔 data, we sort them,
get their unique elements, and then convert them to integers. As
for 𝑡𝑒𝑥𝑡 data, which typically has larger lengths, we map them di-
rectly to integers based on their order. Note that 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡𝑠 are utilized
solely for storing the mapping relations and preserving data order after
complex relational transformation, without sophisticated processing
such as embedding. Each string column maintains its own 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡,
while 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡_𝑙𝑖𝑠𝑡 is a list containing these 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡𝑠, with its length
orresponding to the number of string columns.

Fig. 5 showcases a TensorTable structure. The left in Fig. 5 shows
he original relational table, with m rows and n columns. The right in
ig. 5 presents the corresponding TensorTable. Both 𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒𝑠 and

𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑦𝑝𝑒𝑠 have a length of n, while 𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟 has a shape of m×n.
Numeric data, such as that in the 𝑐𝑜𝑑𝑒, 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, and 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 columns,
is directly stored in 𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟. The 𝑛𝑎𝑚𝑒 column contains string data,
which we map to integers. The mapping relation is retained in 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡1.

s this relational table has only one string column, the corresponding
ensorTable has just one 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡, namely 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡1, and the 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡_𝑙𝑖𝑠𝑡

consists of a single element, represented as [𝑠𝑡𝑟_𝑑𝑖𝑐𝑡1].

4.2. TensorTable-based RA operators

This section introduces the implementations of RA operators based
on the TensorTable abstraction. The supported RA operators include se-
lection, projection, inner-join, outer-join, left-join, right-join, cross-join,

group by, and aggregation.

4

4.2.1. Selection
The selection operator takes rows from a TensorTable that satisfy

specified selection conditions.
There are three types of selection conditions:
(1) Comparison between two columns, as shown in Algorithm 1.

The input is one TensorTable: 𝐼𝑛𝑇 𝑎𝑏𝑙𝑒, two columns 𝑐𝑜𝑙1 and 𝑐𝑜𝑙2 to
compare, and one comparison function 𝐶𝑜𝑚𝑝𝐹𝑢𝑛𝑐. Comparison func-
tions include 𝑒𝑞𝑢𝑎𝑙, 𝑔𝑟𝑒𝑎𝑡𝑒𝑟, 𝑙𝑒𝑠𝑠, 𝑔𝑟𝑒𝑎𝑡𝑒𝑟_𝑒𝑞𝑢𝑎𝑙, 𝑙𝑒𝑠𝑠_𝑒𝑞𝑢𝑎𝑙, and 𝑛𝑜𝑡_𝑒𝑞𝑢𝑎𝑙.
Initially, we extract the corresponding tensors, 𝑡𝑒𝑛𝑠𝑜𝑟1 and 𝑡𝑒𝑛𝑠𝑜𝑟2, from
InTable based on the specified columns. Both tensors have a shape
of [m, 1], where m represents the number of rows. Subsequently, we
perform element-wise comparisons between these two tensors, resulting
in a mask tensor that utilizes 1 and 0 to indicate whether rows meet
the selection condition. Finally, we use 𝑛𝑜𝑛𝑧𝑒𝑟𝑜 operators to get the
indices that satisfy the selection condition based on the mask tensor and
use the 𝑖𝑛𝑑𝑒𝑥_𝑠𝑒𝑙𝑒𝑐𝑡 function to extract rows from 𝐼𝑛𝑇 𝑎𝑏𝑙𝑒.𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟
and assign them to the 𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟 of the output TensorTable: 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒.
The 𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒𝑠, 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑦𝑝𝑒𝑠, and 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡_𝑙𝑖𝑠𝑡 of 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒 remain the
same as 𝐼𝑛𝑇 𝑎𝑏𝑙𝑒.

(2) Comparison between one column and a threshold. This type
entails a broadcast comparison between the corresponding tensor and
the specified threshold. The subsequent steps mirror those in Algorithm
1.

(3) Combination of multiple conditions. These conditions are orga-
nized using logical operators such as 𝑎𝑛𝑑, 𝑜𝑟, and 𝑛𝑜𝑡. We compute each
condition’s mask tensor and use their 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛, 𝑢𝑛𝑖𝑜𝑛, and 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡
to get the combined mask. This combined mask is then used to build
the index and extract rows.

Algorithm 1 Selection
Input: InTable: Input TensorTable; col1, col2: Two columns to compare;

CompFunc: Comparison function.
Output: OutTable: Output TensorTable.
1: tensor1 ← get_tensor(InTable, col1)
2: tensor2 ← get_tensor(InTable, col2)
3: mask ← CompFunc(tensor1, tensor2)
4: index ← nonzero(mask)
5: OutTable.data_tensor ← index_select(InTable.data_tensor, dim=0, index)
6: OutTable.column_names ← InTable.column_names
7: OutTable.column_types ← InTable.column_types
8: OutTable.str_dict_list ← InTable.str_dict_list

4.2.2. Projection
The projection operator takes columns from the input TensorTable:

𝐼𝑛𝑇 𝑎𝑏𝑙𝑒 based on the specified 𝑛𝑎𝑚𝑒_𝑙𝑖𝑠𝑡, which contains the selected
column names, as shown in Algorithm 2. First, we parse the 𝑛𝑎𝑚𝑒_𝑙𝑖𝑠𝑡
to obtain the list of corresponding indices. Then we use the 𝑖𝑛𝑑𝑒𝑥_𝑠𝑒𝑙𝑒𝑐𝑡
function to select columns according to these indices and assign them to
the 𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟 of the output TensorTable: 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒. The 𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒𝑠
of 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒 is set as 𝑛𝑎𝑚𝑒_𝑙𝑖𝑠𝑡, while the 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑦𝑝𝑒𝑠 and 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡_𝑙𝑖𝑠𝑡
of 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒 are the subsets of 𝐼𝑛𝑇 𝑎𝑏𝑙𝑒 based on 𝑛𝑎𝑚𝑒_𝑙𝑖𝑠𝑡.

Algorithm 2 Projection
Input: InTable: Input TensorTable; name_list: Column names.
Output: OutTable: Output TensorTable.
1: index ← parse(name_list)
2: OutTable.data_tensor ← index_select(InTable.data_tensor, dim=1, index)
3: OutTable.column_names ← name_list
4: OutTable.column_types ← subset(InTable.column_types, name_list)
5: OutTable.str_dict_list ← subset(InTable.str_dict_list, name_list)

4.2.3. Join

The join operator combines columns from two or more input Ten-
sorTables, producing a new output TensorTable. We take inner-join as

an example, as shown in Algorithm 3. The input is two TensorTables:
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Fig. 5. TensorTable stores a relational table in a tensor format, mapping non-numeric values to numeric ones. For a relational table with m rows and n columns, the corresponding
TensorTable consists of two string lists 𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒𝑠 and 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑦𝑝𝑒𝑠, used to store the column names and data types, a m×n tensor 𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟 to store data, and a list of auxiliary
dictionaries, 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡_𝑙𝑖𝑠𝑡, used to preserve the mapping relationships.
Fig. 6. The illustration of inner_join_index algorithm. Full lines represent operators, dotted lines represent indices.
𝑠
𝑘
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Algorithm 3 Inner Join
Input: T1, T2: Input TensorTables; key1, key2: Join keys.
Output: OutTable: Output TensorTable.
1: key_tensor1 ← get_tensor(T1, key1)
2: key_tensor2 ← get_tensor(T2, key2)
3: left_index, right_index ← inner_join_index(key_tensor1, key_tensor2)
4: left_tensor ← index_select(T1.data_tensor, dim=0, left_index)
5: right_tensor ← index_select(T2.data_tensor, dim=0, right_index)
6: OutTable.data_tensor ← concatenate(left_tensor, right_tensor)
7: OutTable.column_names ← T1.column_names ∪ T2.column_names
8: OutTable.column_types ← T1.column_types ∪ T2.column_types
9: OutTable.str_dict_list ← T1.str_dict_list ∪ T2.str_dict_list

𝑇 1 and 𝑇 2, and two keys to join: 𝑘𝑒𝑦1 from 𝑇 1 and 𝑘𝑒𝑦2 from 𝑇 2. The
utput TensorTable is 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒. First, we extract key tensors from two
ensorTables. Then we use the 𝑖𝑛𝑛𝑒𝑟_𝑗𝑜𝑖𝑛_𝑖𝑛𝑑𝑒𝑥 function to parse key
ensors and return left and right indexes, which are used to select rows
rom two input TensorTables, as defined in Algorithm 4.

Next, we provide a detailed explanation of the 𝑖𝑛𝑛𝑒𝑟_𝑗𝑜𝑖𝑛_𝑖𝑛𝑑𝑒𝑥
lgorithm in detail, as depicted in Fig. 6. This algorithm takes two
ey tensors as inputs and produces two indices used for selecting rows
rom two TensorTables. The process begins with the utilization of
he 𝑠𝑡𝑎𝑏𝑙𝑒_𝑠𝑜𝑟𝑡 function to sort the two keys and get the sorted keys
5

𝑜𝑟𝑡𝑒𝑑_𝑘𝑒𝑦1 and 𝑠𝑜𝑟𝑡𝑒𝑑_𝑘𝑒𝑦2, and their respective indices 𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥1 and
𝑒𝑦_𝑖𝑛𝑑𝑒𝑥2, which represent the positions of elements in the original
eys (lines 1–2 in Algorithm 4 and ➊➋ in Fig. 6). Subsequently, the
𝑛𝑖𝑞𝑢𝑒 function is applied to obtain the unique keys 𝑢𝑛𝑖𝑞𝑢𝑒_𝑘𝑒𝑦1 and
𝑛𝑖𝑞𝑢𝑒_𝑘𝑒𝑦2, along with their corresponding counts 𝑐𝑜𝑢𝑛𝑡1 and 𝑐𝑜𝑢𝑛𝑡2

(lines 3–4 and ➌➍). Following this, we employ the 𝑐𝑢𝑚𝑠𝑢𝑚 function to
calculate the cumulative sum of counts, marked as 𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡1 and
𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡2 (lines 5–6 and ➎➏). We add 0 as the first element to both
𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡1 and 𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡2. Moving forward, we compute the
intersection, denoted as 𝑖𝑛𝑡𝑒𝑟, along with corresponding indices, 𝑖𝑛𝑑1
and 𝑖𝑛𝑑2, of the unique keys(lines 7 and ➐).

Finally, we iterate through 𝑖𝑛𝑑1 and 𝑖𝑛𝑑2 to construct 𝑙𝑒𝑓 𝑡_𝑖𝑛𝑑𝑒𝑥 and
𝑟𝑖𝑔ℎ𝑡_𝑖𝑛𝑑𝑒𝑥 (lines 8–17 and ➑). We utilize 𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡1
and 𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡2 as indices to get elements from 𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥1 and
𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥2 and assign their values to 𝑙𝑒𝑓 𝑡_𝑖𝑛𝑑𝑒𝑥 and 𝑟𝑖𝑔ℎ𝑡_𝑖𝑛𝑑𝑒𝑥 appro-
priately. Specifically, We take 𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡1[𝑖𝑛𝑑1[𝑖]] and 𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡1
[𝑖𝑛𝑑1[𝑖] + 1] as the index to get elements from 𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥1, that is
𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥1[𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡1[𝑖𝑛𝑑-1[𝑖]], 𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡1[𝑖𝑛𝑑1[𝑖] + 1]], marked
as 𝑙𝑒𝑓 𝑡_𝑡𝑚𝑝. We then repeat each element in 𝑙𝑒𝑓 𝑡_𝑡𝑚𝑝 for 𝑐𝑜𝑢𝑛𝑡2[𝑖𝑛𝑑1[𝑖]]
times and append them to 𝑙𝑒𝑓 𝑡_𝑖𝑛𝑑𝑒𝑥. Similarly, we take
𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡2[𝑖𝑛𝑑2[𝑖]] and 𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡2[𝑖𝑛𝑑2[𝑖] + 1] as the index to
get elements from 𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥2, that is 𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥2[𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡2[𝑖𝑛𝑑2[𝑖]],
𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡2[𝑖𝑛𝑑-2[𝑖] + 1]], marked as 𝑟𝑖𝑔ℎ𝑡_𝑡𝑚𝑝. We repeat 𝑟𝑖𝑔ℎ𝑡_𝑡𝑚𝑝
for 𝑐𝑜𝑢𝑛𝑡1[𝑖𝑛𝑑2[𝑖]] times, and append them to 𝑟𝑖𝑔ℎ𝑡_𝑖𝑛𝑑𝑒𝑥. An example
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Algorithm 4 inner_join_index
Input: key_tensor1, key_tensor2: Two keys in tensor formats.
Output: left_index, right_index: The indices to select rows from two

TensorTables.
1: sorted_key1, key_index1 ← stable_sort(key_tensor1)
2: sorted_key2, key_index2 ← stable_sort(key_tensor2)
3: unique_key1, count1 ← unique(sorted_key1, return_counts=True)
4: unique_key2, count2 ← unique(sorted_key2, return_counts=True)
5: cumsum_count1 ← cumsum(count1)
6: cumsum_count2 ← cumsum(count2)
7: inter, ind1, ind2 ← intersection(unique_key1, unique_key2)
8: left_index ← Empty list
9: right_index ← Empty list
0: for i ← 0 to len(ind1) do
1: left_tmp ← key_index1[cumsum_count1[ind1[i]],

cumsum_count1[ind1[i]+1]]
2: Repeat each element in left_tmp for count2[ind1[i]] times
3: Append left_tmp to left_index
4: right_tmp ← key_index2[cumsum_count2[ind2[i]],

cumsum_count2[ind2[i]+1]]
5: Repeat right_tmp for count1[ind2[i]] times
6: Append right_tmp to right_index
7: end for

is illustrated in Fig. 6; the gray part shows where 𝑘𝑒𝑦1 and 𝑘𝑒𝑦2
are all 0, which means the variable i used in line 10 and step ➑ is
0. 𝐶𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡1[0] and 𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡1[1] are 0 and 2, so we take
the first two elements from 𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥1, that is [0, 3]. Count2[0] is
3, so each element in [0, 3] is repeated three times, yielding [0, 0,
0, 3, 3, 3], which is appended to 𝑙𝑒𝑓 𝑡_𝑖𝑛𝑑𝑒𝑥. 𝐶𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡2[0] and
𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡2[1] are 0 and 3, so we take the first three elements from
𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥2, that is [0, 2, 3]. Count1[0] is 2, so [0, 2, 3] is repeated
twice, yielding [0, 2, 3, 0, 2, 3], which is appended to 𝑟𝑖𝑔ℎ𝑡_𝑖𝑛𝑑𝑒𝑥.

After the 𝑖𝑛𝑛𝑒𝑟_𝑗𝑜𝑖𝑛_𝑖𝑛𝑑𝑒𝑥 function, we select rows from two Ten-
sorTables based on 𝑙𝑒𝑓 𝑡_𝑖𝑛𝑑𝑒𝑥 and 𝑟𝑖𝑔ℎ𝑡_𝑖𝑛𝑑𝑒𝑥, concatenate them, and
assign them to 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒.𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟. The 𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒𝑠, 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑦𝑝𝑒𝑠,
and 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡_𝑙𝑖𝑠𝑡 of 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒 are the union of that of two input Ten-
sorTables. Outer-join, left-join, right-join, and cross-join have similar
implementations, using their specific 𝑗𝑜𝑖𝑛_𝑖𝑛𝑑𝑒𝑥 algorithms to replace
𝑖𝑛𝑛𝑒𝑟_𝑗𝑜𝑖𝑛_𝑖𝑛𝑑𝑒𝑥.

4.2.4. Groupby
The groupby operator groups rows based on one or more columns.

The input is one TensorTable 𝐼𝑛𝑇 𝑎𝑏𝑙𝑒 and a 𝐺𝑟𝑜𝑢𝑝𝑏𝑦𝐶𝑜𝑙 which marks
the column names to make groups. The output is one TensorTable
𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒. First, we parse the 𝐺𝑟𝑜𝑢𝑝𝑏𝑦𝐶𝑜𝑙 and get the list of indices.
Then we utilize the 𝑖𝑛𝑑𝑒𝑥_𝑠𝑒𝑙𝑒𝑐𝑡 function to select the column based
on indices and assign the values to 𝐺𝑟𝑜𝑢𝑝𝑏𝑦𝑇 𝑒𝑛𝑠𝑜𝑟. Subsequently, we
utilize the 𝑢𝑛𝑖𝑞𝑢𝑒 function to get the unique elements and generate
𝐺𝑟𝑜𝑢𝑝𝑏𝑦𝐼𝑑𝑥, which marks the group to which each row belongs.
Finally, we append 𝐺𝑟𝑜𝑢𝑝𝑏𝑦𝐼𝑑𝑥 to 𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟, append ‘‘group’’ to
𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒𝑠, and append int32 to 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑦𝑝𝑒𝑠 of 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒. The
𝑠𝑡𝑟_𝑑𝑖𝑐𝑡_𝑙𝑖𝑠𝑡 of 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒 remains the same as that of 𝐼𝑛𝑇 𝑎𝑏𝑙𝑒.

Algorithm 5 Groupby
Input: InTable: Input TensorTable; GroupbyCol: Groupby column name.
Output: OutTable: Output TensorTable.
1: index ← parse(GroupbyCol)
2: GroupbyTensor ← index_select(InTable, dim=1, index)
3: UniqueElement, GroupbyIdx ← unique(GroupbyTensor, return_inverse=True)
4: OutTable.data_tensor ← concatenate(GroupbyIdx, InTable.data_tensor)
5: OutTable.column_names ← InTable.column_names
6: OutTable.column_names ← ["group"] ∪ InTable.column_names
7: OutTable.column_types ← [int32] ∪ InTable.column_types
8: OutTable.str_dict_list ← InTable.str_dict_list
6

4.2.5. Aggregation
The aggregation operator collects one or more columns and returns

their aggregated values. The input is one TensorTable 𝐼𝑛𝑇 𝑎𝑏𝑙𝑒, one ag-
gregation function 𝐴𝑔𝑔𝐹𝑢𝑛𝑐, and the 𝑛𝑎𝑚𝑒_𝑙𝑖𝑠𝑡 which marks the column
names. The output is one TensorTable 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒. Aggregation functions
include 𝑐𝑜𝑢𝑛𝑡, 𝑠𝑢𝑚, 𝑎𝑣𝑔, 𝑚𝑖𝑛, 𝑚𝑎𝑥, etc. First, we parse the 𝑛𝑎𝑚𝑒_𝑙𝑖𝑠𝑡 and
get the list of indices. Then we use the 𝑖𝑛𝑑𝑒𝑥_𝑠𝑒𝑙𝑒𝑐𝑡 function to select
the columns based on these indices and assign them to 𝐴𝑔𝑔𝑇 𝑒𝑛𝑠𝑜𝑟.
Finally, we make aggregation on 𝐴𝑔𝑔𝑇 𝑒𝑛𝑠𝑜𝑟 and assign the results to
𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒.𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟. The 𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒𝑠 of 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒 is set as 𝑛𝑎𝑚𝑒_𝑙𝑖𝑠𝑡.
The 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑦𝑝𝑒𝑠 and 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡_𝑙𝑖𝑠𝑡 of 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒 are the subsets of 𝐼𝑛𝑇 𝑎𝑏𝑙𝑒
according to 𝑛𝑎𝑚𝑒_𝑙𝑖𝑠𝑡.

Algorithm 6 Aggregation
Input: InTable: Input TensorTable; AggFunc: Aggregation function; name_list:

Column names.
Output: OutTable: Output TensorTable.
1: index ← parse(name_list)
2: AggTensor ← index_select(InTable.data_tensor, dim=1, index)
3: OutTable.data_tensor ← AggFunc(AggTensor)
4: OutTable.column_names ← name_list
5: OutTable.column_types ← subset(InTable.column_types, name_list)
6: OutTable.str_dict_list ← subset(InTable.str_dict_list, name_list)

4.3. The mixed RA and LA pipeline implementation

This section presents the implementation of mixed RA and LA
pipelines.

4.3.1. DAG IR
First, we introduce the Directed Acyclic Graph (DAG) Intermedi-

ate Representation (IR), which serves as the representation for mixed
pipelines. The DAG IR comprises a list of operators, variables, and
utility functions used to build pipelines and execute them. The variables
are all TensorTables, as defined in Section 4.1. These TensorTables form
the fundamental data units within the representation. The operators
take TensorTables as both input and output, including both linear and
relational operators. Within the DAG IR, nodes represent operators,
while edges represent variables and mark the data dependencies be-
tween operators. In this way, this unified abstraction allows for the
seamless representation of mixed RA and LA pipelines.

4.3.2. Parser
Parser traverses the source codes and transforms them into DAG IRs.

Operators are initialized as nodes within the DAG IR, marking their
input and output variables, along with an implementation instance
used to lower and execute operators. Variables are established as
edges within the DAG IR, facilitating connections between nodes. This
comprehensive process results in the construction of a corresponding
DAG IR, which encapsulates the entire representation once all source
code statements have been traversed.

4.3.3. Optimizer
Optimizer performs a series of functionally equivalent transforma-

tions for DAG IRs aimed at achieving optimizations. These optimiza-
tions primarily fall into two categories: 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑠𝑤𝑎𝑝 and 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟
𝑓𝑢𝑠𝑖𝑜𝑛.

𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑠𝑤𝑎𝑝 involves altering the order of operators within the
DAG, which can reduce computation and create more opportunities for
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑓𝑢𝑠𝑖𝑜𝑛. RA operators such as 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 and 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 can be
swapped with other RA and LA operators without affecting the result.
This optimization is similar to 𝑝𝑢𝑠ℎ𝑑𝑜𝑤𝑛 used in the RA systems [32,
33], but is expended to LA. For instance, consider a scenario where
users calculate the reciprocal of one column and then make a selection.
By rearranging the sequence to perform selection first and then the
reciprocal operation, we can reduce the computation.
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𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑓𝑢𝑠𝑖𝑜𝑛 fuses two operators to reduce memory footprint
and computation. This optimization is similar to that in the LA sys-
tems [34,35], but is expended to RA operators. We can effectively
harness PyTorch to fuse linear operators and, simultaneously, apply
fusion techniques to RA operators based on our TensorTable-based
implementations. For instance, multiple selections or projections on
a single TensorTable can be fused into a single operation. Similarly,
multiple join operations can be consolidated into a single operation.
For example, if users initially join A and B, and then join the result
with C, we can fuse these operations into a single join. This involves
calculating the indices for A, B, and C, as detailed in Section 4.2.3.
Subsequently, we select rows from A, B, and C and concatenate them
without generating intermediate tables.

4.3.4. Code generator
Code Generator converts those optimized DAGs to TensorTable-

based operators based on the implementation instances of operators
in DAG IRs. When dealing with RA operators, we adhere to the im-
plementations outlined in Section 4.2 and translate them into a list
of tensor operations as well as some simple auxiliary functions to
handle TensorTables. In the case of LA operators, we translate them
into PyTorch LA operators to handle the 𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟 in TensorTables
and do not deal with other proprieties.

4.3.5. Executor
We construct the Executor on top of PyTorch, orchestrating the exe-

cution flow through a series of carefully sequenced program calls. In the
case of RA operators, we employ PyTorch to execute the TensorTable-
based operators. Meanwhile, auxiliary functions are executed using
native Python. For LA operators, we call PyTorch to handle TensorTa-
bles and keep other proprieties just the same. We use an interpreted
mode in PyTorch to reduce compilation time.

5. Evaluation

5.1. Experimental setup

We deploy a server node equipped with two Xeon E5-2620 V3
(Haswell) CPUs and 64 GB memory to conduct the experiments. Each
CPU contains six physical cores. The operating system is Ubuntu 16.04,
and the other software includes PyTorch 1.13, pandas 1.3.5, Spark
3.3.0, MonetDB 11.39.17, AIDA [18], and RMA [29].

5.2. The RA operator performance

This section evaluates RA operators. We use the BIXI dataset [31]
and test the results on 1k, 10k, 100k, 1 m, and 10 m rows. We compare
our work against MonetDB, Spark, and pandas.

Fig. 7(a) shows the performance of the selection operator. Ten-
sorTable outperforms the other frameworks on both small and large
data sizes for two reasons. First, TensorTable stores data in a ten-
sor format, allowing for faster data access compared to row-oriented
or column-oriented data structures. Additionally, TensorTable utilizes
element-wise comparison based on vector instructions to accelerate.

Fig. 7(b) presents the performance of the projection operator. Ten-
sorTable achieves noticeable speedup on small datasets due to better
data locality and faster data access. However, TensorTable’s perfor-
mance diminishes on larger datasets due to the use of the 𝑖𝑛𝑑𝑒𝑥_𝑠𝑒𝑙𝑒𝑐𝑡
function, which reassigns the tensor data structure to ensure data
contiguity and causes redundant computation. Utilizing the 𝑖𝑛𝑑𝑒𝑥_𝑠𝑒𝑙𝑒𝑐𝑡
function is essential, as it can maintain a good data locality and guar-
antee the performance of other operators, especially linear operators.

Fig. 7(c) displays the performance of the inner join operator. Mon-
etDB and Spark use hash-based join, while pandas and TensorTable
use sort-based join. TensorTable continues to outperform the others on
small datasets. However, hash-based joins have lower complexity than
7

Fig. 7. The execution time of RA operators on TensorTable, MonetDB, Spark, and
pandas over different data sizes.

sort-based joins, giving Spark and MonetDB an advantage as the dataset
size increases. We are actively exploring the integration of hash-based
joins into TensorTable without compromising the performance of other
tensor computations.

Fig. 7(d) demonstrates the performance of the groupby operator,
which exhibits similarities to the inner join operator. TensorTable
excels on small datasets but lags behind on larger datasets due to limi-
tations of the sort-based implementation. We are actively investigating
the implementation of hash-based groupby operator in TensorTable.
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Fig. 8. The normalized performance of the distance-duration linear regression pipeline on different data sizes. Using the performance of TensorTable to normalize other frameworks,
a smaller number has worse performance. ‘‘Cross’’ represents the cross-framework implementation using pandas for RA operators and PyTorch for LA operators.
Fig. 9. The execution time breakdown of the distance-duration linear regression pipeline on different data sizes. It consists of three primary parts: data conversion, LA operators,
and RA operators.
Fig. 7(e) illustrates the performance of the aggregation operator.
This operator relies more on linear algebra computations than other
relational operators, which benefits TensorTable on both small and
large datasets.

In summary, TensorTable achieves superior performance on selec-
tion and aggregation operators across all data sizes. For projection, in-
ner join, and group by operators, TensorTable performs better on small
datasets while worse on large datasets. TensorTable achieves competi-
tive performance on RA operators compared to RA and general-purpose
systems.

5.3. Mixed pipeline performance

This section evaluates two mixed pipelines consisting of RA and LA
operators.

5.3.1. Distance-duration linear regression
The first case derives from a public bicycle sharing system [18]

that involves linear regression between distance and duration, utilizing
the BIXI dataset [31]. There are two tables: 𝑡𝑟𝑖𝑝 contains start stations,
end stations, and duration; 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 contains station codes, names, and
coordinates. This pipeline comprises five steps: (1) Select rows from 𝑡𝑟𝑖𝑝
where the start station does not equal the end station. (2) Join 𝑡𝑟𝑖𝑝 with
𝑠𝑡𝑎𝑡𝑖𝑜𝑛 to retrieve the coordinates of start and end stations. (3) Calculate
the distance. (4) Train a linear regression model between distance and
duration. (5) Test the model on the test dataset. Steps (1)(2) involves
RA operators, and steps (3)-(5) involves LA operators. We do not
use any built-in linear regression algorithms to avoid bias from these
algorithms’ implementation differences. We use those basic LA oper-
ators, such as matrix multiplication, to implement linear regression,
guaranteeing consistency in computation for different frameworks.

We compare TensorTable with pandas, Spark, AIDA, RMA, and
cross-framework implementation, which uses pandas for RA operators
8

and PyTorch for LA operators. We use the performance of TensorTable
to normalize the other five approaches, as illustrated in Fig. 8. Note
that a value smaller than 1 indicates a worse performance compared
to TensorTable and the smaller the value, the worse the performance.
TensorTable achieves a 2.57x-32.33x speedup compared with pandas, a
20.77x-390.55x speedup compared with Spark, a 1.15x-2.53x speedup
compared with AIDA, and a 1.04x-2.29x speedup compared with cross-
framework implementation. Although TensorTable lags behind RMA
by 2% when dealing with small datasets, it outperforms RMA as the
dataset size grows, with a speedup ranging from 1.71x to 2.84x.

Fig. 9 provides a detailed breakdown of the results. The execution
time of this mixed pipeline is divided into three primary components:
data conversion, LA operators, and RA operators. Our work converts
relational tables into TensorTables during initialization and does not
need other data conversion in later computation, whose data conver-
sion time is not apparent. Pandas handles DataFrames for both LA
and RA operators without explicit data conversion, resulting in nearly
zero conversion time. TensorTable achieves a 3.04x-41.71x speedup for
LA operators and a 1.11x-2.09x speedup for RA operators compared
with pandas. Spark implements RA operators using DataFrames and
LA operators using matrices, necessitating frequent data conversion.
While Spark excels in RA operators for sizable datasets, it lags in LA
operators and involves more data conversion, resulting in the worst
performance among the six implementations. TensorTable achieves a
41.44x-491.96x speedup for LA operators and an 868.25x-4546.49x
speedup for data conversion compared with Spark. AIDA handles Tabu-
larData for both LA and RA operators without explicit data conversion,
resulting in almost negligible conversion time. RMA handles RA opera-
tors and simple LA operators like addition based on binary association
tables and executes complex LA operators such as matrix multiplica-
tion by calling external libraries like MKL [36]. This incurs notable
data conversion costs, particularly with complex LA operators. AIDA
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Fig. 10. The normalized performance of the conference covariance pipeline on different data sizes. Using the performance of TensorTable to normalize other frameworks, a smaller
number has worse performance. ‘‘Cross’’ represents the cross-framework implementation using pandas for RA operators and PyTorch for LA operators. ‘‘x’’ means unsupported.
Fig. 11. The execution time breakdown of the conference covariance pipeline on different data sizes. It consists of three primary parts: data conversion, LA operators, and RA
operators. ‘‘x’’ means unsupported.
uses numpy for LA operators and RMA uses MKL for LA operators.
These two libraries provide better optimizations for small-scale LA
computations over PyTorch. Therefore, AIDA and RMA outperform
TensorTable and cross-framework implementation for LA operators
over smaller datasets. However, as the dataset grows, PyTorch demon-
strates superior operator-level and graph-level optimizations, ensur-
ing TensorTable and cross-framework implementation’s superiority in
LA operators for larger datasets. TensorTable achieves a 1.76x-4.12x
speedup for LA operators and a 1.82x-3.54x speedup for RA operators
compared with AIDA. TensorTable achieves a 1.58x-3.72x speedup
for LA operators and a 78.22x-344.62x speedup for data conversion
compared with RMA. While RMA exhibits slightly better performance
on RA operators compared with TensorTable, its data conversion and
LA operators compromise its end-to-end performance. The LA per-
formance of TensorTable and cross-framework implementation have
no significant differences. However, cross-framework implementation
requires frequent data conversion between DataFrames and tensors
during runtime. TensorTable achieves a 1.03x-2.61x speedup for RA
operators and a 5.14x-39.43x speedup for data conversion compared
with cross-framework implementation.

5.3.2. Conferences–covariance computation
The second case derives from an academic conference management

system [29], it computes the covariance between A++ conferences and
other conferences based on the number of publications per author and
conference, using the DBLP dataset [37]. There are two tables: 𝑟𝑎𝑛𝑘𝑖𝑛𝑔
stores conferences and their ratings, and 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 stores the number
of publications per author and conference. The pipeline involves three
main steps: (1) Compute the covariance matrix on 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. (2) Join
the result with 𝑟𝑎𝑛𝑘𝑖𝑛𝑔. (3) Select the A++ conferences. Step (1) uses
LA operators, and Steps (2)(3) use RA operators.
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Fig. 10 displays the normalized performance of TensorTable com-
pared to pandas, Spark, AIDA, RMA, and cross-framework imple-
mentation using pandas for RA operators and PyTorch for LA op-
erators. TensorTable achieves a 1.5x-1.88x speedup compared with
pandas, a 2.51x-31.31x speedup compared with Spark, a 1.27x-5.63x
speedup compared with RMA, and a 1.13x-1.58x speedup compared
with cross-framework implementation. AIDA loses contextual infor-
mation when performing LA operators on TabularData containing
non-numeric columns. This results in some RA operators failing to
execute after LA operators. As a result, this mixed pipeline can only
execute the first half, encountering errors in the latter part for AIDA.

Fig. 11 offers a breakdown of execution time into three primary
parts: data conversion, LA operators, and RA operators. TensorTable
achieves a 1.36x-1.93x speedup for LA operators and a 1.97x-3.47x
speedup for RA operators compared with pandas. TensorTable achieves
a 2.01x-44.1x speedup, a 1.5x-3.33x speedup, and a 21.62x-249.57x
speedup for LA operators, RA operators, and data conversion, re-
spectively, compared with Spark. TensorTable achieves a 1.1x-2.42x
speedup for LA operators compared with AIDA, with AIDA’s RA op-
erators encountering errors due to contextual information loss caused
by preceding LA operators. Against RMA, TensorTable achieves a 1.1x-
2.56x speedup for LA operators, a 3.02x-8.4x speedup for RA operators,
and a 7.27x-31.66x speedup for data conversion. The LA performance
of TensorTable and cross-framework implementation have no signifi-
cant differences. However, TensorTable achieves a 2.22x-3.62x speedup
for RA operators and a 1.23x-4.96x speedup for data conversion in con-
trast to cross-framework implementation. In summary, TensorTable at-
tains optimal end-to-end performance by leveraging high-performance
LA operators, minimizing data conversion overhead, and achieving
competitive performance on RA operators.
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6. Related work

There are four categories of system implementations to support the
mixed RA and LA pipelines.

(1) Extending SQL for LA [24–26,38–42]. These works leverage
the mature ecosystem of Relational Database Management Systems
(RDBMS) and compile LA computations into SQL statements or RA
expressions. While they can ensure good performance for RA opera-
tors, the SQL statements often limit the optimization potential for LA
computations, leading to suboptimal performance. Additionally, certain
LA operators, such as matrix inversion and determinant computation,
cannot be implemented using this method.

(2) Using User-Defined Actions (UDAs) or User-Defined Functions
(UDFs) to implement LA in RDBMS [27,28,43–45]. However, it requires
significant effort and lacks flexibility. UDAs or UDFs provide technical
interfaces but do not offer ready-made implementations, leaving users
to create high-performance implementations themselves, which can be
challenging. Furthermore, these interfaces may struggle to handle the
various shapes and dimensions of LA operators effectively, and hinder
the users’ incremental developments, such as changing algorithms and
tuning parameters.

(3) Building cross-framework applications [17–20]. These appro-
aches utilize different systems for specific tasks, combining scientific
computing systems for LA operators, and RDBMS for RA operators, and
then integrating them. While this method can cover a wide range of
LA and RA operators, it introduces extra costs due to data copying and
transformations between frameworks and may limit cross-framework
optimizations.

(4) Proposing new abstractions for both LA and RA operators. Some
of them [22,23,46] propose new abstractions and build dedicated data
analysis frameworks from scratch. Others [29,30] propose new abstrac-
tions and extend existing frameworks. Most of these systems are based
on RDBMS, prioritizing performance for RA operators. However, they
often lack optimizations for LA operators, which cover more execution
time. In contrast, our work proposes a new abstraction and implements
the system on the LA framework, ensuring optimal performance for LA
operators while still accommodating RA operators.

7. Conclusion

This paper introduces TensorTable, a novel abstraction designed
to seamlessly accommodate mixed pipelines encompassing both rela-
tional algebra (RA) and linear algebra (LA) operators. TensorTable
can represent relational tables from RA, as well as vectors, matrices,
and tensors from LA. we provide TensorTable-based implementations
for RA operators and build a system that supports mixed LA and
RA pipelines. Built on top of PyTorch, our implementation ensures
comparable performance across both RA and LA operators, especially
on small datasets. Besides, TensorTable achieves a 1.15x-5.63x speedup
for mixed pipelines, outperforming state-of-the-art frameworks—AIDA
and RMA.
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